ANT COLONY ALGORITHM APPLIED TO AUTOMATIC SPEECH RECOGNITION GRAPH
DECODING

Benjamin Lecouteux and Didier Schwab

GETALP (Study Group for Machine Translation and Automated Processing of Languages and Speech)
Laboratory of Informatics of Grenoble (LIG)
Univ. Grenoble Alpes

name.surname@imag. fr

ABSTRACT

In this article we propose an original approach that allows the decod-
ing of Automatic Speech Recognition Graphs by using a construc-
tive algorithm based on ant colonies. In classical approaches, when
a graph is decoded with higher order language models; the algo-
rithm must expand the graph in order to develop each new observed
n-gram. This extension process increases the computation time and
memory consumption. We propose to use an ant colony algorithm
in order to explore ASR graphs with a new language model, with-
out the necessity of expanding it. We first present results based on
the TED English corpus where 2-grams graph are decoded with a 4-
grams language model. Then, we show that our approach performs
better than a conventional Viterbi algorithm when computing time
is constrained and allows a highly threaded decoding process with
a single graph and a strict control of computation time and memory
consumption.

Index Terms: Graph decoding, ant colony algorithm, language
model, automatic speech recognition, real-time

1. INTRODUCTION

In this article, we introduce a new paradigm for the exploration of
decoding graphs in automatic speech recognition (ASR) systems. A
preliminary part of this work was presented in a French conference
[L]. A problem that arises during this exploration of word graphs
is when higher-order language models are applied to them. Indeed,
the number of paths grows exponentially with the language model
order. For example, the size of a simple word graph decoded with a
2-gram model and expanded to a 4-gram model is tenfold. Several
techniques have been successfully applied to overcome the problem.
Some, such as compact-expansion [2], are approximation methods
while others such as beam-search are based on pruning. Here, we
present an alternative method based on a constructive version of an
algorithm that is widely used in operational research: an ant colony
algorithm. Such algorithms have been successfully applied to the
travelling salesman problem or lexical disambiguation for example.

The paper is structured as follows: In the d section, we briefly
review decoding techniques for ASR system with large vocabular-
ies and then ant colony algorithms in general. The ,CE]”‘, h
sections present the overall architecture of the system used for this
work. Then, we present all the experiments we conducted in section
6f" and the analysis of their results, followed by a discussion in the
" section. We conclude by proposing some interesting improve-
ment perspectives based on the properties of ant colony algorithms.

2. RELATED WORK
2.1. Classical approaches

The principle of ASR systems is to find in a graph the hypothesis
that will maximize the probabilities of the acoustic and language
models. Generally, heuristics are applied to limit the size of the
search space. We can find several approaches to dynamically
generate hypotheses:

e synchronous graph algorithms that generate a virtual copy of
the graph for all hypotheses and that terminate after a fixed
time ¢. The next word is shared but is associated to several
timelines. In this approach, the dynamic alignment algorithm
is applied for each word without any conservation of their
timelines. Such algorithms are rarely implemented [3].

e reentrant graph algorithms, where a virtual copy of the graph
is explored for every linguistic context. The information per-
taining to each context is recorded for each path and com-
bined with a new virtual root relative to the history in the lan-
guage model [4]]. Reentrant graph algorithms are widely used
and the more frequent implementation is the Viterbi beam-
search [5116]. Their design based on dynamic programming.

e stack asynchronous algorithms [7] where the principle is to
do a deep exploration and prioritize promising hypotheses.
This is achieved by expanding the selected hypothesis word
by word. Their implementation relies on priority stacks that
order the hypotheses to explore. The most commonly used
asynchronous method is A™ [8},[9,[10].

e in the field of WFST-based speech recognition, several algo-
rithms have been proposed in order to reduce time and mem-
ory problem: [[11], [12] propose on the fly composition algo-
rithms while [13]] propose to factor the language models into
smaller components.

For a more detailed and in-depth review of decoding techniques
for large vocabulary ASR systems, readers are advised to refer to
[14j.

The rescoring of a 2-gram graph with 3-gram language model
increases drastically the number of nodes. For example, in our ex-
periments the storage of 2-gram graphs takes up to 500MB against
6GB for expanded 4-gram graphs. In order to remove the language
model expansion phase, we propose to use an ant colony algorithm
to explore the graph.

2.2. Ant colony algorithm

The idea of ant colony algorithms comes from biology and from the
observation of ant social behavior. Indeed, ants have the ability to
collectively find the shortest path between their nest and a source
of energy. It has been demonstrated that cooperation inside an ant
colony is self-organized and emerges from interactions between in-
dividuals.

These interactions are often very simple and allow the colony to
solve complex problems. This phenomenon is called swarm intelli-
gence [15/116] and is increasingly used in computer science, where
centralized control systems are often successfully replaced by other
types of control based on interactions between simple elements.

Artificial ants have first been used for solving the Traveling
Salesman Problem [[17]. In these algorithms, the environment is usu-
ally represented by a graph, in which virtual ants exploit pheromone
trails deposited by others, or pseudo-randomly explore the graph.

Ant colony algorithms are a good alternative for the resolution
of problems modeled by graphs. They allow a fast and efficient ex-
ploration that exhibits performance close to other search methods.



[ LM order [ #n-grams [ Perplexity [ dev WER [ test WER |

Tg 71K - - -

2g +35M 234 2201% | 21.67%
3g +238M 159 18.1% 17.7%
4g +524M 150 17.4% 16.7%

Table 1. Details on the different language models used by our sys-
tem.

Their main advantage is their high adaptivity to changing environ-
ments. Readers can refer to [18]], [19] or [20] for a state of the art.

Such algorithms have already been applied for natural language
processing tasks successfully including Word Sense Disambiguation
[21]. The work presented here aims at expanding this paradigm to
automatic speech recognition.

3. ASR SYSTEM

The ASR system we implement is based on the KALDI toolkit [22]].
KALDI offers state of the art tools for automatic speech recogni-
tion. The acoustic model and phonetization of our system have been
trained with the corpora provided by LIUM [23] (118 hours of an-
notated data). The enrichment of the delta and delta-delta coeffi-
cient parameters, as well as several transformations such as LDA
and MLLT [24] are applied. Finally, speaker adaptive training is ap-
plied on the acoustic models and combined with fMLLR space type
parameter adaptation [25] at the speaker level.

The language model is trained on all the data provided for the
IWSLT 2010 campaign as well as the training corpora provided by
LIUM. A language model was trained for each sub-corpus and all
models were interpolated by minimizing the perplexity on the devel-
opment set, without applying any data selection or pruning.

The final perplexity obtained on the dev is 159 for the 3-gram
model and 150 for the 4-gram. The amounts of n-grams and the
perplexity of the different models used in our experiments are shown
in Table 1.

4. USED CORPORA AND BASELINE RESULTS

The entirety of the experiments were performed on a corpus made
available to the community for the IWSLT 2010 campaign: the TED
corpus that corresponds to a set of conference talks recorded in En-
glish [26]. Details and baseline results are shown in Table 2]

TED | # Sentences | # Words | duration | 3-gram | 4-gram

WER WER
dev 507 18226 4h12 181% [ 174 %
test 1155 28430 7h30 17.7% | 16.7 %

Table 2. Details on TED corpora used for the experiments.

We purposely used an initial bi-gram language model in order
to not introduce additional information at the linguistic level in the
ASR. Then the graphs were rescored without pruning with 3 and
4-gram language models.

4.1. Graph conversion

Although the ASR system we used is based on the FST framework,
the tools we used to implement the Ant Colony Algorithm was de-
veloped in LIG and uses graphs based on the HTK format. We have
thus converted the entirety of the graphs from KALDI in the HTK
format, which allowed us to work with that format. The ant decoder
can be downloaded at the following address: http://getalp.
imag.fr/static/wsd/INTERSPEECH2015-Ants4ASR/

5. PROPOSED APPROACHES

As a first step, we want to validate the approach by simplifying the
decoding stages. For this reason, all the work presented is performed
on word graphs extracted from the KALDI ASR. We use an initial bi-

gram language model, so that we could use the ant colony algorithm
to expand the graph to higher n-gram orders.

Our general implementation of the algorithm is as follows: Each
link of the graph is associated with a pheromone variable initialized
at the beginning of each epoch. Our ants are launched from the first
node of the graph and in order to leave a node, ants will have to
choose a link. This choice is performed with a weighted random
selection based on the quantity of pheromone on each arc (Figure .
With the arrival of an ant at the endpoint, if a solution is found (1.e.
the acoustic and linguistic probabilities combination) that is better
than the previous best solution found, then pheromone is added on
the path by an increment of 1. In the literature, it was shown that
with such a simple version of the ant colony, ants tended to converge
on a path that does not necessarily represent the optimal solution. It
is therefore necessary to use local or global heuristics to avoid this
phenomenon. The next section presents some heuristics that bias the
choice of ants.

Discrete distribution of
the random selection

Fig. 1. In order to leave a node, ants will have to choose a link. This
choice is performed with a weighted random selection based on the
quantity of pheromone on each arc (weighted by the nodes posteriors
in our experiments). The thickness of the line expresses the amount
of pheromone already deposited.

5.1. Anamorphic ants

We use different types ants as proposed in [19] using an heuristic
exploration biased by the information already present in the initial
graph.

Posteriors probabilities p(a|G) are computed on the bi-gram
graph for each link a, given the current word graph G. This proba-
bility corresponds to the ratio between all the probabilities of all the
paths passing through link a and the set of all paths in the graph G:

i ; Cp(CIG)
alG _ YeGal 1)
p(alG) S H(ClG)

ceG

Where C € G denotes a full path C' in the graph G and a D C'
a link that belongs to the path. This posterior probability is conven-
tionally estimated by using a forward-backward algorithm as shown
in [27].

We independently evaluate three variants of the algorithm :

1. Listening ants that are influenced by the acoustic posterior
probability, without taking into account the linguistic aspect.

2. Talkative ants that unlike previous ants, are only influenced
by the language posterior probability of the next node.

3. Oracles ants, a hybrid model that combines the previous two
and that represents the classical posterior probability of the
next node.

The various posteriors probabilities are estimated by running
Viterbi on the bi-gram graph. For models (1) and (2) we respec-
tively remove the acoustic model or language models and for model
(3) we keep the initial score.

The different types of ants are used to guide exploration based
on acoustic or linguistic information. In the next section, we present
their performance. The detailed algorithm [T]is presented below.
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Algorithm 1: Ant colony algorithm

1 AntColonyAlgorithm()
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5 ants/node in our experiments;
ITLZt Nants;
10 epochs in our experiments;
Init NEpochs;
Epoch + 0;
BestScore + —inf;
BestPaths + {};
foreach Node N € Graph do
| Compute posteriors ¢(N)
end
foreach Node N € Graph do
| Phny <+ 1
end
while Epoch < Ngpoch do
evaporation of pheromones
(empirically determined);
foreach Node N € Graph do
| Phy < Phy x0.6
end
foreach Node N € BestPaths|0...Epoch] do
‘ Phy < Phy +1
end
Cant — 0:
while Cypnt < Ngn: do
Path + {};
Path = FindPath(FirstNode);
if Score(Path) > BestScore then
BestScore < Score(Path);
BestPaths[Epoch] < Path;
foreach Node N € BestPaths[Epoch] do
Phy < Phy +1
end
end
Cant — Cant + 1s
end
end
FindPath(Node)

This function explore recursively the
graph
NextNode = Select Next Node(Node) ;
if NextNode = EndN ode then
| return Node
end
Path + NextNode + FindPath(NextNode);
return Path ;

electNextNode(Node)

select randomly an output Link of the
node according a discrete distribution
based on pheromones Ph and posteriors
¢() combination;

NextNode =
select({Links}, {Phrink * ¢(NexNode)});
return NextNode ;

core(Path)

P,(W) is the m-gram language model
and P(X) the acoustic model.;
Score =

endpath

Z (log Pn(Wp|wp—n..wp—1) + logP(Xp));
p=begin
return Score ;

For all of the presented experiments, the number of epochs is
set to 5 and the number of ants is proportional to the number of
nodes (5 ants/node). The average duration of the decoding with these
parameters is approximately 5 seconds per graph (on an Intel Xeon
2.5 Ghz, using a single core).

6. PRELIMINARY EXPERIMENTS AND RESULTS

Table |3 shows the results obtained with the algorithms presented
above. The experiment confirms that orienting starting ants on opti-
mal paths strongly influences the final result. Ants launched on paths
that privilege acoustic (model 1) or linguistic information (model 2)
perform poorly, but the merged model with more heterogeneous ants
(full posterior, model 3) provides meaningful information.

Set base- | Ant Ant Ant Baseline | Antalg.
line (D 2) 3) decoding | decoding
WER | WER | WER time time
Dev2g [ 22.0 | 28.0 31.0 22.0 Th 2h00
Dev3g | 18.1 27.2 29.2 18.4 13h 2h00
Devdg | 174 | 26.1 28.7 17.7 18h 2h00
Test2g | 21.6 | 27.5 30.1 21.6 1h30 2h40
Test3g | 17.7 | 263 28.2 17.9 19h 2h40
Testdg | 16.7 | 25.3 27.6 17.0 27h 2h40

Table 3. Decoding results of the ant colony algorithm, ants have
WER results that vary between +/- 0.1% during execution (WER
scores shown are averaged over 5 runs). The computational time
is compared to a Viterbi rescoring algorithm without pruning, as
performed in KALDI framework. Ant algorithm decoding time is
constant against the language model order.

These first experiments show that ant colony algorithms are able
to expand the graph, but do not reach strictly the performance of
baseline results. However, the computational time required with the
ant colony algorithm is about 10 times lower than a conventional
expansion method: the configurations shown in the Table reach the
optimums scores in 1xRT. If we add more iterations, the ants still
converge on the same path.

In the literature, it has been shown for example that heuristics
that influence the initial distribution of pheromone on the nodes had
a significant bearing on the evolution of the anthill.

Moreover [17] shows that the major potential pitfall for ant
colony algorithms is its convergence to local optima. One way to
avoid such phenomena is to use several dimensions that can be com-
bined a posteriori, as shown in [19]. The mixed model with three
types of ants was an embodiment of this heuristic and showed its
effectiveness.

7. DISCUSSION ON THE ANT COLONY ALGORITHM
7.1. Behavior analysis

In order to understand the evolution of ants we conducted several
decoding: we experimented different number of ants relative to the
amount of nodes in each graph (Figure [J). We observe that with
about 10 ants per node, the WER remains stable without converging
to the optimal solution. This is explained by the fact that ants tend
to reinforce a path corresponding to a local optimum.
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Fig. 2. Evolution of rescoring according the number of ant by node
(on the dev set) during 1 run.

Despite this convergence, we observed that each new random
seed generates new solutions. Table @{shows the selection of the best
hypothesis (i.e. best score AM+LM) among 100 different runs. The
results show that hypotheses change for each run but are not always
complementary.

Set Viterbi Viterbi Ant T run | 10 runs | 100 runs
no pruned
prune | for 1xRT WER WER WER
Dev 3g 18.1 20.2 183 184 183
Dev 4g 17.4 19.1 17.8 17.7 17.7
Test 3g 17.7 19.8 18.0 179 17.8
Test 4g 16.7 18.5 17.2 17.0 17.0
Mem. 3g 1GB 200MB 100 MB = =
Mem. 4g | 3 GB 500MB 100 MB = =
Time 3g 32h 4h40 0h30 4h40 45h
Time 4g 45h 4h40 0h30 4h40 45h
xRT 7&10 1 0.1 1 10

Table 4. Decoding analysis of the ant colony algorithm, using sev-
eral runs. We report the decoding time (dev+test), the memory foot-
print (average for one graph) and the WER compared to Viterbi
beam-search baseline. We introduce a pruned Viterbi beam-search
in order to compare decoding time vs performance.

As shown in Table 4] this experiment shows that our algorithm
is sometimes trapped in wrong areas of the graph. However in the
case of constrained computing time, ant colony algorithm outper-
forms classical expansion algorithm. The Table shows also memory
footprint (average for one graph) for the various systems and the
computing time for the whole decodings: the results show that these
two ressources consumption are independant of the language model
size.

In order to make a meaningful comparison with a classical ex-
pansion (Viterbi beam-search), we fixed the computing time and lim-
ited empirically the beam-width. Results are shown in Tablg4] The
Figure 3| shows the evolution of WER against the decoding time for
the 4-gram rescoring task (dev set).

This result suggests that ant colony algorithms are more effective
when rigid pruning are carried out. However the trend is reversed
starting from 4xRT. Ant colony algorithm can not always find the
exact solution, but with time constraints the algorithm is more effi-
cient than a conventional extension. These experiments highligths a
potential disadvantage: the proposed search algorithm include non-
determinism and no guarantee of optimality (which Viterbi search
with pruning also doesn’t have).

7.2. Discussion and perspectives

The parallelization of the ant colony algorithms is trivial. In fact,
ants can evolve independently of each other in the search for new
paths. Parallelization is also possible at a higher level: that of ant

Mterbi —+—
Ant algorithm ——

Word error rate

175 \'\.7

01 1 10

Computing time (x Real Time)

Fig. 3. Comparison between Viterbi beam-search and ant colonies
algorithm: Computing time against performance, on the dev set with
a 4-gram language model. With time constraints the ant algorithm
is more efficient than a conventional extension.

colonies. Different colonies operate on copies of a graph and ex-
change information by merging copies (i.e. by summing the amount
of pheromone present on each node). Finally, the computational time
is easily controlled: the number of evaluations is known in advance
and the time depends only on the depth of the graph.

Another important factor is the amount of memory needed,
which is bounded by the space required to store the graph in mem-
ory. As there are no physical extensions, memory usage is constant.
In our experiments, the algorithm uses on average about 100MB
against several GBs for a conventional expansion.

The evaluation of the solution is performed when ant arrives at
the final node of the graph. The number of evaluations is relatively
low, so it is easy to add extra information to refine the solution (
semantic language model based on neural network etc.). An appli-
cation of ants colony will also be applied to ASR systems using con-
tinuous space language models. Current methods are not integrated:
they propose to rescore the graphs or n-best list [28]]. Ant colonies
can integrate a continuous space model directly in the decoder (the
evaluation of an hypothesis is global).

We wish to explore and analyze this ant colony paradigm more
in depth when applied to ASR. Future developments will result in
the parallel use of ants with different behaviors. Thus, a selection of
well performing and behaving individuals will be performed along
the exploration.

It would also be interesting to analyze in detail how the graphs
are explored: this aspect will allow to optimize exploration strategies
further. Finally, in the longer term, we would like to apply ant colony
algorithms throughout the ASR process: from the phoneme lattice to
the language model expansion.

8. CONCLUSION

In this article, we presented a new paradigm to expand word graphs
in automatic speech recognition systems. This paradigm based on
ant colony algorithms for the exploration of the graph, removes the
need to dynamically expand the graph: the memory footprint be-
comes independant of the language model size. Our results show
that the paradigm works: the presented algorithm performs better
than a conventional Viterbi algorithm when computing time is con-
strained. Without constraints, ant algorithm and classical expansion
are close. This work offers to some interesting research avenues and
in the short-term we want to refine the exploration heuristics in order
to remove local optimums. Another very interesting aspect is the fact
that the ASR hypotheses are scored globally: introducing continuous
space language model directly in the decoder would be interesting.
Moreover the algorithm is easy to parallelize with a low memory
footprint: this work opens up interesting perspectives in terms of
memory use and the exploitation of parallelization opportunities that
modern microprocessors offer.
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