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Abstract

With the increasing pressure on natural resources, the sustainability study

of socio-ecological systems has become a crucial scientific issue. In this pa-

per we emphasize that transient behaviors have to be taken into account in

sustainability analysis. We illustrate their impact with a model of tourism

development from the literature, where the sustainability study is based on

asymptotic properties. In order to evaluate relevant space and time charac-

teristics of transient dynamics, we propose to use the concepts and tools of the

mathematical viability theory. We also extend this analysis to controlled dy-

namical systems, which are particularly appropriate to model socio-ecological

systems when management issues are at stake.
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1. Introduction

In 1987, the Brundtland Report (Brundtland, 1987) gave the definition

of sustainable development as development “which meets the needs of the

present without compromising the ability of future generations to meet their

own needs“. Since then this concept has been widely studied. This is es-

pecially perceptible in the field of Economics (see Munasinghe, 1993), the

social sphere (Jackson, 2007; Lehtonen, 2004) and the environmental field

(Gunderson and Holling, 2002). Facing the vagueness of the notion of sus-

tainability (Levin, 1993), most of these works lead to make more explicit the

relation between sustainability and other concepts such as stability, resilience,

robustness or risk (see Ludwig et al., 1997; Perrings, 2006).

In the case of theoretical approaches, a dynamical system is generally used

to model the time dependency of the different state variables of the system.

When the model consists of a set of differential equations, sustainability and

related concepts are often linked to asymptotic properties: The value and the

properties of the attractors (related for instance to the value of the eigenval-

ues), properties in the phase space (for example, the size of attractor capture

basin (Collings and Wollkind, 1990; Coller, 1997), and properties of the bifur-

cation diagram (see for instance Ludwig et al., 1997; Casagrandi and Rinaldi,

2002; Lacitignola et al., 2007)). In the bifurcation diagram parameters can

be seen as slow variables compared to the state space variables.

However, as stated in Chichilnisky (1997), it is not possible to forget

the present state when dealing with sustainability, so asymptotic properties

are not sufficient to characterize sustainability, since they focus on the far

future. But appropriate representations are difficult to assess. It is the case
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in economics, where classical discounted utility seems to favor present states

(Chichilnisky, 1996). Other criteria, such as maximin (Solow (1974); Cairns

and Van Long (2006)), which maximizes the minimal utility over time, have

been proposed in that concern.

Moreover, most natural systems never reach any equilibrium, since they

are submitted to frequent perturbations. When multiple attractors coexist,

they can even switch after a perturbation from one attraction basin to an-

other (May, 1977). Therefore, it can be worthy to take into account some

characteristics of transient behaviors. Transient behaviors can have undesir-

able impacts on the system, leading to states that can be very far from the

final attractor, and the time required to reach a satisfactory neighborhood

of the attractor can also be very long. In fact, this information is important

to study resilience (Martin, 2004), which is an important component to un-

derstand sustainability (Neubert and Caswell, 1997). This paper proposes

to use constraints in the state space to address the issue of transient behav-

iors. Such a use of constraints as guardrails has already been proposed for

climate change studies through the concept of Tolerable Windows (Petschel-

Held et al., 1999). The Safe Minimum Standard approach introduced by

Ciriacy-Wantrup (1952) is also based on constraint specification.

In order to take into account constraints of desirable states and related

characteristics of transient behavior, we propose to use the mathematical vi-

ability theory (Aubin, 1991), since it develops methods and tools to study the

compatibility between dynamics and constraints. This framework has been

used by Bruckner et al. (2003) to describe the Tolerable Windows approach.

Moreover, using as constraint set the set of desirable states allows addressing
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sustainability issue as the possibility of finding a path that is an acceptable

compromise for all parties (Fuentes, 1993). Such an approach has already

been proposed in Martinet and Doyen (2007) considering an economy with

an exhaustible resource or in Martinet et al. (2007) and in Chapel et al.

(2008) to determine sustainable fisheries.

In section II, we describe two limits of the asymptotic stability analysis:

First, the time factor due to transient dynamics. Even in very simple config-

urations, transient dynamics can lead to unacceptable delay to reach a given

neighborhood of the attractor. Second, the space factor. In many situations

it is not desirable to see the system move far away from the attractor, which

can occur during transient dynamics. The maximal distance to the final

attractor along the evolution can represent an unacceptable condition in a

more or less distant future. We illustrate these issues using a model of tourism

development similar to the model from Casagrandi and Rinaldi (2002), be-

cause it can exhibit interesting behaviours (several attractors including either

equilibria or limit cycles). In section III, we first show that when defining

appropriate constraint sets, spatial and temporal lacking information can be

captured by the concepts of viability kernel and capture basin. We illustrate

how the limits pointed out in section II can be over passed using these via-

bility concepts. In section IV we discuss the viability approach for controlled

dynamics, when some parameters can be interpreted as control variables.

Actually, controlled dynamics are often appropriate to represent dynamics

of socio-ecological systems facing sustainability issues influenced by human

management decision or behavior (see for instance Melbourne-Thomas et al.,

2011; Costamagna and Landis, 2006). In the concluding section we consider
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further use of viability theory to address sustainability issues.

2. Limits of the asymptotic stability analysis viewpoint

In this section, we consider that a model based on a set of differential

equations is available. This is often the case when studying sustainability

from a theoretical viewpoint. As an example, we illustrate our argument with

a model of tourism impact on environment quality, the asymptotic analysis

of which was performed in Casagrandi and Rinaldi (2002).

2.1. Overview of the model of tourism impact on environment quality

The model described in Casagrandi and Rinaldi (2002) deals with the

problem of the interaction between tourism and environment, at a very ab-

stract level. It is three-dimensional with twelve parameters. Ten parameters

are fixed and the asymptotic analysis is performed according to the two re-

maining ones. The model (1) studies the interactions between the tourist

activity T (t) in the area at time t, the quality of the natural environment

E(t) and the capital C(t) intended as structures for tourist activities.

Ṫ (t) = dT (t)
dt

= T (t)
[
µE

E(t)
E(t)+ϕE

+ µC
C(t)

C(t)+ϕCT (t)+ϕC
− αT (t)− a

]
Ė(t) = dE(t)

dt
= E(t)

[
rE(t)(1− E(t)

K
)− βC(t)− γT (t)

]
Ċ(t) = dC(t)

dt
= −δC(t) + εT (t)

(1)

Ṫ (t) is denoted by f1(t), Ė(t) by f2(t) and Ċ(t) by f3(t) in the following.

First equation describes the variation of the tourist activity, which is pro-

portional to the present tourist activity and the relative attractiveness of the

site. The attractiveness consists of the sum of two positive factors, the at-

tractiveness of the environment and the attractiveness of the infrastructure,

5



and two negative factors, the linearly decreasing congestion and the average

value of the attractiveness of all tourist sites (a can be seen as a measure

of the competition exerted by alternative tourist sites). Fixed parameters

are µE, the attractiveness associated with high environmental quality, and

ϕE the half saturation constant (the environmental quality at which tourist

satisfaction is half maximum). µC and ϕC are the corresponding parameters

for the attractiveness of the infrastructure. Congestion is proportional to T

with factor −α.

Second equation describes the variation of environment quality. It con-

sists first of a logistic equation which describes the impact on the environ-

ment of all activities except tourism industry. Parameters r and K are the

net growth rate and the carrying capacity of the logistic function. The two

other terms represent the flow of damages induced by tourism. Generally,

this flow is positively correlated with tourist activity and capital with factors

γ and β.

Last equation describes the rate of change of capital as the difference

between the investment flow εT and the depreciation δC (ε is the investment

rate and δ the depreciation rate).

The main assumption of the model is that parameter δ is supposed to be

small compared with r to take into account the fact that the degradation of

tourist structures is very slow.

We use in this paper the same parameter values as in Casagrandi and

Rinaldi (2002): r = K = α = β = γ = ϕC = 1, δ = 0.1, ϕE = 0.5, µE = µC =

10.

In Casagrandi and Rinaldi (2002), the two varying parameters of the
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asymptotic analysis are a which measures the competition exerted by alter-

native tourist sites and ε the investment rate.

This relatively simple model reproduces fairly Butler’s scenarios (Butler,

1980) for tourist sites development. Figure 1 displays for instance three

scenarios of tourism evolution with the same parameter values (a = 6) except

for the investment rate ε which takes three different values (ε = 0.01, 0.1

and 0.45). The initial point of all curves is (T = 0.01, E = 1, C = 0.01) but

with three different values of the investment rate ε during 100 time units,

one scenario leads to tourist activity disappearance and the two others lead

to non null tourist activity but with different levels.

2.2. Information provided by asymptotic study and bifurcation diagram

Asymptotic analysis focuses on the infinite time horizon behavior of the

system. For instance, for the three scenarios described in figure 1, asymptotic

analysis allows predicting toward which values the model variables converge.

These values are necessarily equilibria of the dynamics, but there may also

exist limit cycles. Such information is obviously valuable in a sustainabil-

ity viewpoint which underlines future awareness. In the general case of an

evolutionary system described by a differential equation

x′(t) = f(x(t)) (2)

with x ∈ Rn the n-dimensional state variable vector and f : Rn → Rn

Lipschitz continuous1, an equilibrium point x0 ∈ Rn is a point where the

1The Lipschitz continuous condition ensures the local existence and uniqueness of the

solution.
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dynamics is null (f(x0) = 0). Nevertheless, this equilibrium may be asymp-

totically stable if it tends to attract the states in its vicinity, or unstable if

some points in its vicinity tend to be rejected by it.

Equilibrium values are determined by solving the equation f(x0) = 0

analytically if possible or with well-known approximation methods (Newton-

Raphson, fix point, gradient descent algorithm, etc).

Then, to determine the stability of these equilibria, we can use the lineariza-

tion of the dynamics at these equilibrium points:

Theorem 1. Let f differentiable and A = ∂f(x)
∂x

∣∣∣
x=x0

be the Jacobian matrix

of f(x) with respect to x evaluated at the equilibrium point x0. Then the

system

z′ = Az

is referred to as the linearization of equation (2), about the equilibrium point

x0. When the linearization exists, its stability determines the local stability

of the original nonlinear equation.

Hence, if the real part of all the eigenvalues of A are strictly negative, then

the equilibrium is stable.

From model (1), obviously, (T̄ = 0, Ē = 0, C̄ = 0), (T̄ = 0, Ē = K,

C̄ = 0) and also (T̄ = T̃ , Ē = 0, C̄ = C̃) for some strictly positive values of T̃

and C̃, are equilibria of the dynamics. However, as it is done in Casagrandi

and Rinaldi (2002), we emphasize the equilibria with strictly positive val-

ues for T and E: Casagrandi and Rinaldi (2002) define as ”profitable” the

attractor whereby tourist activity is maintained (but environment may be

damaged), as ”compatible” the attractor whereby the complete degradation
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of environment is avoided (but tourism may disappear) and as ”sustainable

attractor” the attractor whereby economic activities and environment preser-

vation coexist. A sustainable equilibrium is then defined by (T̄ > 0, Ē > 0).

A sustainable attractor is defined by (∀t, T (t) > 0, E(t) > 0).

Sustainable equilibria verify:

µE
Ē

Ē+ϕE
+ µC

C̄
C̄+ϕC T̄+ϕC

= αT̄ + a

T̄ =
rĒ(1− Ē

K
)

βε
δ

+γ

C̄ = ε
δ
T̄

(3)

We used Newton-Raphson method (as described in Bruck et al., 1989) to

approximate the strictly positive equilibrium values of model (1), (T̄ > 0,

Ē > 0, C̄ > 0), for the parameter values used in the scenarios displayed in

figure 1. For the three different values of the investment rate ε used in the

three scenarios of figure 1, we obtain

• when ε = 0.01, (T̄ ≈ 0.167, Ē ≈ 0.758, C̄ ≈ 0.017),

• when ε = 0.1, (T̄ ≈ 0.125, Ē ≈ 0.526, C̄ ≈ 0.125),

• and when ε = 0.45, (T̄ ≈ 0.044, Ē ≈ 0.402, C̄ ≈ 0.197).

Comparing these calculations and the simulations displayed in figure 1,

we can notice that for the scenarios with ε = 0.01 and ε = 0.1, tourist activity

seems to converge to the strictly positive equilibrium. On the contrary, for

the scenario with ε = 0.45, tourist activity seems to converge to 0 whereas

the value of the strictly positive equilibrium is approximatively 0.044.

To go further and determine the stability of these strictly positive equi-

libria, we first determine the Jacobian matrix M(T̄ , Ē, C̄) of model dynamics
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at strictly positive equilibrium points. We will then calculate the eigenvalues

of these matrices.

M(T̄ , Ē, C̄) =


∂f1

∂T
(T̄ , Ē, C̄) ∂f1

∂E
(T̄ , Ē, C̄) ∂f1

∂C
(T̄ , Ē, C̄)

∂f2

∂T
(T̄ , Ē, C̄) ∂f2

∂E
(T̄ , Ē, C̄) ∂f2

∂C
(T̄ , Ē, C̄)

∂f3

∂T
(T̄ , Ē, C̄) ∂f3

∂E
(T̄ , Ē, C̄) ∂f3

∂C
(T̄ , Ē, C̄)



=


T̄
(

−10C̄

(C̄+T̄+1)
2 − 1

)
T̄
(

5

(Ē+0.5)
2

)
T̄
(

10T̄+10

(C̄+T̄+1)
2

)
Ē Ē

(
1− 2Ē

)
−Ē

ε 0 −0.1

 (4)

We now calculate the eigenvalues for the different matrices M(T̄ , Ē, C̄)

with software Scilab. We obtain the following rounded values:

• {−0.289 + 0.612i,−0.289− 0.612i,−0.100} for ε = 0.01,

• {−0.044 + 0.478i,−0.044− 0.478i,−0.263} for ε = 0.1,

• and {0.009 + 0.443i,−0.009− 0.443i,−0.320} for ε = 0.45.

Thanks to theorem 1, we can determine that when ε equals 0.01 and 0.1,

the strictly positive equilibrium is stable, because the real part of all the

eigenvalues of the Jacobian matrix are negative. On the opposite for ε = 0.45,

the strictly positive equilibrium is unstable. This result is entirely consistent

with figure 1 where scenarios for ε equal to 0.01 and 0.1 seem to converge

to the strictly positive equilibrium, whereas scenario for ε equal to 0.45 does

not (it converges toward (0,0,0) instead).

This study shows that when the investment rate is relatively low a sus-

tainable equilibrium (T̄ > 0, Ē > 0) exists (for instance for ε = 0.01 and

ε = 0.1) and is asymptotically stable. However, the tourist activity at this
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equilibrium point decreases with ε. Moreover, it becomes instable for higher

values of ε (e.g. ε = 0.45).

Casagrandi and Rinaldi (2002) go further by determining the whole bifur-

cation diagram of model (1) in the parameter space (ε, a): Each point of

the two-dimensional space (ε, a) is associated with one specific set of attrac-

tors. They consider different values for the investment rate ε but also for the

competition term from alternative tourist sites, a. The bifurcation curves

partition the parameter space into subregions. All models corresponding to

the same subregion have qualitatively the same long-term behavior, because

they have the same kind of attractors. Then, Casagrandi and Rinaldi (2002)

consider as safe situations where the only attractor is sustainable (strictly

positive) and as risky, situations where both the strictly positive sustainable

attractor and the equilibrium with T̄ = 0 or Ē = 0 are stable because an

unexpected accidental shock can perturb the state of the system and cause

a jump ending to an attractor characterized by no tourism industry or a

complete degradation of the environment.

2.3. Missing information

Evolutions toward stable attractors, whether risky or not from the bifur-

cation viewpoint, can nevertheless be undesirable because of their transient

behavior.

2.3.1. Spatial information: Attraction basin boundaries

The attraction basin of an attractor gathers the states from which the

evolution governed by system (2) is such that the distance to the attractor

tends toward 0. When there are several attractors, given an initial condition,
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the attraction basins of the different attractors are needed to determine the

associated attractor.

For instance in model (1), when parameter values are ε = 0.1 and a =

6.8, the strictly positive equilibrium (T̄ , Ē, C̄) is no longer the only stable

equilibrium: (T = 0, E = 1, C = 0) is also a stable equilibrium. If the

starting point is (0.1, 1, 0.1), the evolution converges to the strictly positive

equilibrium, but if the starting point is (0.5, 0.5, 0.5), the evolution converges

to the non strictly positive one (see Figure 2).

Consequently, the existence of a stable strictly positive equilibrium is not

enough to assess the asymptotic behavior of any evolution. The computation

of the attraction basin is also needed.

2.3.2. Spatial information: Maximal distance to the attractor along the evo-

lution

Knowing that a given starting point belongs to the attraction basin of a

particular attractor, a stable equilibrium for instance, may lead to believe

that the distance from the evolving state of the system and the equilibrium

will decrease with time. This extrapolation is not necessary right. Actually,

the distance to the attractor is necessary bounded. But the distance to the

attractor can vary a lot with time, and even increase, during the transient

phase.

For instance, figure 3(a) displays two evolutions of the tourist activity for

parameter values such that the unique attractor is the sustainable equilib-

rium (with T̄ ≈ 0.125). Only the values of environment and capital at the

initial point differ. For one evolution, the distance to the attractor is really

decreasing (figure 3(b)), so the maximal distance to the attractor is the ini-
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tial one. On the contrary, for the second evolution, the maximal distance is

reached approximatively at time 80, where the tourist activity is more than

twice the attractor value. Before that, during a relatively long time (approxi-

matively between time 10 and 60), there is almost no tourist activity. At that

time, the distance to the attractor is close to the attractor value. Knowing

that the maximal distance to the attractor is much smaller than the attractor

value would ensure that the tourist activity never decreases below a certain

lower bound, or never suffers high variations.

Finding sustainable attractors, with respect to the coexistence of tourist

activity and environment preservation, does not imply that any evolution will

remain close to these attractors and exhibit good transient scenarios. Hence,

the additive information of the maximal distance to the attractor along the

evolution (or an upper bound) is necessary to ensure that bad situations are

avoided.

Furthermore, there may be no stable equilibrium but a stable limit cycle

as it is the case when a = 6 and ε = 0.13. However, the cycles then performed

by an evolution may belong to desirable states: It is the case of the scenario

described by figure 4, from time 20, when the desirable states for the tourist

activity are included between 0.02 and 0.30 (light gray area). On the contrary,

when the desirable states are between 0.1 and 0.2 (dark gray area), then the

evolution leading to this limit cycle should not be considered as acceptable.

2.3.3. Temporal information: Time to reach a given neighborhood of the at-

tractor

A stable equilibrium is not reached in finite time except if the starting

point is the equilibrium itself (as soon as f is Lipschitz continuous, this
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is a consequence of the uniqueness of the solution). Nevertheless, if the

initial condition belongs to its attraction basin, the time to reach a given

neighborhood is finite.

This finite time may be short or much longer. Dotted curve of figure 1 is

a typical curve which converges fast to stable equilibrium, but if we change

the starting point to point (T = 0.26, E = 1, C = 0.26), the evolution

displayed in figure 5, also converges to the stable point, but remains a long

time (20 < t < 300) very close to 0. Such a scenario is unlikely to be accept-

able. Actually, a long time with no tourist activity may not be considered

as sustainable. Such a concern is taken into account in the sufficientarianism

framework in which Chichilnisky (1977) proposed a criterion minimizing the

time needed to reach an economic path that satisfies the basic needs, defining

efficiency with respect to the minimization of the time horizon after which

they are satisfied. However, this criterion does not take into account the pos-

sibility illustrated in the previous subsections and figure 3 that an evolution

that satisfies the basic needs at time t may not satisfy them anymore during

a future time period. Conversely, a scenario may occur where tourism, en-

vironment and capital exhibit satisfactory values during a long time in the

case of a single non-sustainable stable equilibrium. Depending on the time

scale, such a scenario may be considered as desirable as we can imagine that

the validity of the model will have to be questioned again in the future, or

that other opportunities may occur before reaching undesirable states.
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3. Viability concepts to provide missing information

3.1. Viability theory

Viability theory concerns controlled dynamical systems. The evolution of

the state variable vector x ∈ X ⊂ Rn is described by: x′(t) = f(x(t), u(t))

u(t) ∈ U(x(t))
(5)

where U(x) ⊂ Rp is the set of admissible controls when the state of the

system is x.

Given a constraint set K ⊂ X, the viability theory methods and tools

first aim at determining the viability kernel that is the subset of K gathering

all states of the system such that there exists at least one control function

that allows the system to remain in the constraint set indefinitely:

V iab(K) = {x ∈ K | ∃u(.) | x(t) ∈ K ∀t ∈ [0,+∞[}.

The states belonging to the viability kernel are called viable states. In the

absence of control such as in differential equation model like model (1), the

viability kernel gathers all starting points such that the evolution remains in

the constraint set.

Another important concept of viability theory is the capture basin: Given

a constraint set K and a target set C, the capture basin gathers all states

such that there exists a control function that allows reaching the target set

while remaining in the constraint set.

Capt(K,C) = {x ∈ K | ∃u(.), ∃T | x(T ) ∈ C and x(t) ∈ K ∀t ∈ [0, T ]}
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We show in the two following subsections how these concepts of viability ker-

nel and capture basin allow to obtain the missing information of the asymp-

totic analysis.

3.2. Spatial information thanks to viability kernel

In the case of the existence of a sustainable attractor (T̄ > 0, Ē > 0,

or T (t) > 0 and E(t) > 0 for all t, depending on the case), we showed in

the previous section that one lacking information is the maximal distance

to this attractor along the evolution. Viability kernel allows determining

this maximal distance. Actually, if we consider a given neighborhood of

this stable attractor, the viability kernel of this neighborhood gathers all

states from which starts an evolution that remains in this neighborhood.

Conversely, from any point outside this viability kernel, the evolution will go

outside this neighborhood and the maximal distance to the attractor will be

greater than its size.

We use again model (1) to provide an illustration. We take as parameter

values a = 6 and ε = 0.1. We have already proved in the previous section that

the strictly positive attractor for these parameters value, (T̄ ≈ 0.125, Ē ≈

0.526, C̄ ≈ 0.125), is stable. Let define a ball (for the sup norm) around this

attractor with parameter ∆:

K :=
[
T̄ −∆; T̄ + ∆

]
×
[
Ē −∆; Ē + ∆

]
×
[
C̄ −∆; C̄ + ∆

]
.

This ball is considered as a constraint set in the viability theory framework

and we approximate its viability kernel according to model (1) for different

values of ∆. This means that the value of the tourist activity and of the
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environmental quality should remain close to the attractor values. The state

of the system is not allowed to drift outside the constraint set. In the follow-

ing, we approximate viability kernels and capture basins using the algorithm

described in Deffuant et al. (2007).

If we set for instance ∆= 0.075, the viability kernel is not the whole ball

as displayed in figure 6 (a). The volume of viability kernel represents about

25% of the ball volume. For some points of the viability kernel, the norm sup

distance to the attractor equals ∆. On the contrary, for the many starting

points outside the viability kernel (75% of the ball volume), every evolution

will leave the ball. So the maximal distance to the equilibrium along these

evolutions will be necessarily greater than ∆ in the future. Nevertheless some

of these initial points are close to the attractor.

If we consider smaller balls, the viability kernels gather evolutions that

remain closer to the equilibrium point. The proportion of the viability kernel

volume compared to the ball volume remains almost constant around 24%

(figure 6 (b) and figure 6 (c) display viability kernels for ∆ values equal to

0.05 and 0.025). In figure 1, the dotted curve makes oscillations before com-

ing close to the attractor. The amplitude of these oscillations gets smaller

and smaller with time. But, when we reduce the ball radius, those oscilla-

tions keep exceeding the constraints at the beginning of the evolution. For

instance, for a tourist site, it can be undesirable to have a tourist activity

that varies by a factor of two every three time units at the beginning of its

development. That shows the importance of spatial information.

The viability kernel of the ball of radius ∆ around the attractor gathers

all points from which the evolution remains at a distance of the attractor
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smaller than ∆. We then call these points (∆-)secure. The boundary of

this kernel is then the ∆ level set of the maximal distance to the attractor.

Consequently, computing viability kernels with different values of ∆ allows

to approximate the graph of the maximal distance function.

We now choose a slightly greater value for ε, ε = 0.13, which corre-

sponds to a slightly higher investment rate in model (1). We know from the

asymptotic analysis of the previous section that there is no stable equilibrium

anymore but a limit cycle (figure 4). Nevertheless, whereas it is no more an

equilibrium of the dynamics, the point (T̄ ≈ 0.125, Ē ≈ 0.526, C̄ ≈ 0.125)

remains a desirable situation with strictly positive values for the three vari-

ables. The question of determining the maximal distance to this point along

an evolution remains then valuable in a sustainability perspective.

Figures 7 (a), 7 (b) and 7 (c) display the viability kernels for the same three

constraint sets as the previous paragraph but with ε = 0.13 in the dynam-

ics. The first two figures exhibit non-empty viability kernel. Hence, there

exist evolutions remaining in the constraint set. Since all the evolutions

converge toward the unique attractor which is the limit cycle, that implies

that the limit cycle is included in the ball centered at (T̄ ≈ 0.125, Ē ≈

0.526, C̄ ≈ 0.125) with radius ∆ = 0.075 and ∆ = 0.05. On the contrary,

when ∆ = 0.025, the viability kernel is empty, which means that this smaller

ball does not contain the limit cycle.

Hence, if desirable situations may be described by the ball centered at

(T̄ ≈ 0.125, Ē ≈ 0.526, C̄ ≈ 0.125) with ∆ = 0.025, model (1) does not pro-

duce any desirable evolution from any starting point: Actually, the viability

kernel of this ball is empty, which means that from any starting point, the
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evolution leaves it in finite time. However, if desirable situations may be

described by a bigger ball with radius ∆ = 0.05 for instance, there exists

numerous starting points leading to desirable evolutions even if there is no

stable equilibrium but a limit cycle.

3.3. Temporal information thanks to capture basin

Belonging to a sustainable equilibrium attraction domain ensures that

from such a starting point, the evolution will converge to this equilibrium.

However, we have seen in subsection 2.3.3 that the time needed to reach a

given neighborhood of this equilibrium may vary tremendously according to

the starting point. This information may be provided by the capture basin

of the viability theory considering this neighborhood as a target set.

Henceforth, desirable situations are described by a ball around the sus-

tainable attractor. The viability kernel of this ball gathers the secure states,

since from any starting point in this viability kernel, we are sure that the

evolution will remain in the ball. The computation of the capture basins then

allows to evaluate the time needed to reach a secure situation in the viability

kernel of the set of desirable states. Such recovery issue has already been

dealt with by Doyen and Saint-Pierre (1997) when they define the notion

of minimum time of crisis (which measures the time spent by an evolution

outside a given constraint set in the state space) used, for instance, by Béné

et al. (2001) to analyze overexploitation of marine renewable resources or by

Martinet et al. (2010) to analyze recovery paths for bioeconomic resource

systems facing crisis situations.

Figure 8 (a) reproduces the viability kernel of previous section 3.2 dis-

played in figure 6 (c). Then, the eight following figures (Figure 8) display
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the capture basins of this viability kernel for eight increasing reaching time

(t = 10, t = 20, . . . , t = 80). From the figure, we can notice that points

belonging to the capture basin are not equally distributed around the viabil-

ity kernel, and only evolutions starting from initial points belonging to the

capture basin displayed in figure 8 (i) reach the viability kernel with time

smaller than 80. This observation highlights the fact that starting closer to

the viability kernel and then closer to the equilibrium does not necessary

imply reaching faster the viability kernel.

With such a measure, the effort to recover is evaluated by the time to

reach secure situations. Depending on the application, more complex cost

measures may appear more appropriate as proposed by Martin (2004) for the

resilience evaluation. In the model of tourism development, for instance, a

more complex cost function may be made up of two terms: The first term,

which corresponds to the ecological cost, would measure the time spent with

an environmental quality lower than the acceptable bound, E; the second

one, which is an economic cost, would measure the time duration of the

period of too low tourist activity weighted by the range of deviation from

the acceptable lower bound, T − T (t).

4. Viability concepts and sustainability analysis

4.1. Non controlled dynamics

We have shown in the previous section, how two main concepts of viabil-

ity theory, viability kernel and capture basin, can provide valuable informa-

tion that complements asymptotic analysis. Given system dynamics, once

asymptotic analysis has provided the asymptotically stable equilibria, it is
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possible to consider different neighborhoods centered around these attractors

(like balls of different radius) and to compute the viability kernel of these

neighborhoods. Viability kernels associate starting points with the maximal

distance to the attractor. Capture basins of these viability kernels associate

starting points with the time to reach (and remain in) a given neighborhood

of the attractor. It is also possible to follow a slightly different approach.

Given system dynamics, we can consider the subset of the state space that

represents the set of desirable states, that is an acceptable compromise for

all parties: For instance in the tourism model, E ≥ E and T ≥ T ensures

that a given level of environmental quality is preserved as a certain level of

tourist activity. The set of points from which the evolution remains in this

desirable set is then a valuable information: This is the viability kernel of

the desirable set considered as a constraint set; for the points outside the

viability kernel, a valuable information is the time, maybe infinite, to reach

this viability kernel, and this is the capture basin of the viability kernel.

In this viewpoint, the main concept is the set of desirable states, and not

the asymptotic attractor: Different asymptotic behaviors can share the same

set of desirable states, so bifurcations are not necessarily a problem, as long

as new attractors are included in the same set of desirable states. Asymptotic

analysis and viability viewpoint are clearly linked: If the desirable set does

not contain any attractor, equilibrium nor limit cycle, then necessarily the

viability kernel will be empty. But the viability paradigm centers sustain-

ability on the definition of the desirable set, not on the asymptotic behavior

of the system. Actually, the interest of the viability analysis is even more

visible when controlled dynamics are involved, and this is the topic of next
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section.

4.2. Controlled dynamics

Sustainability problems often involve socio-ecological systems on which

different action policies can be carried out, and the identification of efficient

policies is by the way one crucial point.

Consequently, controlled dynamics are often more appropriate than non-

controlled dynamics to represent dynamics of systems facing sustainability

and management issues.

In the tourism model we use as an illustration since the beginning of this

article, the investment rate ε and the measure of the competition exerted by

alternative tourist sites a can for instance be considered as control variables

on which a manager, a political power can act (for instance, by a manage-

ment decision for the investment rate, and by advertising campaign for the

competition control parameter). The system dynamics are then described by

a controlled dynamical system:



Ṫ (t) = T (t)
[
µE

E(t)
E(t)+ϕE

+ µC
C(t)

C(t)+ϕCT (t)+ϕC
− αT (t)− a(t)

]
Ė(t) = E(t)

[
rE(t)(1− E(t)

K
)− βC(t)− γT (t)

]
Ċ(t) = −δC(t) + ε(t)T (t)

ε(t) ∈ [ε; ε̄]

a(t) ∈ [a; ā]

(6)

where ε and ε̄ (resp. a and ā) are the bounds of the possible investment rates

(resp. of the measure of the competition exerted by alternative tourist sites).

In this second tourism model (6), ε and a may vary with time and their
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evolutions are not defined beforehand. In the asymptotic analysis, the de-

termination of the attractor needs the description of all variable evolutions

with time. It is not the case in the viability framework: The desirable set can

still be defined and the first noteworthy set gathers the starting points from

which there exist control functions t→ ε(t) and t→ a(t) that allow to keep

the state of the system in the desirable set which is the viability kernel of

the desirable set again; the second remarkable set gathers the starting points

from which there exists control functions t→ ε(t) and t→ a(t) such that the

desirable set can be reached and then preserved which is the capture basin

of the viability kernel again.

Hence, if the desirable set K is defined by T ∈ [0.1; 0.2], E ∈ [0.5;Emax =

0.6], C ∈ [0.1; 0.2], computing the viability kernel with ε = 0.01, ε̄ = 0.3,

a = 6 and ā = 8 allows determining the initial points such that there exist

control functions that make the system state remain satisfactory along the

evolution. Figure 9 displays this viability kernel.

From any starting point inside the viability kernel, there exists at least

one control function that allows to keep the evolution in the constraint set.

Such viable control functions are obtained as consequences of viability kernel

computation. Figure 10 displays the trajectories of two evolutions starting at

the same point: The black one is governed by a viable control function, so it

remains in the constraint set, the points drawn on this trajectory correspond

to positions where the control value changes; the gray one is obtained with

fixed values for ε and a and leaves the constraint set in finite time: At

time t=39, the value C of the structures for tourist activities, falls below

the minimum allowed by the constraint set. On the contrary, the controlled
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trajectory uses during the next 30 time units a higher value of the investment

rate, in order to keep C at a desirable level. Then the investment rate is set

to an intermediate value, with some adjustment every 25 time units.

Besides, for this kind of tourism model, there is no reason to set an upper

bound Emax for environment quality in the definition of the set of desirable

states K. In the case of the model (6) with constant control a = 6, we have

found that when Emax ≥ 0.65, the viability kernel does not increase anymore

(since other constraints are violated first).

Obviously, the viability kernel with controlled dynamics includes the vi-

ability kernels with constant controls, since control variations provide addi-

tional opportunities to find trajectories remaining in the constraint set.

Figure 11 presents two comparisons between the viability kernel of the

controlled dynamics of model (6) with constant control a = 6 and variable

control ε ∈ [0.05, 0.3] and two viability kernels obtained with fixed values of

ε. In both cases, the volume of the viability kernel of the controlled dynamics

(in gray) is tree times bigger than the viability kernel with constant control

(in black).

When non-controlled dynamics are concerned, the viability kernel allows

distinguishing inside the constraint set points from which the evolution will

remain in this constraint set from those which will leave it in finite time. In

the case of controlled dynamics, the viability kernel separates points from

which there exists at least one control function that governs an evolution

which remains in the constraint set, from those from which the system will

leave the constraint set in finite time whatever the control function. In this

framework, points belonging to the viability kernel can be considered as sus-
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tainable on condition that a viable control function be applied, since the

desirable system states represented by the constraint set can be preserved

over time.

As in the non-controlled dynamics case, for points which do not belong to the

viability kernel, a valuable information is the time needed to reach this viabil-

ity kernel if possible. Actually, as long as the viability kernel is not reached,

the system state is either already outside the constraint set or doomed to

leave it (if it is still inside) whatever the control function.

In the controlled dynamics case, as in the constant control case, for a

given reaching time, the capture basin of the viability kernel gathers all

points from which there exists one control function that allows to reach the

viability kernel in finite time smaller or equal to this reaching time. The

boundary of the capture basin is then the level set of the minimum reaching

time.

The minimum reaching time can then be used to define a measure of

sustainability: The smaller it is, the more sustainable the state is, since the

awkward period outside the viability kernel is shorter on condition that the

right control function be applied. There may be initial points from which

the viability kernel can not be reached whatever the control function. Such

situations clearly can be considered as unsustainable.

5. Conclusion and perspectives

Asymptotic analysis together with bifurcation diagram provides useful

information to understand the asymptotic behavior of a dynamical system.

It identifies the attractors of the dynamics, equilibria or limit cycles, toward
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which the evolution of the model will converge eventually. It describes the

change of attractors with the change of model parameters. We have shown,

in this article, that asymptotic analysis lacks essential information for a sus-

tainable analysis, using as an illustration a model of tourism impact on envi-

ronment from Casagrandi and Rinaldi (2002). We have performed a stability

analysis of the equilibria for different values of the investment parameter (ε).

We have seen that, without information on the boundary of the attraction

basin, it is not always possible to predict toward which attractor an evolu-

tion will converge. We have shown on examples that transient behavior can

lead an evolution very far away from its attractor, much farther than the

initial conditions, and this without considering any perturbations. We have

also shown that it can take a finite but very long time for an evolution to

reach a given neighborhood of its attractor. These behaviors can occur for

attractors that are considered as sustainable and safe in the framework from

Casagrandi and Rinaldi (2002).

In order to take into account these spatial and time factors of the tran-

sient dynamics in the sustainability analysis, we have introduced two main

concepts of the viability theory: The viability kernel and the capture basin.

Considering a set of desirable states around an attractor, the viability ker-

nel gathers all the states in this neighborhood from which evolution always

remains in the neighborhood. The capture basin gathers all the states from

which the viability kernel is reached in a given time. As illustrations, we

have computed viability kernels and capture basins for the tourism model.

We have used these sets to compute several level sets of the maximum dis-

tance to the attractor and of the minimum reaching time (of a neighborhood
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of the attractor).

We have also explained how these concepts and the information they

provide can be extended to controlled dynamics, which are more useful to

represent socio-ecological systems when management issues are at stake. In

the case of the tourism model, we have shown that controlled dynamics can

be kept in the desirable constraint set more easily.

This work suggests a number of interesting research perspectives on sus-

tainability in socio-ecological domain, when a dynamical system can be used

to model the system behavior. The main interest of the method is to focus

on the definition of a set of desirable states in which the stakeholders want to

confine the system, rather than on the asymptotic attractor. It also suggests

strongly identifying control possibilities among state variables and param-

eters, in order to model explicitly these control variables in the dynamical

model. Viability theory and tools can then be used to compute the viability

kernel and its capture basin, given a set of desirable states of the system,

time constraints and admissible controls. Within the capture basin, there

always exists a control strategy that will lead the system to the desirable set

in acceptable time.

Further works from a methodological viewpoint includes comparison of

different viability analyses, using different admissible control sets and differ-

ent definitions of desirable states. Defining measures to compare the corre-

sponding viability kernels, and defining the robustness of trajectories would

allow comparing different control strategies. Moreover, we intend to take

into account the effect of uncertainty in the definition of sustainable states:
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For instance, in the model of tourism development, the competition with the

other tourist sites we consider as a control variable may be regarded as an

uncertainty to which the tourist site under study is confronted. Such issues

can be addressed in the viability theory framework using dynamic games

(Aubin, 1997).
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Aubin, J., 1997. Dynamic economic theory. Springer-Verlag, Berlin.
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Figure 1: Scenarios of tourism development with maximal time 100. All these

diagrams are obtained with the model (1). The parameter values are the same as

in Casagrandi and Rinaldi (2002) with a = 6, ε = 0.01 for plain line, ε = 0.1 for

dotted line and ε = 0.45 for bold curve. The initial point of all curves is (T = 0.01,

E = 1, C = 0.01).
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Figure 2: Scenarios of tourism development with model (1), with a = 6.8 and

ε = 0.1. Two equilibria are stable: The strictly positive one and (0, 1, 0). The

plain curve seems to converge toward the strictly positive equilibrium, its initial

point (0.1, 1, 0.1) belongs to the attraction basin of the strictly positive equilibrium.

The dotted bold curve seems to converge toward 0, its initial point (0.5, 0.5, 0.5)

belongs to the attraction basin of the equilibrium (0, 1, 0).
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Figure 3: (a) Scenarios of tourism development with model (1), with a = 6 and ε =

0.1. The strictly positive equilibrium is the only stable one. (b) Distance between

the tourist activity and the attractor value. From initial point (0.2, 0.6, 0.1), the

maximum distance to the tourist equilibrium value (plain line) is the initial point.

From initial point (0.2, 0.2, 0.2) (in dotted line) it is not the case.
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Figure 4: Scenarios of tourism development with maximal time 300. The parameter

values are the same as in figure 1 with a = 6 and ε = 0.13. The attractor is a

limit cycle. The initial point is (T = 0.01, E = 1, C = 0.1). The dark gray area

corresponds to T ∈ [0.1; 0.2], the light gray area to T ∈ [0.02; 0.3].
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Figure 5: Scenarios of tourism development with maximal time 500. The parameter

values are the same as figure 1 with a = 6 and ε = 0.1. The initial point is

(T = 0.26, E = 1, C = 0.26).
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Figure 6: The parameter values are the same as in figure 1 with a = 6 and ε = 0.1.

Attractor is (T̄ ≈ 0.125, Ē ≈ 0.526, C̄ ≈ 0.125). Dark areas represent the viability

kernel for dynamics (1) and constraint setK =
[
T̄ −∆; T̄ + ∆

]
×
[
Ē −∆; Ē + ∆

]
×[

C̄ −∆; C̄ + ∆
]
, ∆ = 0.075 for diagram (a), ∆ = 0.05 for diagram (b) and ∆ =

0.025 for diagram (c). In light gray the largest viability kernel.
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Figure 7: The parameter values are the same as in figure 1 with a = 6 and ε = 0.13,

the attractor is a limit cycle in that case. Dark areas represent the viability kernel

for dynamics (1) and constraint set K =
[
T̄ −∆; T̄ + ∆

]
×
[
Ē −∆; Ē + ∆

]
×[

C̄ −∆; C̄ + ∆
]
, with (T̄ ≈ 0.125, Ē ≈ 0.526, C̄ ≈ 0.125). ∆ = 0.075 for diagram

(a), and ∆ = 0.05 for diagram (b). With ∆ = 0.025 in diagram (c), the viability

kernel is empty. In light gray the largest viability kernel.
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Figure 8: (a) In black, the constraint set and viability kernel displayed in figure 6

(c). (b). . . (i) The shade of gray represents the successive level sets of the capture

basins of the viability kernel for eight increasing reaching time t = 10, . . ., t = 80.
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Figure 9: The dynamics are the dynamics of model (6). The parameters are the

same as figure 1 with ε = 0.01, ε̄ = 0.3, a = 6 and ā = 8. The constraint set is

{(T,E,C) ∈ [0.1; 0.2]× [0.5; 0.6]× [0.1; 0.2]}. The viability kernel is colored gray.
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Figure 10: The trajectories of two evolutions starting from point (T = 0.15, E =

0.58, C = 0.14) in the viability kernel from figure 9. The gray one is obtained with

fixed control values ε = 0.01 and a = 6. The black one is governed by a viable

control function, the points drawn on this trajectory correspond to positions where

the control value changes.
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Figure 11: In gray, the viability kernel of the controlled model (6), with constant

control a = 6 and with constraint space {(T,E,C) ∈ [0.1; 0.2] × [0.4; 0.65] ×

[0.1; 0.2]}. All other parameter values are the same as in figure 1. It represents

19.2% of the constraint space. (a) In black the viability kernel with constant con-

trol ε = 0.05 (5.6% of the constraint space). (b) In black the viability kernel with

constant control ε = 0.1 (6.1% of the constraint space). The viability kernel is

empty with constant control ε = 0.15, 0.2, 0.25 or 0.3.
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