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Abstract—The population protocol model provides theoretical
foundations for analyzing the properties emerging from simple
and pairwise interactions among a very large number n of
anonymous agents. The problem tackled in this paper is the
following one: is there an efficient population protocol that exactly
counts the difference κ between the number of agents that initially
and independently set their state to A and the one that initially
set it to B, assuming that each agent only uses a finite set of
states ? We propose a solution which guarantees with any high
probability that after O (logn) interactions any agent outputs
the exact value of κ. Simulation results illustrate our theoretical
analysis.

Keywords—Population protocol; Majority algorithm; Perfor-
mance evaluation; Counting problem,

I. INTRODUCTION

The population protocol model, introduced by Angluin and
al. [2], provides theoretical foundations for analyzing global
properties emerging from pairwise interactions among a large
number of anonymous agents [5]. In the population protocol
model, computations of agents are modeled as identical and
deterministic finite state machines, i.e each agent can be in a
finite number of states while waiting to execute a transition.
When two agents interact, they communicate their local state,
and can move from one state to another according to the tran-
sition function. The patterns of interaction are unpredictable
however they must be fair, in the sense that any interaction
that should possibly appear cannot be avoided forever. The
ultimate goal of population protocols is for all the agents to
converge to a correct value independently from the interaction
patterns. Examples of systems whose behavior can be modeled
by population protocols range from molecule interactions of a
chemical process to sensor networks in which agents, which
are small devices embedded on animals, interact each time two
animals are in the same radio range.

A lot of work has been devoted to determine the tasks that
can be solved in the population protocol model, as well as to
study their complexities in terms of memory and convergence
time [1], [3], [6], [7], [8]. One of the most studied tasks is the
majority task. Briefly, solving the majority task amounts for all
the agents to eventually output a single value that depends on
the initial majority state of each agent of the system, assuming
that all the agents set their initial state to one of the two
possible initial states, say A or B. Section IV provides an
overview of the results recently obtained for the majority task.

In this paper, we focus on an quite important related
question. Namely, is there a population protocol that exactly
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counts the difference κ between the number of agents that
initially set their state to A and the one that initially set it to
B, and can it be solved in an efficient way, that is with the
guarantee that each agent should converge to the exact value
of κ after having triggered a sub-linear number of interactions
in the size of the system.

We answer this question by the affirmative by presenting
a O(n3/2)-state population protocol that allows each agent to
converge to the exact solution by interacting no more than
O(log n) times. The proposed protocol is very simple (as for
most of the population protocols), but is general enough to
be used to solve different types of tasks. Specifically, our
algorithm works as follows. Starting from an initial population
in which all A agents have a value m, where m is a positive
number, and all B agents have a value −m, each pair of agents
that meet, adopt the average of their values (or as close as
they can get when values are restricted to integers, as will
be clarified in Section VI). This method preserves the sum of
the initial values, and we show that the values of all agents
quickly converge to the average initial value. This method is
used in Section V and VI to obtain the difference κ between
the number of A and B agents.

This mechanism is similar to the averaging phase of
the average-and-conquer algorithm of Alistarh et al. [1] for
computing the majority value, and indeed our algorithm was
in part inspired by this previous work. What distinguishes
our algorithm from that of Alistarh et al. [1] is that we
generalize the problem to counting in addition to computing
majority, demonstrate that the additional mechanisms in their
algorithm for propagating the majority value can be omitted
without compromising correctness, and give a simpler proof
of convergence of the averaging mechanism based on tracking
the Euclidean distance between the vector of all agents’ values
and the uniform vector.

The remaining of this paper is organized as follows.
Section II presents the population protocol model. Section III
specifies the problem addressed in this work. Section IV pro-
vides an overview of the most recent average-based population
protocols. A preliminary protocol to compute the difference
κ together with its analysis are presented in Section V.
Note that this protocol does not exactly meet the population
protocol model, in that, it does not assume that agents have
a finite number of states. However, the motivation behind this
presentation is that the proposed argumentation is very similar
to the one used in Section VI while enriched to cope with
the finite number of states. We have simulated our protocol
that illustrates our theoretical analysis. Section VII presents
a summary of these simulation results. Finally, Section VIII
concludes.



II. POPULATION PROTOCOLS MODEL

In this section, we present the population model, introduced
by Angluin et al. [2].

A. Population Model

The population model, introduced by Angluin et al. [2],
models the behavior of a collection of agents that interact
pairwise. Specifically, this model is defined as follows. This
definition is from Angluin et al [4]. A population protocol is
characterized by a 6-tuple (Q,Σ, Y, ι, ω, f), over a complete
interaction graph linking the set of n agents, where Q is a
finite set of states, Σ is a finite set of input symbols, Y is a
finite set of output symbols, ι : Σ → Q is the input function
that determines the initial state of an agent, ω : Q → Y is
the output function that determines the output symbol of an
agent, and f : Q × Q → Q × Q is the transition function
that describes how two agents interact and update theirs states.
Initially all the agents start with a initial symbol from Σ,
and upon interactions with agents update their state according
to the transition function f . Interactions between agents are
orchestrated by a random and fair scheduler: at each discrete
time, any two agents are randomly chosen to interact, and any
possible interaction cannot be avoided forever.

The notion of time in population protocols refers to as the
successive steps at which interactions occur, while the parallel
time refers to as the successive number of steps each agent
executes [5].

Agents do not maintain nor use identifiers (agents are
anonymous and cannot determine whether any two interactions
have occurred with the same agents or not). However, for ease
of presentation the agents are numbered 1, 2, . . . , n.

Let C = {Ct, t ≥ 0} be a stochastic process with state
configuration Qn. For every t ≥ 0, the configuration at time t
of the stochastic process is denoted by Ct = (C

(1)
t , . . . , C

(n)
t ).

At each discrete instant t, two distinct indices i and j are
successively chosen among 1, . . . , n with probability pi,j(t).
We denote by Xt the random variable representing this choice,
that is

P{Xt = (i, j)} = pi,j(t).

We assume that the random variables Xt and Ct are indepen-
dent.

We will use in the sequel the Euclidean norm denoted by
‖.‖ and the infinite norm denoted by ‖.‖∞ defined for all x =
(x1, . . . , xn) ∈ Rn by

‖x‖ =

(
n∑
i=1

x2i

)1/2

and ‖x‖∞ = max
i=1,...,n

|xi|

It is well-known that these norms satisfy

‖x‖∞ ≤ ‖x‖ ≤
√
n‖x‖∞.

III. THE COUNTING PROBLEM

The problem addressed in this work is the following one.
We consider a set of n agents, interconnected by a complete
graph, that start their execution in one of two distinguished
states of Σ = {A,B}. Let nA be the number of agents whose

initial state is A and nB be the number of agents that start in
state B. Let κ = nA − nB , be the quantity referred to as the
conserved advantage in the following of the paper. The output
set Y is the set of all possible values of κ, that is all integers
between −n and n.

A population protocol solves the counting problem within
τ steps with probability at least 1 − δ, for any δ ∈ (0, 1), if
for any configuration Ct reachable by the protocol after t ≥ τ
steps, it holds that with probability at least 1−δ, ω(C

(i)
t ) = κ,

for any agent i. As will be shown in the following, κ does not
depend on time t, however agents are locally able to compute
κ only after a logarithmic number of interactions.

IV. RELATED WORK

The population protocol model was formalized by Angluin
et al. [2]. Since then, there has been a lot of work on population
protocols, and among them the closest to our work are related
to the average problem. In this problem, all the agents start in
one of two distinguished states and they eventually converge
to 1 if κ > 0, and to 0 if κ < 0. In [6], [7], the authors
propose a four-state protocol that solves the majority problem
with an expected convergence parallel time logarithmic in n.
However, the expected convergence time is infinity when κ
approaches 0. The authors in [3], [8] propose a three-state
protocol that converges with some probability δ, and whose
parallel time is logarithmic in n if κ is large enough, i.e
κ = O(

√
n log n). Finally, the closest work to ours is the

one of Alistarh et al. [1]. The authors propose a population
protocol based on an average-and-conquer method to exactly
solve the majority problem. Their algorithm uses types of
interactions, an averaging one and a neutralization interaction.
The first type of interactions is close to the one used in our
protocol while the second one is used to prevent agents from
influencing the final decision. This additional mechanism for
propagating the majority value to all the agents makes their
proof of convergence intricate. Finally, the authors show that
the number of states and convergence parallel time of their
algorithms are lower bounded by a log n factor. In contrast we
show that the convergence parallel time of our algorithm is
upper bounded by a log n factor.

V. COUNTING WITH A COUNTABLE STATE SPACE

We consider in this section the case where the state space Q
is not finite but nevertheless countable. It does not correspond
strictly to the definition of a population protocol given above
but the convergence analysis is stronger and will be extended
in the next section to a finite state space. The parameters Q,
Σ, Y , ι and ω are application dependent and will be defined at
the end of this section where the conserved advantage κ will
be computed. The transition function f we use is given by

f(a, b) =

(
a+ b

2
,
a+ b

2

)
.

This means that the state space Q is the set of dyadic numbers,
the rational numbers with denominators that are powers of 2.
Once the couple (i, j) is chosen at time t, the process reaches
state Ct+1, at time t+ 1, given by

C
(i)
t+1 = C

(j)
t+1 =

C
(i)
t + C

(j)
t

2
and C(m)

t+1 = C
(m)
t if m 6= i, j.

(1)



Lemma 1: For every t ≥ 0, we have
n∑
i=1

C
(i)
t =

n∑
i=1

C
(i)
0 .

Proof: The proof is immediate since the transformation
from Ct to Ct+1 described in Relation (1) does not change
the sum of the entries of Ct+1. Indeed, from Relation (1), we
have C(i)

t+1 +C
(j)
t+1 = C

(i)
t +C

(j)
t and the other entries do not

change their values.

In the following we denote by ` the mean value of the sum
of the entries of Ct and by L the row vector of Rn with all
its entries equal to `, that is

` =
1

n

n∑
i=1

C
(i)
t and L = (`, . . . , `).

Theorem 2: Assuming a uniform choice of the pair (i, j),
that is if, for i 6= j,

pi,j(t) =
1

n(n− 1)
,

then we have

E
(
‖Ct − L‖2

)
=

(
1− 1

n− 1

)t
E
(
‖C0 − L‖2

)
. (2)

Moreover Ct converges almost surely to L, i.e.

P{ lim
t−→∞

Ct = L} = 1.

Proof: Let x ∈ Rn. For every i, j = 1, . . . , n with i 6= j,
the vector y defined by

yi = yj =
xi + xj

2
and ym = xm for m 6= i, j

satisfies

‖y−L‖2 = ‖x−L‖2−(xi−`)2−(xj−`)2+2

(
xi + xj

2
− `
)2

,

which gives

‖y − L‖2 = ‖x− L‖2 − (xi − xj)2

2
.

Applying this result to the random vectors Ct+1 and Ct
gives, for every t ≥ 0,

‖Ct+1 − L‖2

= ‖Ct − L‖2 −
1

2

n∑
i=1

n∑
j=1

(
C

(i)
t − C

(j)
t

)2
1{Xt=(i,j)}. (3)

By taking the expectations and using the fact that Xt and
Ct are independent, we get

E
(
‖Ct+1 − L‖2

)
= E

(
‖Ct − L‖2

)
− 1

2

n∑
i=1

n∑
j=1

E

((
C

(i)
t − C

(j)
t

)2)
pi,j(t).

Since
pi,j(t) =

1

n(n− 1)
,

we obtain

E
(
‖Ct+1 − L‖2

)
= E

(
‖Ct − L‖2

)
− 1

2n(n− 1)

n∑
i=1

n∑
j=1

E

((
C

(i)
t − C

(j)
t

)2)
.

Moreover, we have
n∑
i=1

n∑
j=1

(
C

(i)
t − C

(j)
t

)2
=

n∑
i=1

n∑
j=1

((
C

(i)
t − `

)
−
(
C

(j)
t − `

))2
=

n∑
i=1

n∑
j=1

[(
C

(i)
t − `

)2
+
(
C

(j)
t − `

)2
−2
(
C

(i)
t − `

)(
C

(j)
t − `

)]
= 2n‖Ct − L‖2 − 2

n∑
i=1

(
C

(i)
t − `

) n∑
j=1

(
C

(j)
t − `

)
= 2n‖Ct − L‖2 − 2

n∑
i=1

(
C

(i)
t − `

)
(n`− n`)

= 2n‖Ct − L‖2.

This leads to

E
(
‖Ct+1 − L‖2

)
=

(
1− 1

n− 1

)
E
(
‖Ct − L‖2

)
,

and thus

E
(
‖Ct − L‖2

)
=

(
1− 1

n− 1

)t
E
(
‖C0 − L‖2

)
.

Using the Markov inequality, we get, for all ε > 0

P{‖Ct − L‖2 ≥ ε} ≤
1

ε

(
1− 1

n− 1

)t
E
(
‖C0 − L‖2

)
,

which means that Ct converges in probability to L when t
tends to infinity. Since, for all ε > 0, we have
∞∑
t=0

P{‖Ct − L‖2 ≥ ε} ≤
E
(
‖C0 − L‖2

)
ε

∞∑
t=0

(
1− 1

n− 1

)t
=

(n− 1)E
(
‖C0 − L‖2

)
ε

<∞,

we deduce that Ct converges almost surely to L when t tends
to infinity.

The following corollary gives an (ε, δ)-approximation of
Ct by L.

Corollary 3: For all ε > 0 and δ ∈ (0, 1), if there exists
a constant K such that E(‖C0 − L‖∞) ≤ K then, for all
t ≥ (n− 1) ln(nK2/ε2δ) we have

P{‖Ct − L‖∞ ≥ ε} ≤ δ.

Proof: Let τ = (n− 1) ln(nK2/ε2δ). From Relation (3),
we see that the random variable ‖Ct−L‖2 is a non increasing
function of t. So, for all t ≥ τ , we have

P{‖Ct − L‖∞ ≥ ε} = P{‖Ct − L‖2∞ ≥ ε2}
≤ P{‖Ct − L‖2 ≥ ε2}
≤ P{‖Cτ − L‖2 ≥ ε2}.



From Theorem 2 and using the Markov inequality, we get

P{‖Cτ − L‖2 ≥ ε2} ≤
E
(
‖Cτ − L‖2

)
ε2

=
1

ε2

(
1− 1

n− 1

)τ
E
(
‖C0 − L‖2

)
.

For all x ∈ [0, 1), we have ln(1− x) ≤ −x. This leads to(
1− 1

n− 1

)τ
≤ e−τ/(n−1) =

ε2δ

nK2
.

We then obtain, for t ≥ τ ,

P{‖Ct − L‖∞ ≥ ε} ≤
δ

nK2
E
(
‖C0 − L‖2

)
.

Since
‖C0 − L‖2 ≤ n‖C0 − L‖2∞,

we get

P{‖Ct − L‖∞ ≥ ε} ≤
δ

K2
E
(
‖C0 − L‖2∞

)
≤ δ,

which completes the proof.

We now apply these results for the computation of the
conserved advantage κ. The set of input is Σ = {A,B} and
the input function ι is defined by ι(A) = m and ι(B) = −m,
where m is a positive number. This means that, for every
i = 1, . . . , n, we have C(i)

0 ∈ {−m,m}. Recall that nA (resp.
nB) represents the number of agents whose initial input is
A (resp. B), i.e. with initial value m (resp. −m) and the
conserved advantage κ is equal to nA − nB . Note that we
have n = nA + nB . Moreover, we have

` =
1

n

n∑
i=1

C
(i)
0 =

κm

n
,

which shows from Lemma 1 that κ is time independent. The
set of output Y is the set of all possible values of κ, i.e.
Y = {−n,−n + 1, . . . , n − 1, n}. The set of states Q is the
set of all the dyadic numbers which belong to the interval
[−m,m]. Finally, the output function is, for all x ∈ Q,

ω(x) = bnx/m+ 1/2c.

Theorem 4: For all δ ∈ (0, 1) and t ≥ (n − 1)(4 ln 2 +
3 lnn− ln δ), we have

P{ω(C
(i)
t ) = κ, for all i = 1, . . . , n} ≥ 1− δ.

Proof: Since Q ⊂ [−m,m], we have ‖C0 − L‖∞ ≤ 2m.
From Corollary 3, we obtain that for all ε, δ > 0 and t ≥
(n − 1) ln(4nm2/ε2δ), we have P{‖Ct − L‖∞ ≥ ε} ≤ δ or
equivalently

P{|C(i)
t −

κm

n
| < ε, for all i = 1, . . . , n} ≥ 1− δ.

By taking, ε = m/(2n), we get, for all δ > 0 and t ≥ (n −
1) ln(16n3/δ)

P{κ < C
(i)
t n

m
+

1

2
< κ+ 1, for all i = 1, . . . , n} ≥ 1− δ.

This is implies that for all δ > 0 and t ≥ (n − 1)(4 ln 2 +

3 lnn − ln δ), P{ω(C
(i)
t ) = κ, for all i = 1, . . . , n} ≥ 1 − δ.

Note that this result is independent from the choice of m
which can be any positive number. The convergence time to
get the conserved advantage κ with any high probability is
O (n log n) and thus the parallel convergence time to get κ
with any high probability is O (log n).

VI. COUNTING WITH A FINITE STATE SPACE

In this section we use the strict definition of population
protocols, i.e. we deal with a finite state space Q which is a
finite set of integer vectors. Similarly to the previous analysis,
the parameters Q, Σ, Y , ι and ω are application dependent and
will be defined at the end of the section for the computation of
the conserved advantage κ. The transition function f is given
by

f(a, b) =

{(
a+b
2 , a+b2

)
if a+ b is even(

a+b−1
2 , a+b+1

2

)
if a+ b is odd.

(4)

Once the couple (i, j) is chosen at time t, the process
reaches state Ct+1, at time t+ 1, given by(

C
(i)
t+1, C

(j)
t+1

)
=

(
C

(i)
t +C

(j)
t

2 ,
C

(i)
t +C

(j)
t

2

)
if C(i)

t + C
(j)
t is even(

C
(i)
t +C

(j)
t −1

2 ,
C

(i)
t +C

(j)
t +1

2

)
if C(i)

t + C
(j)
t is odd

and C(m)
t+1 = C

(m)
t for m 6= i, j. (5)

Lemma 5: For every t ≥ 0, we have
n∑
i=1

C
(i)
t =

n∑
i=1

C
(i)
0 .

Proof: The proof is immediate since the transformation
from Ct to Ct+1 described in Relation (5) does not change
the sum of the entries of Ct+1. Indeed, from Relation (5), we
have C(i)

t+1 +C
(j)
t+1 = C

(i)
t +C

(j)
t and the other entries do not

change their values.

As we did in the countable case, we denote by ` the mean
value of the sum of the entries of Ct and by L the row vector
of Rn with all its entries equal to `, that is

` =
1

n

n∑
i=1

C
(i)
t and L = (`, . . . , `).

Theorem 6: Assuming a uniform choice of the pair (i, j),
that is if, for i 6= j,

pi,j(t) =
1

n(n− 1)
,

then we have

E
(
‖Ct − L‖2

)
≤
(

1− 1

n− 1

)t
E
(
‖C0 − L‖2

)
+
n

4
. (6)



Proof: Let x ∈ Zn. For every i, j = 1, . . . , n with i 6= j,
the vector y defined by

(yi, yj) =


(
xi+xj

2 ,
xi+xj

2

)
if xi + xj is even(

xi+xj−1
2 ,

xi+xj+1
2

)
if xi + xj is odd

and ym = xm for m 6= i, j satisfies

‖y − L‖2 = ‖x− L‖2 − (xi − `)2 − (xj − `)2+
(
xi+xj

2 − `
)2

if xi + xj is even(
xi+xj+1

2 − `
)2

+
(
xi+xj−1

2 − `
)2

if xi + xj is odd

which gives

‖y−L‖2 =

{
‖x− L‖2 − (xi−xj)

2

2 if xi + xj is even

‖x− L‖2 −
[
(xi−xj)

2

2 − 1
2

]
if xi + xj is odd

We introduce the indicator function 1{x odd} defined by
1{x odd} = 1 if x is odd and 0 if x is even. We can write

‖y − L‖2 = ‖x− L‖2 −
[

(xi − xj)2

2
−

1{xi+xj odd}

2

]
Applying this result to the random vectors Ct+1 and Ct gives,
for every t ≥ 0,

‖Ct+1 − L‖2 = ‖Ct − L‖2 (7)

− 1

2

n∑
i=1

n∑
j=1

[(
C

(i)
t − C

(j)
t

)2
− 1{C(i)

t +C
(j)
t odd}

]
1{Xt=(i,j)}.

By taking the expectations and using the fact that Xt and Ct
are independent, we get

E
(
‖Ct+1 − L‖2

)
= E

(
‖Ct − L‖2

)
− 1

2
E

 n∑
i=1

n∑
j=1

[(
C

(i)
t − C

(j)
t

)2
− 1{C(i)

t +C
(j)
t odd}

] pi,j(t).

Since

pi,j(t) =
1

n(n− 1)
,

we obtain

E
(
‖Ct+1 − L‖2

)
= E

(
‖Ct − L‖2

)
(8)

− 1

2n(n− 1)
E

 n∑
i=1

n∑
j=1

[(
C

(i)
t − C

(j)
t

)2
− 1{C(i)

t +C
(j)
t odd}

] .

As in the countable case, we have
n∑
i=1

n∑
j=1

(
C

(i)
t − C

(j)
t

)2
= 2n‖Ct − L‖2

and if qt be the number of odd entries of Ct, we have
n∑
i=1

n∑
j=1

1{C(i)
t +C

(j)
t odd} = 2qt(n− qt).

It follows that

E
(
‖Ct+1 − L‖2

)
=

(
1− 1

n− 1

)
E
(
‖Ct − L‖2

)
(9)

+
E(qt(n− qt))
n(n− 1)

.

The function g defined, for x ∈ [0, n], by g(x) = x(n−x) has
its maximum at point x = n/2, so we have 0 ≤ g(x) ≤ n2/4.
This gives

E
(
‖Ct+1 − L‖2

)
≤
(

1− 1

n− 1

)
E
(
‖Ct − L‖2

)
+

n

4(n− 1)
,

that is

E
(
‖Ct − L‖2

)
≤
(

1− 1

n− 1

)t
E
(
‖C0 − L‖2

)
+

n

4(n− 1)

t−1∑
i=0

(
1− 1

n− 1

)i
.

Since
t−1∑
i=0

(
1− 1

n− 1

)i
≤
∞∑
i=0

(
1− 1

n− 1

)i
= n− 1,

we get

E
(
‖Ct − L‖2

)
≤
(

1− 1

n− 1

)t
E
(
‖C0 − L‖2

)
+
n

4
,

which completes the proof.

Lemma 7: The sequence
(
‖Ct − L‖2

)
t

is non increasing.

Proof: It is immediate, from the Equality 7. Indeed, if
C

(i)
t + C

(j)
t is odd then C

(i)
t 6= C

(j)
t which means, in any

case, that
(
C

(i)
t − C

(j)
t

)2
− 1{C(i)

t +C
(j)
t odd} ≥ 0.

The following corollary gives a δ-approximation for the
deviation between Ct by L.

Corollary 8: For all δ ∈ (0, 1), if there exists a constant K
such that E(‖C0−L‖∞) ≤ K then, for all t ≥ (n−1) ln(4K2)
we have

P{‖Ct − L‖∞ ≥
√

n

2δ
} ≤ δ.

Proof: Let τ = (n−1) ln(4K2) and t ≥ τ . From Lemma
7, from Theorem 6 and using the Markov inequality, we obtain

P{‖Ct − L‖2∞ ≥
n

2δ
} ≤ P{‖Ct − L‖2 ≥

n

2δ
}

≤ P{‖Cτ − L‖2 ≥
n

2δ
} ≤ 2δ

n
E
(
‖Cτ − L‖2

)
≤ 2δ

n

(
1− 1

n− 1

)τ
E
(
‖C0 − L‖2

)
+
δ

2
.

For all x ∈ [0, 1[, we have ln(1− x) ≤ −x. This leads to(
1− 1

n− 1

)τ
≤ e−τ/(n−1) =

1

4K2
.



We then obtain, for t ≥ τ ,

P{‖Ct − L‖2∞ ≥
n

2δ
} ≤ δ

2nK2
E
(
‖C0 − L‖2

)
+
δ

2
.

Since
‖C0 − L‖2 ≤ n‖C0 − L‖2∞ ≤ nK2,

we obtain
P{‖Ct − L‖2∞ ≥

n

2δ
} ≤ δ,

that is

P{‖Ct − L‖∞ ≥
√

n

2δ
} ≤ δ,

which completes the proof.

We now apply these results for the computation of the
conserved advantage κ. Similarly to the countable case, the
set of input is Σ = {A,B}, and the input function ι is defined
by ι(A) = m and ι(B) = −m, however m is a positive
integer. This means that, for every i = 1, . . . , n, we have
C

(i)
0 ∈ {−m,m}. We have

` =
1

n

n∑
i=1

C
(i)
0 =

κm

n
,

which shows from Lemma 5 that κ is time independent. The
set of states Q is now the set {−m,−m+ 1, . . . ,m− 1,m}.
The output function is, for all x ∈ Q,

ω(x) = bnx/m+ 1/2c.

Finally, the set of output Y is the set of all possible values of
κ, i.e. Y = {−n,−n+ 1, . . . , n− 1, n}.

Theorem 9: For all δ ∈ (0, 1), m =
⌈√

2n3/2/
√
δ
⌉

and

for all t ≥ (n− 1)
(

5 ln 2 + 3 lnn− ln δ + 2
m−1

)
, we have

P{ω(C
(i)
t ) = κ, for all i = 1, . . . , n} ≥ 1− δ.

Proof: Since Q ⊂ [−m,m], we have ‖C0 − L‖∞ ≤ 2m.
From Corollary 8, we obtain that for all δ ∈ (0, 1) and t ≥
(n− 1) ln(16m2), we have

P{‖Ct − L‖∞ ≥
√

n

2δ
} ≤ δ

or equivalently

P{|C(i)
t −

κm

n
| <

√
n

2δ
, for all i} ≥ 1− δ.

Introducing the notation y = n3/2/
√

2δ, we obtain m = d2ye
and thus 2y ≤ m < 2y + 1, which implies that

(n− 1) ln(16m2)

≤ (n− 1)
(

4 ln 2 + 2 ln
(√

2n3/2 +
√
δ
)
− ln δ

)
= (n− 1)

(
4 ln 2 + 2 ln

(√
2n3/2

(
1 +

√
δ√

2n3/2

))
− ln δ

)
≤ (n− 1)

(
5 ln 2 + 3 lnn− ln δ +

√
2δ

n3/2

)
≤ (n− 1)

(
5 ln 2 + 3 lnn− ln δ + 2

m−1

)
.

Therefore, for t ≥ (n− 1)
(

5 ln 2 + 3 lnn− ln δ + 2
m−1

)
we

obtain

P{κ+
1

2
− y

m
<
C

(i)
t n

m
+

1

2
< κ+

1

2
+
y

m
, for all i} ≥ 1−δ,

Since y/m ≤ 1/2, this implies

P{κ < C
(i)
t n

m
+

1

2
< κ+ 1, for all i} ≥ 1− δ.

Now this implies that P{ω(C
(i)
t ) = κ, for all i} ≥ 1 − δ,

which completes the proof.

Note that the convergence time to get κ with any high
probability is O (n log n) and thus the parallel convergence
time to get κ with any high probability is O (log n).

VII. EXPERIMENTAL EVALUATION

This section describes the main results obtained from the
simulation of our protocol.

A. Settings of the simulations

We have run a series of experiments on different sets of
initial states and for different parameter settings, in particular
the size of the population n to illustrate the behavior of our
population protocol described in Section VI. The scheduler
of the simulator chooses at each step of the simulation inde-
pendently and uniformly at random the couple of interacting
agents. The number of agents that share the correct output,
and the configuration vectors Ct are monitored. Finally, each
point on the curves represents the mean of 1, 000 paths.

B. Simulation results

Two metrics have been studied: (i) the convergence parallel
time to κ as a function of the number of agents and κ, and
(ii) the amplitude At of the configuration vector defined by
At = maxi C

(i)
t −mini C

(i)
t as a function of parallel time and

κ. The conserved advantage κ has been set to 0 and 3n/5 to
reflect the good behavior of our algorithm whatever the initial
gap between the initial majorities.

1) Parallel time to convergence: Figures 1(a) and 2(a)
represent the convergence parallel time to κ using box-and-
whisker diagrams, as a function of the size of the network
n.

Specifically, the bottom and top of the box represent
respectively the first and third quartiles, and the band inside
the box represents the median. The ends of the whiskers
represent the 5th percentile and the 95th percentile. Any data
not included between the whiskers is plotted as an outlier
with small circle. Clearly, these figures perfectly illustrate
the theoretical analysis (see Theorem 9), in that each agent
interacts a logarithmic number of times in order to converge
to κ. Note that the variability of convergence time is very low,
as illustrated by the length of the box diagram. Actually, half
of the experiments converge with a variability of ±2 from the
median.
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(a) Convergence parallel time as a function of the population size.
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(b) At as a function of parallel time t (curve with bars) and number of
agents that have converged as a function of parallel time.
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(c) maxi=1,...,n C
(i)
t as a function of parallel time t (top curve) and

mini=1,...,n C
(i)
t as a function of parallel time t (bottom curve).

Figure 1. Evolution of the configuration vector for a conserved advantage κ
equal to 0. Settings: n = 222 = 4, 19× 106.

2) Temporal evolution of the configuration vector: Fig-
ures 1(b) and 2(b) depict, on the curve with bars, the amplitude
At of the configuration vector as a function of parallel time
t, and on the continuous curve (whose the y-axis is on the
right), the number of agents that have converged to κ as a
function of parallel time. The size of the population is equal
to n = 222 ≈ 4.19 millions of agents. Both curves illustrate the
fast convergence of the agents. One can notice in Figure 1(b) an
interesting behavior due to the null initial advantage (κ = 0): a
large number of agents seem to have converged right after their
first interaction, and then depart from this converged state dur-
ing a little bit less than a logarithmic number of interactions,
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(a) Convergence parallel time as a function of the population size n.
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(b) At as a function of parallel time t (curve with bars) and number of
agents that have converged as a function of parallel time.
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(c) maxi=1,...,n C
(i)
t as a function of parallel time t (top curve) and

mini=1,...,n C
(i)
t as a function of parallel time t (bottom curve).

Figure 2. Evolution of the configuration vector for a conserved advantage κ
equal to 3n/5. Settings: n = 222 ≈ 4, 19× 106.

to finally and definitively converge to the exact output value.
This phenomenon is easily explained by the fact that a certain
number of agents primarily interact with agents exhibiting an
opposite value to their own value (m and −m) and thus get
an average equal to 0 which is also equal to the convergence
value κ. Meanwhile, all their subsequent interactions will lead
to a non null average value which explains why the number
of agents that have converged decrease to 0.

VIII. CONCLUSION

This paper has presented a population protocol that solves
the counting problem, problem that generalizes the problem



to counting in addition to computing majority. Our solution
is simple, i.e., it is based on an average transition function, it
is efficient, i.e., it guarantees that any agent converges to the
exact majority difference κ in O(log n) interactions with any
high probability, and its analysis uses a simple argument that
provides a proof of convergence of the averaging mechanism
based on tracking the Euclidean distance between the vector
of all agents’ states and the uniform vector. The present work
assumed that the size of the system n is known a priori. As
future work, we plan to remove this assumption by combining
the present algorithm to a leader election population protocol.
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