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A Hybrid Dynamic Programming Approach to the Biobjective Binary
Knapsack Problem

CHARLES DELORT, Laboratoire d’Informatique de Paris 6 (UMR CNRS 7606) – UPMC
OLIVIER SPANJAARD, Laboratoire d’Informatique de Paris 6 (UMR CNRS 7606) – UPMC

This paper is devoted to a study of the impact of using bound sets in biobjective dynamic programming.
This notion, introduced by Villareal and Karwan [1981], has been independently revisited by Ehrgott and
Gandibleux [2007], as well as by Sourd and Spanjaard [2008]. The idea behind it is very general, and can
therefore be adapted to a wide range of biobjective combinatorial problem. We focus here on the biobjec-
tive binary knapsack problem. We show that using bound sets to perform a hybrid dynamic programming
procedure embedded in a two phases method [Ulungu and Teghem 1995] yields numerical results that out-
perform previous dynamic programming approaches to the problem, both in execution times and memory
requirements.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Computations
on discrete structures; G.2.1 [Combinatorics]: Combinatorial algorithms; I.2.8 [Information Systems
Applications]: Dynamic programming

General Terms: Algorithms, Performance

Additional Key Words and Phrases: multiobjective optimization, biobjective binary knapsack problem

1. INTRODUCTION
Multiobjective combinatorial optimization (MOCO) deals with combinatorial problems
where every solution is evaluated according to several objectives. Interest in this area
has tremendously grown over the last two decades. A thorough presentation of the
field can be found for instance in a book by Ehrgott [2005]. When multiple objectives
are involved, and according to the available preferential information, one can either
search for a single “best compromise” solution [Galand 2008] (if the type of compro-
mise sought is known), or generate the whole set of Pareto optimal solutions (if the
type is unknown), i.e. solutions that cannot be improved on one objective without be-
ing depreciated on another one. We are interested here in the latter approach. Most
of the classical exact and approximate methods for finding an optimal solution in sin-
gle objective discrete optimization have been revisited for finding the Pareto set under
multiple objectives, e.g. dynamic programming [Daellenbach and De Kluyver 1980;
Klamroth and Wiecek 2000], branch and bound [Bitran and Rivera 1982; Kiziltan and
Yucaoglu 1983; Marcotte and Soland 1986; Mavrotas and Diakoulaki 1998], greedy al-
gorithm [Serafini 1986], as well as many heuristic and metaheuristic methods [Ehrgott
and Gandibleux 2004].

In order to perform implicit enumeration in multiobjective optimization problems,
the formal notion of bound set needs to be introduced. This has been done several times
in the literature. Roughly speaking, bound sets are sets of bounds. Indeed, due to the
partial nature of the ordering relation between solutions, the use of a set of bounds
instead of a single bound makes it possible to more tightly approximate the image set
of the solutions in the objective space. To our knowledge, one of the first work men-
tioning that notion was performed by Villareal and Karwan [1981], and deals with
branch and bound for multiobjective integer linear programming problems. Although
the definition they proposed is general, no operational way to compute bound sets has
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been devised until recently where the bound set does not reduce to a singleton. In
this concern, based on the convex hull of the image of the solutions in the objective
space, new bound sets have been proposed that invole an infinite number of points
(vectors) [Ehrgott and Gandibleux 2007; Sourd and Spanjaard 2008]. A multiobjective
branch and bound making use of these new bound sets has proved very efficient for
the biobjective spanning tree problem [Sourd and Spanjaard 2008]. This approach in-
deed enables to increase by an order of magnitude (10 to 1) the size of the instances
that can be solved in a reasonable amount of time. However, no other attempt has yet
been undertaken to investigate the impact of these new bound sets in other multiob-
jective optimization settings (i.e., other multiobjective optimization problems and/or
procedures).

The present paper is a first step in this direction: we investigate the use of such
bound sets in a hybrid dynamic programming procedure for the biobjective binary
knapsack problem. The hybridization we propose is in the spirit of the dominance re-
lations between states used in works by Bazgan et al. [2007; 2009], but enables huge
savings in memory requirements as well as improvements in execution times thanks
to the involved bound sets we use.

Two improvements of our method are also studied in the paper, both improvements
reinforcing the impact of using involved bound sets to prune the search. A first direc-
tion of improvement is the embedding of our method in a two phases approach [Ulungu
and Teghem 1995]. In a two phases method, one first computes a subset of the Pareto
set so as to identify a subspace of the objective space to which all Pareto points belong.
We will show that this shrinking of the objective space further improves the pruning
power of the bound sets. A second direction of improvement is a preprocessing by shav-
ing that is all the more efficient that the bound sets are accurate. This preprocessing
procedure does indeed an intensive use of the bound sets in order to reduce the size of
the problem before launching the solution phase itself. The main principles of shaving
have been introduced by Martin and Shmoys [1996] in a single objective optimization
setting. It has been recently proved to be also interesting in a multiobjective optimiza-
tion setting [Sourd and Spanjaard 2008]. We show here that the impact of shaving
becomes even greater when embedded in a two phases method.

To summarize, the contribution of the paper is twofold:

(1) we first explain how to hybridize multiobjective dynamic programming with the
fathoming criterion provided by the bound sets;

(2) then we detail how hybrid multiobjective dynamic programming can be embedded
in a two phases approach to further improve the method.

The paper is organized as follows. After recalling some preliminary definitions, and
stating the biobjective binary knapsack problem studied in the paper (Section 2), we
present a general framework for hybridizing dynamic programming using bound sets
in a multiobjective setting (Section 3). Next, we show how to embed it in a two phases
method (Section 4). Then, after briefly describing related works on the problem, we
specify our resolution method for solving the biobjective binary knapsack problem (Sec-
tion 5). Finally, we provide numerical results that show the interest of the approach
(Section 6).

2. PRELIMINARIES
2.1. Preliminary Definitions
We first recall some preliminary definitions concerning MOCO problems. They differ
from the standard single objective ones mainly in their cost structure, as solutions are
valued by m-vectors instead of scalars. Let us denote by X the set of feasible solutions,
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and by Y its image in the objective space. The image of solution x ∈ X is f(x) =
(f1(x), . . . , fm(x)). Comparing solutions in X amounts then to comparing m-vectors in
Y. In this framework, the following notions prove useful (in a maximisation setting):

DEFINITION 2.1. The weak dominance relation on m-vectors of Zm+ is defined, for
all y, y′ ∈ Zm+ , by y < y′ ⇐⇒ [∀i ∈ {1, . . . ,m}, yi ≥ y′i)]. The dominance relation is
defined as the asymmetric part of <: y � y′ ⇐⇒ [y < y′ and y′ 6< y].

DEFINITION 2.2. Within a set Y ⊆ Y, an element y is said to be dominated (resp.
weakly dominated) if y′ � y (resp. y′ < y) for some y′ in Y , and non-dominated if there
is no y′ in Y such that y′ � y. The set of non-dominated elements in Y is denoted by Y ?.

By abuse of language, when f(x) � f(x′), we say that solution x dominates solution
x′. Similarly, we use the term of non-dominated solutions. The set of non-dominated
solutions of X ⊆ X is denoted by X?. Following Bazgan et al. [2007; 2009], we say that
a set of non-dominated solutions is reduced if it contains one and only one solution
for each non-dominated objective vector in Y = f(X) = {f(x) : x ∈ X} (also named
minimal complete set [Hansen 1980]). The non-dominated solutions that maximise a
weighted sum of the objectives are called supported. A supported solution is called
extreme if its image is a non-dominated vertex of the convex hull of Y ?.

2.2. Biobjective Binary Knapsack Problem
An instance of the multiobjective binary knapsack problem (0-1 MOKP) consists of
a knapsack of integer capacity c, and a set of items N = {1 . . . n}. Each item j has
a weight wj and a m-vector profit pj = (pj1, . . . , p

j
m), variables wj , pjk (k ∈ {1, . . . ,m})

being integers. A solution is characterized by a binary n-vector x, where xj = 1 if
item j is selected. Furthermore, a solution x is feasible if it satisfies the constraint∑n
j=1 w

jxj ≤ c. The goal of the problem is to find a reduced set of non-dominated
feasible solutions, which can be formally stated as follows:

maximize
n∑
j=1

pjkxj k ∈ {1 . . .m}

subject to
n∑
j=1

wjxj ≤ c

xj ∈ {0, 1} j ∈ {1, . . . , n}
Note that several works in the literature aim at determining all Pareto optimal

solutions. In our opinion, this goal does not coincide with the one studied in single
objective optimization, where one looks for one optimal solution, and not all optimal
solutions. We will focus in this paper on the biobjective binary knapsack problem (0-1
BOKP), wherem = 2, and from now on we characterize an item j by a triple (pj1, p

j
2, w

j).

EXAMPLE 2.3. Consider the following problem:

maximize
{

10x1 + 2x2 + 6x3 + 9x4 + 12x5 + x6

2x1 + 7x2 + 6x3 + 4x4 + x5 + 3x6

subject to 4x1 + 4x2 + 5x3 + 4x4 + 3x5 + 2x6 ≤ 6
xj ∈ {0, 1} j ∈ {1, . . . , 6}

There are ten feasible solutions, four of which are non-dominated, and their im-
age set in the objective space is Y? = {(13, 4), (11, 5), (10, 7), (3, 10)}.
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Fig. 1. Objective space in Example 2.3.

3. HYBRID MULTIOBJECTIVE DYNAMIC PROGRAMMING PROCEDURE
3.1. Multiobjective Dynamic Programming
Before hybridizing multiobjective dynamic programming using bound sets, we first
recall the standard multiobjective dynamic programming framework. Let there be an
integer n ∈ N. As usual in dynamic programming, we assume that the problem we
wish to solve can be broken into n+ 1 periods 0,...,n. We consider for each period j a set
Sj representing all the possible states at the end of period j. Without loss of generality,
we further assume that there is a unique initial state s0 and that Sj ∩Sk = ∅ (if j 6= k).
We will express by S =

⋃n
j=0 Sj the overall set of states. Furthermore, we denote by

A ⊆ S×S the set of possible transitions between states. Note that s ∈ Sj and (s, s′) ∈ A
implies that s′ ∈ Sj+1. An m-vector v(s, s′) is attached to each transition (s, s′) ∈ A,
and the m-vector assigned to a policy (i.e., a sequence of transitions) δ = (sj , . . . , sk) is
v(δ) =

∑k−1
i=j v(si, si+1). We will express by ∆(s) the set of feasible policies from state

s0 to state s, and by ∆(Sj) the set
⋃
s∈Sj

∆(s). A multiobjective dynamic programming
procedure aims at determining a reduced set ∆?(Sn) of non-dominated policies from
s0 to Sn. Unlike the scalar case, there possibly exist several non-dominated policies
with distinct m-vectors to reach a given state in a multiobjective setting. Hence, one
keeps a reduced set ∆?(s) of non-dominated policies at each state s, instead of a single
optimal one. The multiobjective dynamic programming procedure is formally stated in
Algorithm 1, where (δ, sj) denotes, for δ = (si, . . . , sj−1), policy (si, . . . , sj), and notation
RND(·) stands for a set function returning a reduced set of non-dominated elements.
S′j ⊆ Sj represents the subset of states that one can obtain starting from initial state
s0 (it is therefore the set of states sj ∈ Sj such that ∆(sj) 6= ∅).

ALGORITHM 1: Multiobjective Dynamic Programming
1 S′0 ← {s0}; ∆?(s0)← {()} (where () is the empty policy)
2 for j = 1, . . . , n do

2a compute S′j ← {sj : sj−1 ∈ S′j−1 and (sj−1, sj) ∈ A}
2b for each sj ∈ S′j do

compute ∆?(sj)← RND({(δ, sj) : δ ∈ ∆?(sj−1), (sj−1, sj) ∈ A})
3 return RND(

⋃
sn∈S′

n
∆?(sn))

For solving the biobjective binary knapsack problem, we will use the following (well-
known) dynamic programming formulation:
- a period corresponds to an item j;
- a state (j, w) ∈ Sj (j ∈ {1, . . . , n}) corresponds to the subsets of {1, . . . , j} of weight w;
- a transition from state (j, w) to state (j + 1, w′) is possible if w + wj+1 = w′ or w = w′

(assuming max{w,w′} <= c): in other words, a transition corresponds to the decision
whether to take item j + 1 or not;
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- a policy δ can be seen as a (partial) instanciation of binary vector x, denoted by
δ = {xj ← 0 or 1, . . . , xk ← 0 or 1}.

3.2. Bound Sets in MOCO Problems
It is well known that the computer storage requirements are an important issue in dy-
namic programming approaches. This is even more true in MOCO problems since one
does not store a single subpolicy at each step, but a set of Pareto optimal subpolicies.
To overcome this difficulty, a simple idea is the following: given an incumbent set of
already known complete policies (computed by a heuristic), if a bound can prove that a
subpolicy cannot be completed in a policy improving the incumbent set, then it is not
necessary to store this policy (similarly to what is done in the single objective branch
and bound strategy for dynamic programming [Morin and Marsten 1976]). In a mul-
tiobjective optimization setting, since one handles sets of m-vectors, the very notion
of upper and lower bound has to be revisited. This work has been undertaken by Vil-
lareal and Karwan [1981]. They introduced the notion of bound sets (in the terminology
of Ehrgott and Gandibleux [2007]). Since the formalism used here slightly differs from
the one presented in these works, we give below our own definitions of upper and lower
bound sets.

3.2.1. Upper Bound Set. The simplest idea that comes to mind to upper bound a set
Y of vectors is to define a single vector yI such that yIi = maxy∈Y yi for i = 1, . . . ,m.
This point is called the ideal point of Y . However, this ideal point is usually very “far”
from the points in Y . For this reason, it is useful to define an upper bound from a set
of vectors instead of a singleton. Such a set is then called an upper bound set [Ehrgott
and Gandibleux 2007].

DEFINITION 3.1 (UPPER BOUND SET). A set UB is an upper bound set of Y if ∀y ∈
Y, ∃u ∈ UB : u < y.

This is compatible with the definition of an upper bound in the single objective case
(UB reduces then to a singleton). As previously indicated, the upper bound set defined
by UB = {yI} is poor. In practice, a general family of good upper bound sets of Y can
be defined as UBΛ =

⋂
λ∈Λ{u ∈ Rm : 〈λ, u〉 ≤ UBλ}, where the λ ∈ Λ are weight

vectors of the form (λ1, . . . , λm) ≥ 0, 〈., .〉 denotes the scalar product, and UBλ ∈ R is
an upper bound for {〈λ, y〉 : y ∈ Y }. Clearly, the best upper bound set in this family
is obtained for Λ = Λc(Y ) where Λc(Y ) characterizes the facets of the non-dominated
boundary of the convex hull of Y . Interestingly, we will see in the following that this
boundary can be efficiently computed in the biobjective case, provided maxy∈Y 〈λ, y〉
can be determined within polynomial or pseudo-polynomial time.

3.2.2. Lower Bound Set. Similarly to the upper bound set, the simplest idea that comes
to mind to lower bound a set Y of vectors is to define a single vector yA such that
yAi = miny∈Y yi for i = 1, . . . ,m. This point is called the anti-ideal point of Y . Here
again, taking several points simultaneously into account in the lower bound enables
to more tightly bound set Y . Such a set is then called a lower bound set [Ehrgott and
Gandibleux 2007].

DEFINITION 3.2 (LOWER BOUND SET). A set LB is a lower bound set of Y if ∀y ∈
Y, ∃l ∈ LB : y < l.

As above, the compatibility with the single objective case holds. In the biobjective case,
when Y only includes mutually non-dominated points, we will show in the next sub-
section a way to refine the lower bound set defined by LB = {yA}.
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3.2.3. Comparing Bound Sets in Multiobjective Dynamic Programming. Hybridization is about
eliminating subpolicies at step 2b of the multiobjective dynamic programming proce-
dure by using bound sets. In order to perform the elimination, we need to evaluate if a
subpolicy δ ∈ ∆?(sj) (sj ∈ Sj) can be extended in a non-dominated complete policy. Let
us denote by Ext(δ) the set of potential extensions of a subpolicy δ ∈ ∆?(sj) (sj ∈ Sj),
i.e. feasible policies in ∆(Sn) (i.e., from state s0 to a state in Sn) whose subpolicy from
s0 to Sj is δ. To do this, one compares an upper bound set UB of f(Ext(δ)) and a lower
bound set LB of f(∆?(Sn)). These sets are computed in the course of the dynamic pro-
gramming procedure (the details are given in the next subsection). Unlike the single
objective case, the comparison is not trivial since one handles sets instead of scalars.
We introduce here two notions that make it possible to simply define this operation in
a multiobjective setting.

DEFINITION 3.3 (UPPER AND LOWER RELAXATIONS). Given an upper bound set
UB, the upper relaxation UB4 is defined as: UB4 = {y ∈ Rm+ ,∃u ∈ UB, u < y}.
Similarly, given a lower bound set LB, the lower relaxation LB< is defined as: LB< =
{y ∈ Rm+ ,∃l ∈ LB, y < l}.

For the convenience of the reader, the different notions introduced so far are illus-
trated in Figure 2.
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Fig. 2. Comparing bound sets.

Coming back to the comparison of UB and LB, it is clear that UB4 ⊇ f(Ext(δ)) and
LB< ⊇ f(∆?(Sn)). Consequently, UB4∩LB< = ∅ implies that f(Ext(δ))∩f(∆?(Sn)) =
∅. In this case, subpolicy δ can of course be safely pruned. In the hybrid version of
multiobjective dynamic programming, step 2b of Algorithm 1 is thus replaced by:

2b for each sj ∈ S′j do
compute ∆?(sj)← RND({(δ, sj) : δ ∈ ∆?(sj−1), (sj−1, sj) ∈ A})
for each δ ∈ ∆?(sj) do

if (UB4
δ ∩ LB< = ∅) then ∆?(sj)← ∆?(sj) \ δ

where UB4
δ denotes an upper relaxation of f(Ext(δ)).

Note that this pruning condition can be refined by using the fact that one only looks
for a reduced set of non-dominated solutions as well as the fact that valuations are
integers. For simplicity, this refinement is not detailed here. The main point is now
to be able to efficiently compute good lower and upper bound sets. In the following
subsection, this issue will be answered for the biobjective case.
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3.3. Hybrid Biobjective Dynamic Programming
We now detail the algorithms used in hybrid biobjective dynamic programming to com-
pute the bound sets and perform their comparison.

Computation of an Upper Bound Set. Given a subpolicy δ ∈ ∆(Sj), upper bound
set UBΛc(f(Ext(δ))) can be compactly represented by storing the extreme points of
Y = f(Ext(δ)), i.e. the vertices of the non-dominated boundary of the convex hull
of Y (points y1, y2, y3 and y4 in the left part of Figure 3). Note that, for readibil-
ity, notation UBΛc(f(Ext(δ))) is replaced by UBΛc

(δ) in the sequel. Aneja and Nair’s
method [1979] enables to efficiently compute these vertices in biobjective combinato-
rial problems whose single objective version is solvable within polynomial or pseudo-
polynomial time. In order for the paper to be self-contained, we explain this method
shortly. First, the two lexicographically optimal points (a point is lexicographically
optimal if it achieves the best value on the second (resp. first) objective among points
achieving the best value on the first (resp. second) objective) are computed by resorting
to a single objective optimization algorithm. Second, the list L of extreme points is ini-
tialized with the two obtained points, and maintained in increasing order with respect
to the first objective. In the biobjective binary knapsack problem, list L is then com-
puted recursively as follows: given two consecutive points y1 = (y1

1 , y
1
2) and y2 = (y2

1 , y
2
2)

in L, a new point is computed by solving a standard binary knapsack problem after
scalarizing the vector valuations (pj1, p

j
2) of each item j by a weighted sum λ1p

j
1 + λ2p

j
2,

with λ1 = y2
2 − y1

2 and λ2 = y1
1 − y2

1 . The number of times the single objective solution
method is launched is of course linear in the number of extreme points.

EXAMPLE 3.4. Let us come back to Example 2.3. Assume that one wants to upper
bound set f(Ext(δ)) where δ denotes the partial instanciation {x6 ← 0}. Aneja and
Nair’s method yields the following list L of extreme points, characterizing UBΛc

(δ): L =

((12, 1), (9, 4), (6, 6), (2, 7)). The corresponding upper relaxation UB4
Λc

(δ) is represented
in the left part of Figure 3.

Computation of a Lower Bound Set. Given a subset I ⊆ f(∆(Sn)) (the incumbent set
in the hybrid dynamic programming procedure), a tight lower bound set LB of I? can
be computed as follows. When there are two objectives and {(ij1, i

j
2) : 1 ≤ j ≤ k} are

the points of I? maintained in lexicographical order (i.e., in decreasing order of the
first objective, and increasing order of the second one), one can set LBN (I) = {nj =

(i
(j+1)
1 , ij2) : 0 ≤ j ≤ k}, where i02 = 0 and i

(k+1)
1 = 0. Note that, if i11 (resp. ik2) is the

optimal value on the first component (resp. second component), the definition of LBN (I)

can be restricted to {(i(j+1)
1 , ji2) : 1 ≤ j ≤ k − 1} since there cannot be any feasible
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Fig. 3. Upper and lower bound sets in a biobjective setting.
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solution with a value strictly greater than i11 on the first component, nor a solution
of value strictly greater than ik2 on the second component. It typically occurs when
the determination of the lexicographically optimal solutions can be done efficiently.
The set LBN (I) can here be viewed as a generalization of the nadir point of I (whose
components are the worst possible values among the points of I?). The points in LBN (I)

are therefore sometimes called local nadir points [Ehrgott and Gandibleux 2007]. One
can note that LBN (I) is also a lower bound set for f(∆?(Sn)).

EXAMPLE 3.5. Let us come back to Example 2.3 once again, and consider the fol-
lowing subset of points in f(∆(Sn)): I = {(13, 4), (10, 7), (3, 10)}. The lower bound set is
then: N (I) = {(13, 0), (10, 4), (3, 7), (0, 10)}. This lower bound set is represented in the
middle part of Figure 3, as well as its lower relaxation LB<

N (I).

As described above, to know if one can prune a subpolicy δ, one must compute the
intersection of the relaxations of a lower bound set of f(∆?(Sn)) and an upper bound
set of f(Ext(δ)). Testing if UB4

Λc
(δ) ∩ LB<

N (I) = ∅ amounts to check that no element of
LBN (I) is included in UB4

Λc
(δ). It can be formally expressed by:

∀n ∈ LBN (I),∃λ ∈ Λc(f(Ext(δ))) : λ1n1 + λ2n2 > max
y∈UB

4
Λc

(δ)

(λ1y1 + λ2y2)

EXAMPLE 3.6. Continuing Example 3.4 and Example 3.5, we shall compare the
two obtained relaxations. Both sets are represented in the right part of Figure 3. Their
intersection is empty, meaning that subpolicy δ can be safely discarded.

Hybrid Biobjective Dynamic Programming Procedure. The hybrid multiobjective dy-
namic procedure is summarized in Algorithm 2. Notation ND(·) stands for a set func-
tion returning the subset of non-dominated points in a set of m-vectors, I denotes the
incumbent set of non-dominated complete policies among the ones that have already
been generated, and ExtΛc

(δ) denotes the extreme solutions among the extensions of δ.
For simplicity we return here the images in the objective space of the non-dominated
policies instead of the non-dominated policies themselves. Note that the policies them-
selves could be obtained easily by using standard bookkeeping techniques. Further-
more, one takes advantage of the fact that the computation of UB4

Λc
(δ) yields feasible

complete policies, possibly non-dominated, by updating set I if policy δ is not discarded.

ALGORITHM 2: Hybrid Multiobjective Dynamic Programming
1 S′0 ← {s0}; ∆?(s0)← {()}; I ← {(0, . . . , 0)}
2 for j = 1, . . . , n do

2a compute S′j ← {sj : sj−1 ∈ S′j−1 and (sj−1, sj) ∈ A}
2b for each sj ∈ S′j do

compute ∆?(sj)← RND({(δ, sj) : δ ∈ ∆?(sj−1), (sj−1, sj) ∈ A})
for each δ ∈ ∆?(sj) do

if (UB4
Λc

(δ) ∩ LB<
N (I) = ∅) then ∆?(sj)← ∆?(sj) \ δ

else I ← ND(f(ExtΛc(δ)) ∪ I)
3 return I

4. THE TWO PHASES METHOD
The two phases method has been introduced by Ulungu and Teghem [1995]. The idea
of this method is to divide the problem into two different tasks: first, finding extreme
solutions (the first phase), then, finding the non-extreme solutions (the second phase).
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This method best applies to problems whose associated single objective problems
are efficiently solved, since the first phase heavily depends on the resolution of single
objective problems. This is the case of knapsack problems, as well as assignment prob-
lems, spanning tree problems, etc. In biobjective problems, one can easily reduce the
search space of the second phase by using solutions found in the first one: the triangles
generated by two successive extreme points p1, p2 and their local nadir point (i.e. the
point (min{p1

1, p
1
2}; min{p2

1, p
2
2})) are the only places where new non-dominated points

can be found, as illustrated in the following example.

EXAMPLE 4.1. The triangles that would be obtained in the problem described in
Example 2.3 are represented in Figure 4. In a two phases method, the extreme points
(in black) would be found during the first phase, and the other non-dominated points
(in grey) would be found during the second phase.

10

8

6

4

2

2 4 6 8 10 12 o1

Extreme points of Y ?

Non-extreme points of Y ?

Other points in Y

Triangles Tk

o2

Fig. 4. Two phases method.

The second phase consists then in thoroughly examining each triangle using an enu-
merative method such as a branch and bound procedure or a ranking method. We call
ranking method an algorithm able to enumerate the best solutions of a single objec-
tive optimization problem in order, until a stopping condition is fulfilled (the simplest
condition is for instance to stop at a given rank k) : this makes it possible to explore a
triangle by using the ranking method for a convenient weighted sum of the objectives
(the one for which the hypotenuse of the triangle is an isoquant). Currently, the fastest
algorithm solving the biobjective assignment problem [Przybylski et al. 2008] uses a
two phases method with a ranking method for the second phase. A similar method has
also been used for the biobjective spanning tree problem [Steiner and Radzik 2008].
Concerning the biobjective binary knapsack problem, a two phases method has already
been presented [Visée et al. 1998], using a branch and bound in the second phase, but
other approaches have since been proposed that outperform the two phases method:
a labeling approach developed by Captivo et al. [2003], and a dynamic programming
approach by Bazgan et al. [2009]. A more detailed description of these works is given
below (in Section 5).

We propose here a two phases version of our hybrid dynamic programming proce-
dure : instead of applying one single hybrid dynamic programming procedure directly
on the problem instance at hand, one first computes the extreme solutions of the prob-
lem (the first phase of the method), and then applies the hybrid procedure for each
triangle between two consecutive extreme points (the second phase). By subdividing
the problem in this way, the fathoming criterion is more efficient. Indeed, let us denote
by T1, . . . , Tt the triangles to explore after the first phase has been performed. When
examining a triangle Tk, for testing whether a subpolicy can be discarded using the
fathoming criterion, computing the entire upper relaxation is not needed, only the part
of the relaxation in the triangle is considered. More precisely, in step 2b of Algorithm 2,
it amounts to replace test UB4

Λc
(δ) ∩ LB<

N (I) = ∅ by test (UB4
Λc

(δ) ∩ Tk) ∩ LB<
N (I) = ∅.
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In large problems, entire upper relaxation UB4
Λc

(δ) may involve hundreds of vertices,
while for a given triangle Tk, local relaxation UB4

Λc
(δ)∩Tk only involves a few vertices.

The computation of this latter relaxation is therefore much faster. Furthermore, note
that incumbent set I is of course not reset during the second phase. The two phases
version of our hybrid dynamic programming procedure is synthesized in Algorithm 3.

ALGORITHM 3: Two Phases Hybrid Biobjective Dynamic Programming
First phase

1 compute extreme points {y1, . . . , yt+1}
2 I ← {y1, . . . , yt+1}
3 for k = 1, . . . , t do

3a generate triangles Tk between yk and yk+1

Second phase
4 for k = 1, . . . , t do

4a launch Algorithm 2 to explore triangle Tk and update I accordingly
return I

For the convenience of the reader, we now provide an example of step 4a to illustrate
the interest of the modified fathoming criterion.

EXAMPLE 4.2. Suppose that triangle Tk (as represented in Figure 5) is being ex-
amined. Note that it is sufficient to determine the three encircled vertices of UBΛc(δ)

to identify UB4
Λc

(δ) ∩ Tk (see Figure 5). In this example, policy δ is discarded, because
(UB4

Λc
(δ)∩Tk)∩LB<

N (I) = ∅. Note that UB4
Λc

(δ)∩LB<
N (I) 6= ∅ (due to the area enclosed

in bold on the bottom right of Figure 5), so δ would not have been discarded without a
two phases approach.

LB<
N (I)

UB4
Λc

(δ)
Tk

UB4
Λc

(δ) ∩ Tk

Fig. 5. Objective space in Example 4.2.

5. APPLICATION TO THE BIOBJECTIVE BINARY KNAPSACK PROBLEM
5.1. Related Works
Several methods have been developed in the previous years to solve 0-1 BOKP. We
present here a brief state-of-the-art on exact methods. Note that, of course, there exist
also approximation algorithms (with performance guarantee) and heuristic methods
(genetic algorithms, tabu search...) for solving 0-1 BOKP. For a recent and more broad
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survey on the multiobjective knapsack problem, the interested reader can refer to the
article of Lust and Teghem [2010].

Among exact algorithms proposed for solving 0-1 BOKP, one can mention two phases
methods, dynamic programming procedures and more specific problem-dependent
methods. Visée et al. [1998] introduced a two phases method to solve the biobjective bi-
nary knapsack problem. They first calculate the set of extreme optimal solutions, then
they compute the set of non-extreme Pareto optimal solutions located in the triangles
generated in the objective space by two successive extreme solutions, by resorting to
branch and bound procedures (one for each triangle). This method is memory consum-
ing, and only small-sized instances can be solved. A labelling approach by Captivo et al.
[2003] improved the resolution of this problem, enabling larger instances to be solved
in a decent time, the main limitation being again the memory requirements. To take
advantage of the particular structure of network problems, the biobjective knapsack
model is transformed into a biobjective shortest path problem over an acyclic network.
This makes it possible to use a labelling algorithm to search for all the non-dominated
solutions. A recent work, done by Bazgan et al. [2009], presents a new approach based
on dynamic programming. It relies on the use of several complementary dominance re-
lations to discard partial solutions that cannot lead to new non-dominated solutions. In
their paper, the most efficient dominance relation between two partial instanciations
δ and δ′ is based on the comparison between, on the one hand, an ideal point yI(δ)
obtained from δ (resp. δ′) by computing an upper bound on each objective, and, on the
other hand, a heuristic solution xh(δ′) obtained from δ′ (resp. δ) by performing a greedy
completion of the partial instanciation. If f(xh(δ′)) � yI(δ), then δ is dominated by δ′
and can be safely discarded. The paper also features a comparison between this new
approach, the labelling approach and an ε-constraint approach [Ehrgott 2005], show-
ing the large enhancement in terms of both memory and computation time brought by
the method introduced in the article. This is currently the most efficient dynamic pro-
gramming method known for solving the biobjective binary knapsack problem, but it
still needs a large amount of memory to stock all the non-dominated partial solutions,
and the largest instances solved may require tens of millions of solutions to be stocked
in order to find all non-dominated solutions. Our method will, all the while solving the
problem faster, settle the memory issue.

5.2. Our Algorithm
Before describing our algorithm in detail, we would like to simply recall what is its
aim: given a set of items, and a knapsack of a given capacity, find all the possible
packings of the items in the knapsack (actually a reduced set) that have a total profit
that is non-dominated by any other packing.

5.2.1. Initialization of the Algorithm. The initialization of our algorithm consists in reduc-
ing the size of the instance by using a preprocessing procedure called shaving, and
in initializing the incumbent set I by heuristically computing good solutions for the
problem. For 0-1 BOKP, the procedure we use works as follows: after initially setting
I = {(0, 0)}, for each item j two subproblems are created, one where item j is made
mandatory (type M), and one where item j is made forbidden (type F). For each sub-
problem the upper relaxation UB4

Λc
(δ) – where δ denotes the partial instanciation

{xj ← 0} or {xj ← 1} – is computed, and compared to the current lower relaxation
LB<
N (I). If some extreme points of UB4

Λc
(δ) are non-dominated, they are inserted into

I, and the possible dominated elements in I are removed. If UB4
Λc

(δ) ∩ LB<
N (I) = ∅,

the subproblem grants no non-dominated solutions for the problem, and thus item j
can be excluded from the problem, by permanently setting xj = 0 (resp. xj = 1) if
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the subproblem is of type F (resp. type M). This part of the algorithm is useful for at
least two reasons: first it allows us to have a good incumbent set before starting the
dynamic programming procedure, thus decreasing the number of subsolutions propa-
gated, and second, depending on the instance, it can remove a lot of items, which is
also a good means to reduce the computation time. For the convenience of the reader,
we now provide an illustrative example.

EXAMPLE 5.1. Consider the following biobjective binary knapsack problem:

maximize
5∑
j=1

pjkxj k ∈ {1, 2}

subject to
5∑
j=1

wjxj ≤ 5

xj ∈ {0, 1} j ∈ {1, . . . , 5}
The set of items is N = {(10, 10, 1), (1, 1, 10), (3, 9, 3), (9, 4, 3), (5, 5, 2)}. Initially, one sets
I = {(0, 0)}. The shaving process works as follows. One first computes the extreme
points of UB4

Λc
({x1 ← 1}): {(19, 14), (13, 19)}. The incumbent set I is therefore up-

dated: I = {(19, 14), (13, 19)}. One then computes the extreme points of UB4
Λc

({x1 ← 0}):
{(14, 9), (8, 14)}. Since UB4

Λc
({x1 ← 0}) ∩ LB<

N (I) = ∅, item (10, 10, 1) is made perma-
nently mandatory. One proceeds with the second item, and detects that UB4

Λc
({x2 ←

1}) = ∅ (no feasible solution includes the second item due to its weight). Consequently
UB4

Λc
({x2 ← 1}) ∩ LB<

N (I) = ∅, and item (1, 1, 10) is made permanently forbidden.
Nothing happens when examining the third item (i.e., item (3, 9, 3) is made neither
mandatory nor forbidden). Next, when examining the fourth item one gets a single ex-
treme point for UB4

Λc
({x4 ← 1}): {(15, 15)}. The incumbent set is once again updated:

I = {(19, 14), (15, 15), (13, 19)} (and item (9, 4, 3) is made neither mandatory nor for-
bidden). Nothing happens when examining the fifth item. To summarize, the initial
knapsack problem can be transformed into the following reduced problem:

maximize 10 +

3∑
j=1

pjkxj k ∈ {1, 2}

subject to
3∑
j=1

wjxj ≤ 4

xj ∈ {0, 1} j ∈ {1, . . . , 3}
where the set of items is now: N = {(3, 9, 3), (9, 4, 3), (5, 5, 2)}. Moreover, the incumbent
set I = {(19, 14), (15, 15), (13, 19)} has been initialized in a good way (in this example,
all non-dominated solutions are in I).

The shaving procedure is actually performed several times: once during the initial-
ization of the algorithm, and once before examining each triangle (the shaving proce-
dure is therefore launched once per triangle). In the second kind of shaving, much more
items are made mandatory or forbidden since one takes advantage of the fact that one
focuses on a very narrow area of the objective space. However the first shaving is still
useful since it prevents from eliminating many times the same item.

5.2.2. Implementation of the Search for Extreme Solutions. In our resolution method, the
search for extreme solutions is a critical primitive since it is extensively used, both
for the first phase of the method and for the determination of upper approximations.
The computation of an extreme solution amounts to solve a single objective binary
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knapsack problem. This problem has been thoroughly studied, and there are a lot of
good algorithms available. The best algorithms currently known for this problem have
been compared in a book by Kellerer et al. [2004], where the minknap and combo
algorithms prove to be the quickest1. To solve the single objective problems, we used
the minknap algorithm [Pisinger 1997]. Combo algorithm [Martello et al. 1999] seems
indeed to be a little bit slower for the type of instances we are solving. Most of the time,
the single objective problems solved have no correlation between profits and weights,
and when there is a correlation, it is only a weak correlation, making minknap a better
choice.

5.2.3. Dynamic Programming. Among the dynamic programming approaches proposed
for the multiobjective knapsack problem [Klamroth and Wiecek 2000], we adopt here
a similar approach to Villareal and Karwan’s one [1981], which is itself an extension
of the approach of Garfinkel and Nemhauser [1972] to take into account multiple ob-
jectives. As indicated in Section 3, the set of states is defined as:

S = {(j, w) : j = 1, . . . , n; w = 0, . . . , c}

where (j, w) corresponds to the subsets of {1, . . . , j} of weight w (partial instanciations).
Let us denote by ∆(j, w) = {δ :

∑j
i=1 w

iδ(xi) = w, δ(xj+1) = 0, . . . , δ(xn) = 0} the set
of partial instanciations δ at state (j, w), where δ(xi) = 1 (resp. δ(xi) = 0) if (xi ← 1) ∈ δ
(resp. (xi ← 0) ∈ δ), and by Y (j, w) its image in the objective space. We show here
how to compute Y ?(n,w) (the non-dominated elements of Y (n,w)) for w ∈ {0, . . . , c}. As
already mentioned, using standard bookkeeping techniques, it is not difficult to extend
the algorithm such that it actually returns a reduced set of non-dominated solutions in
∪cw=0∆(n,w). 0-1 BOKP can be solved by applying the following recursive equations:

Y ?(0, w) = {(0, 0)} for w = 0 . . . c
Y ?(j, 0) = {(0, 0)} for j = 1 . . . n
Y ?(j, w) = ND(Y ?(j − 1, w) ∪ (pj + Y ?(j − 1, w − wj)))

for j = 1 . . . n, w = 1 . . . c

(1)

where ND(Y ) denotes the non-dominated elements of a set Y , and y+Y ?(j, w) denotes
{y + y′ : y′ ∈ Y ?(j, w)}.

Implementation of the Recursion. For each state (j, w) we first compute the non-
dominated subsolutions using Equation 1. We store each set Y ?(j, w) in a red-black
tree enabling us to insert, remove or search an element in O(log |Y ?(j, w)|). This allows
us to compute Y ?(j, w) in O(|Y ?(j−1, w−wj)|+|Y ?(j−1, w)|) instead of O(|Y ?(j−1, w−
wj)| × |Y ?(j − 1, w)|). To achieve this complexity, it is well known that one only needs
the elements of sets Y ?(j − 1, w) and Y ?(j − 1, w − wj) to be lexicographically ordered,
i.e. decreasingly according to the first component and increasingly according to the
second one. The algorithm to compute Y ?(j, w) from Y ?(j − 1, w) and Y ?(j − 1, w − wj)
is then simple. After initially setting Y ?(j, w) = ∅, we compare the first element of
pj + Y ?(j − 1, w − wj) and the first element of Y ?(j − 1, w), and we select the maximal
one with respect to the lexicographical order (or arbitrarily if both elements are equal).
We insert the selected element into Y ?(j, w) provided it is not dominated by the last
element of Y ?(j, w) (if it exists). We repeat this elementary step with the non-selected
elements of both sets until one of the sets contains only selected elements. We insert
then into Y ?(j, w) the non-selected elements of the other set, granted they are non-
dominated.

1Both algorithms are available at http://www.diku.dk/hjemmesider/ansatte/pisinger/codes.html.
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EXAMPLE 5.2. Assume that we want to compute Y ?(j, w) from pj+Y ?(j−1, w−wj) =
{(10, 1), (8, 4)} and Y ?(j − 1, w) = {(10, 2), (6, 2), (2, 8)}. First, we compare (10, 1) and
(10, 2). Since (10, 2) is lexicographically greater than (10, 1), it is selected and inserted
into Y ?(j, w) (which was empty). We now compare (10, 1) and (6, 2): element (10, 1) is
selected but not inserted (dominated by (10, 2)). Then, (6, 2) and (8, 4) are compared:
(8, 4) is selected and inserted into Y ?(j, w), which becomes {(10, 2), (8, 4)}. Since all the
elements of pj +Y ?(j−1, w−wj) have been selected, the non-selected elements of Y ?(j−
1, w) are examined and (2, 8) is inserted into Y ?(j, w), because it is non-dominated. One
finally obtains Y ?(j, w) = {(10, 2), (8, 4), (2, 8)}.

Domination Relation between Elements of Y ?(j, w) and Y ?(j, w′). Obviously, an el-
ement y ∈ Y ?(j, w) can be discarded if there exists an element y′ ∈ Y ?(j, w′) such
that w′ < w and y′ < y (better profits and smaller weight). To implement this
domination relation, one uses a set Y ?(j) defined by Y ?(j) = ND(∪cw=0Y

?(j, w)). In
practice Y ?(j) is incrementally built, simultaneously to sets Y ?(j, w) (w = 0, . . . , c).
More precisely, once a set Y ?(j, w) is completed, the elements that are dominated
by one of Y ?(j) are discarded, and Y ?(j) is updated by using the following relation:
Y ?(j) = ND(Y ?(j) ∪ Y ?(j, w)). We now illustrate this on a small example.

EXAMPLE 5.3. At some step of the dynamic programming procedure, assume that
we have : Y ?(j, w) = {(4, 2), (3, 3), (2, 6)} and Y ?(j) = {(8, 1), (5, 2), (3, 3), (1, 9)}. Ele-
ments (4, 2) and (3, 3) are discarded from Y ?(j, w) because they are weakly dominated
by (5, 2) and (3, 3) respectively. In other words, there exists subsolutions with lower
weights and greater profits. Afterwards set Y ?(j) is updated and becomes Y ?(j) =
{(8, 1), (5, 2), (3, 3), (2, 6), (1, 9)}.

Fathoming Criterion. The domination relation can reduce the number of elements
in each set Y ?(j, w) for a low computational cost. Yet for large instances, this rela-
tion is not enough to efficiently limit the number of elements, leading the program to
fall short of memory. In this concern, the fathoming criterion introduced in Section 3
makes it possible to considerably reduce the number of stored elements. Finding an
upper relaxation UB4

Λc
(δ) for a partial instanciation δ at state (j, w) can be done by

applying Aneja and Nair’s method (see Subsection 3.3) to find the extreme points of
the following problem:

maximize
n∑

i=j+1

pikxi +

j∑
i=1

pikδ(xi) k ∈ {1, 2}

subject to
∑n
i=j+1 w

ixi ≤ c− w xi ∈ {0, 1}
where δ(xi) = 1 (resp. δ(xi) = 0) if (xi ← 1) ∈ δ (resp. (xi ← 0) ∈ δ). Using this formula-
tion enables us to remark that δ only appears in the objective function. To reduce the
computational load, we can thus compute once the extreme points of the subproblem
on {j + 1, . . . , n} with capacity c− w, that is denoted by P(j+1,w), and is written:

maximize
n∑

i=j+1

pikxi k ∈ {1, 2}

subject to
∑n
i=j+1 w

ixi ≤ c− w xi ∈ {0, 1}
One can then obtain the vertices of UB4

Λc
(δ) (for a partial instanciation δ) by sim-

ply translating the extreme points of P(j+1,w) by vector (
∑j
i=1 p

i
1δ(xi),

∑j
i=1 p

i
2δ(xi)).

Note that there are still some redundancies in the calculations, because an extreme
solution (xj , . . . , xn) of P(j,w) is also an extreme solution of P(j,w′) (w′ > w) provided∑n
i=j w

ixi ≤ c − w′. We take advantage of this property to speed up the computation
time of the extreme solutions of P(j,w′) knowing the extreme ones of P(j,w). Even when
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only a subset of the extreme solutions of P(j,w) are still extreme solutions of P(j,w′), we
can use the common vertices to build the hull of P(j,w′) faster. Indeed, all we have to
do is to apply Aneja and Nair’s method, not for the whole hull, but just for the gaps
between vertices that already belonged to P(j,w). By gap we mean the interval between
two common vertices, where the vertices of P(j,w) do not match with the ones of P(j,w′).
We now provide an example to illustrate this.

EXAMPLE 5.4. Consider a biobjective binary knapsack problem with c = 30. As-
sume that, for a given j ∈ {1, . . . , n}, the feasible solutions of subproblem P(j,10)

(i.e. finding the non-dominated subsets of {j, . . . , n} with a maximum weight of
30 − 10 = 20) are characterized by the following triples, where the first (resp. sec-
ond) component denotes the value on the first (resp. second) objective, and the third
component denotes the weight: S = {(18, 4, 9), (16, 10, 17), (16, 8, 8), (12, 14, 9), (8, 15, 7),
(6, 16, 13), (2, 16, 10)}. The images of these solutions in the objective space are repre-
sented in Figure 6. Among these feasible solutions the extreme ones are characterized
by: {(18, 4, 9), (16, 10, 17), (12, 14, 9), (6, 16, 13)}. Assume now that we want to use this
result to compute the extreme solutions of P(j,15) (the maximum weight is therefore
30 − 15 = 15). Points (18, 4),(12, 14) and (6, 16) remain extreme in P(j,15) since they still
satisfy the weight constraint. The only computation that is required is then to check
whether there exist new extreme points in the gap between (18, 4) and (12, 14). This is ac-
tually the case: the resolution of an iteration of Aneja and Nair’s method between these
two points yields the solution characterized by (16, 8, 8). The two recursive calls yields no
new extreme points, and the procedure stops. The extreme solutions of subproblem P(j,15)

are thus: {(18, 4, 9), (16, 8, 17), (12, 14, 9), (6, 16, 13)}. This output has been obtained with
only 3 iterations of Aneja and Nair’s method (and therefore 3 launchings of a single
objective optimization procedure) instead of 7 iterations if it had been computed from
scratch.

(2,16,10)

(6,16,13)

          (8,15,7) (12,14,9)

(16,10,17)

             (16,8,8)

(18,4,9)

o2

o1

Fig. 6. Extreme solutions of P(j,10) (in black) and P(j,15) (in dotted line). The grey point is an extreme point
in P(j,15) that was not an extreme point in P(j,10). The unfilled points are neither extreme points in P(j,10)

nor in P(j,15).

Updating the Lower Bound. When a partial instanciation δ satisfies (UB4
Λc

(δ) ∩ Tk) ∩
LB<
N (I) 6= ∅, then δ is not discarded but, before examining another partial instancia-

tion, the algorithm checks whether a newly computed extreme point can be inserted
into I. Indeed, we take advantage of the property that these extreme points correspond
to feasible solutions in order to update I.
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6. EXPERIMENTAL RESULTS
All experiments presented here were performed on an Intel R© CoreTM 2 Duo CPU
E8400 @ 3.00GHz personal computer, endowed with 3.2GB of RAM memory, using
a linux operating system. All algorithms were written in C++. The times shown here
were calculated using the gettimeofday method, and memory requirements were cal-
culated using the top command.

6.1. Instances
The types of instances considered here are the same as in the paper by Bazgan et al.
[2009]:
Type A: random instances, where pj1 ∈ {1, . . . , 1000}, pj2 ∈ {1, . . . , 1000} and wj ∈
{1, . . . , 1000};
Type B: unconflicting instances, where pj1 ∈ {101, . . . , 1000}, pj2 ∈ {p

j
1−100, . . . , pj1 +100}

and wj ∈ {1, . . . , 1000} (the values on both objectives are close);
Type C: conflicting instances, where pj1 ∈ {1, . . . , 1000}, pj2 ∈ {max{900 − pj1, 1}, . . . ,
min{1100 − pj1, 1000}} and wj ∈ {1, . . . , 1000} (the values on both objectives approxi-
mately sum up to 1000);
Type D: conflicting instances with correlated weights, where pj1 ∈ {1, . . . , 1000}, pj2 ∈
{max{900− pj1, 1}, . . . ,min{1100− pj1, 1000}} and wj ∈ {pj1 + pj2 − 200, . . . , pj1 + pj2 + 200}
(the weights are positively correlated with the sum of both objectives).
All the parameters were uniformly randomly generated. Furthermore, for all these in-
stances, we set c = d0.5

∑n
j=1 w

je. The average number of non-dominated points that
are found in the numerical tests detailed in Section 6.2 below are indicated in Table I.
If one evaluates the difficulty of an instance as the number of non-dominated points
according to the size, it clearly shows that the instances of type B are the easiest ones
while the instances of type D are the hardest ones.

Table I. Number of non-dominated points of 0-1 BOKP instances.
Type Size non-dominated points Type Size non-dominated points

Min. Avg. Max. Min. Avg. Max.
A 300 881 1126.7 1624 B 1000 99 152.8 217

500 2276 2725.8 3301 2000 317 504.5 701
700 4032 4881.5 6051 3000 763 954.3 1245
1000 7642 9075.4 10197 4000 1187 1445.2 1823

C 200 982 1507.0 2030 D 100 1440 1687.5 1991
300 2053 2858.4 3453 150 2802 3477.2 4172
400 3484 4342.8 5457 200 4795 5541.5 6228
500 5619 6613 7759 250 7083 8217.1 8880

6.2. Results
In this section, we will focus on three different aspects of our algorithm. First, the
computational impact of the way the items are ordered in the biobjective dynamic
programming procedure will be studied. Second, we will show the usefulness of all
the different components of our algorithm, by comparing procedures where some com-
ponents are disabled. Then, we will compare our method (named S2H hereafter, for
Shaving, 2 phases method, and Hybrid dynamic programming) to the one of Bazgan et
al. [2009] (named BHV hereafter, corresponding to the initials of the authors), since it
is the most efficient dynamic programming method known to this date.
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Table II. Ranking items according to Omax.
items (10, 2, 1) (4, 6, 1) (12, 3, 1)

rank w.r.t pj1/wj 2 3 1
rank w.r.t pj2/wj 3 1 2

max rank 3 3 2
Omax 3 2 1

Table III. Computation times in seconds.
Type Size Time in seconds

Orand Omax OT

min. avg. max. min. avg. max. min. avg. max.
A 1000 427 588 757 424 556 705 250 325 407
B 4000 245 342 448 350 413 491 211 286 368
C 500 2006 4153 6631 983 1962 2636 866 1577 2180
D 250 2660 3930 5576 2121 2568 3283 1114 1397 1877

6.2.1. Sorting the Items. In order to limit time comsumption, the order in which the
items are considered in the dynamic programming procedure is an important parame-
ter. We compare here three ways to order items in the dynamic programming procedure
for exploring each triangle :

— order Orand (the same ordering for all triangles): the items are taken in a random
order.

— order Omax (the same ordering for all triangles): this order has been introduced
by Bazgan et al. [2009]. To obtain this ranking, items j are first ordered for each
objective k according to the ratios pjk/w

j . In the biobjective case, two orderings are
thus performed. Each item is then granted a number, which is the maximum rank in
the two previous orderings. Finally, items are sorted increasingly according to these
numbers (in order to discriminate items with the same rank, the sum of the ranks is
used). For instance, consider set N = {(10, 2, 1), (4, 6, 1), (12, 3, 1)} of items (we recall
that the last component is the weight). The sorting according to Omax is obtained
as indicated in Table II. Note that item (4, 6, 1) is ranked better than item (10, 2, 1)
because the sum of the ranks of (4, 6, 1) is 3 + 1 = 4 , while the one of (10, 2, 1) is
2 + 3 = 5.

— order OT (a different ordering for each triangle): sorting the items decreasingly
according to the ratio of their profits to their weights is a good ordering for the
single objective knapsack problem. In order OT , a different ordering is used in each
triangle Tk, by ranking the items according to the ratio of a linear combination λ1p

j
1+

λ2p
j
2 to wj . Let yk and yk+1 denote the two extreme points defining Tk. Coefficients

λ1 and λ2 are set such that λ1y
k
1 + λ2y

k
2 = λ1y

k+1
1 + λ2y

k+1
2 .

The numerical tests were carried out on 30 randomly generated instances for each
type and size. The average CPU times in seconds are presented in Table III. The results
confirm that sorting items according to the zone of the Pareto frontier we explore (order
OT ) leads to faster resolution times. The gain in time ranges from 20% to nearly 50%
depending on the type of the instance. Therefore, this ordering will be used for the
results presented hereafter unless otherwise specified.

6.2.2. Comparison of the Different Components of the Algorithm. We compared S2H and BHV
by running both methods on the same instances2 (and, of course, the same computer).

2We wish to thank Hadrien Hugot who kindly sent us the C++ code of the BHV method.
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Table IV shows the time and memory spent to solve different types and sizes of in-
stances. The first two columns indicate the type and size of the instances solved. For
each type and size, 30 randomly generated instances have been solved using different
methods, and the minimum, average and maximum times and memory requirements
are indicated. Numbers in bold represent the best value for a given type and size.
Shaving, hybridization and the implementation in two phases are the three main com-
ponents of the algorithm presented in this paper. We evaluated some variations of our
method in order to measure the importance of each component. Since using each part
separately is sometimes meaningless (for instance using only the two phases method
part and the dynamic programming procedure would lead to solve several times the
very same problem), and always too much time consuming, we present methods using
two out of the three parts: 2H is a two phases method using a hybridized dynamic
programming (DP) procedure, SH is a hybridized DP procedure applied to a shaved
problem, and finally S2 is a two phases method using simple DP on shaved problems.
A time limit was set to 10000 seconds. Symbol “-” in the table denotes that at least
one instance of this type and size reached this limit. Symbol “*” indicates that at least
one instance couldn’t be solved due to insufficient memory. Note that for method S2,
we present here the results using Omax, because it yields better results. Indeed, the
multiple sortings are very good for the bounds of our algorithm, it enhances the speed
for the shaving part and the hybrid dynamic programming, but is not very efficient
for classic dynamic programming. Omax was also used for method SH, since the imple-
mentation in two phases is disabled.

Shaving. The shaving procedure is particularly effective on the instances of type A or
B: there is indeed a lot of items that are not interesting, such as items with low profits
on both objectives, and high weights, and conversely items that have high profits and
low weights, which will be taken in all non-dominated solutions. On the other hand,
since all items in types C and D have conflicting profits, it is more difficult to shave
items. Using the shaving procedure also enables to initialize the incumbent set ac-
curately, leading to a lower computation time for all types of instances when used in
combination with hybridization. Concerning memory requirements, the shaving pro-
cedure is also interesting for types A and B, but has almost no effect for the two other
types.

Two phases. Using a two phases method makes it possible to divide the problem into
several smaller problems, but there can be a lot of them (for problems of type A and
size 1000, there are on average 155 subproblems to solve). The combination with the
shaving procedure is interesting, because it further reduces the sizes of the subprob-
lems. Furthermore, the combination with the hybridization is also effective, because it
enables to compute only a fraction of the entire upper bound set (the one focusing on
the area of interest). Finally, solving subproblems also requires less memory, but the
memory space spared this way is not as important as that of the shaving for types A
and B; the opposite is observed for types C and D.

Hybridization. Hybridizing the DP is the main part of our algorithm. Not only does
it tremendously reduces the memory requirements, it also saves a lot of computation
time for larger, or more difficult instances. This can be seen by looking at the results
of method S2 on the instances of types C and D, both in terms of time and memory
requirements.

6.2.3. Comparison between our Method and the BHV Method. From a memory consump-
tion point of view, our method largely outperforms the BHV method for all sizes and
types of instances (see Figure 7, continuous lines). This is a nice consequence of the
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Table IV. Computation times in seconds, and memory requirements in megabytes of
different methods to compute all non-dominated points of 0-1 BOKP.
Type Size Method Time (s) Memory (MB) Type Size Method Time (s) Memory (MB)

Min. Avg. Max.Min. Avg. Max. Min. Avg. Max.Min. Avg. Max.
A 300 S2H 8.5 12.9 22.7 2.3 2.6 3.1 B 1000 S2H 5.1 7.0 11 1.8 2.0 2.3

BHV 27 51 103 57 80 113 BHV 1.4 4.1 10 9 11 13
2H 21.1 30.7 50.2 5.5 5.8 6.3 2H 10 17 40 15 15.2 16
SH 43 60 88 3.8 4.0 4.4 SH 7.3 10 16 2.2 2.5 2.8
S2 62 113 208 9 13.4 16 S2 7.4 10 15 1.8 2.3 3.6

500 S2H 30.9 48.7 70.1 2.8 3.1 3.7 2000 S2H 28 41 60 2.2 2.5 2.8
BHV 387 564 1031 225 401 449 BHV 57 132 272 57 132 272
2H 114 167 221 8.5 8.8 9.3 2H 79 135 226 29 30.1 31
SH 343 448 679 5.7 6.2 6.6 SH 55 109 181 3.5 3.8 4.3
S2 400 671 1045 22 38 56 S2 51 91 123 7 14 21

700 S2H 86.7 126 162 3.2 3.6 3.8 3000 S2H 102 130 171 2.7 2.9 3.2
BHV 1781 2740 4184 897 1308 1800 BHV 610 874 1292 449 449 449
2H 355 538 695 11 11.1 12 2H 378 553 914 44 44.6 45
SH 1443 2209 3353 8.0 8.7 9.4 SH 371 517 699 4.7 4.9 5.2
S2 1555 2820 3624 81 116 159 S2 249 344 468 26 45 74

1000 S2H 250 325 407 3.8 4.2 4.7 4000 S2H 211 286 368 3.0 3.3 3.7
BHV * * * * * * BHV 1985 3017 4184 897 1307 1800
2H 1349 1733 2122 15 15.5 16 2H 1008 1518 2205 58 58.5 60
SH - - - - - - SH 1268 1648 2097 5.8 6.1 6.4
S2 - - - - - - S2 755 970 1308 63 84 130

C 200 S2H 38 64 119 3.8 4.3 5.0 D 100 S2H 57 84 136 4.7 5.1 6.0
BHV 21 32 47 57 63 113 BHV 16 24 35 57 80 113
2H 31 53 89 4.4 4.8 5.3 2H 79 108 169 4.7 5.1 6.0
SH 96 147 239 2.8 3.1 3.4 SH 100 125 165 5.3 6.0 6.7
S2 1555 1835 2307 71 107 163 S2 1553 2138 3252 101 124 168

300 S2H 152 255 365 5.0 5.9 6.9 150 S2H 175 232 352 6.2 6.9 7.8
BHV 143 206 288 225 257 449 BHV 113 154 228 225 311 449
2H 131 235 346 6.0 6.6 7.3 2H 218 302 432 6.8 7.5 8.8
SH 602 788 1159 8.6 9.4 10 SH 652 698 1123 8.1 9.2 10
S2 - - - - - - S2 - - - - - -

400 S2H 369 723 1062 6.6 7.7 9.0 200 S2H 492 657 1057 8.3 8.9 10
BHV 486 748 1006 449 782 897 BHV 441 572 770 897 897 897
2H 472 738 1050 7.9 8.9 9.9 2H 694 954 1742 8.3 8.9 10
SH 1539 2806 3956 12 14.8 18 SH 2054 2689 3747 11 13.1 16
S2 - - - - - - S2 - - - - - -

500 S2H 866 15772180 8.4 9.6 10 250 S2H 111413971877 9.5 10.6 13
BHV 1447 2014 2651 897 1458 1800 BHV 1328 1581 198911001730 1800
2H 844 1634 2086 9.7 10.4 11 2H 1679 2030 2698 9.7 10.6 13
SH - - - - - - SH 6025 6984 8516 14 18.1 21
S2 - - - - - - S2 - - - - - -

2H: method S2H without shaving SH: method S2H without two phases
S2: method S2H without hybridization

hybridization method, which enables to discard many intermediate results in dynamic
programming. From the computation time perspective, the results depend on the types
and sizes of instances (see Figure 7, dotted lines). For types A and B the S2H method
is much faster than the BHV method, while for types C and D it becomes faster when
the size of instances grows. The reason for this behaviour is that, as stated above, the
shaving is less effective, and the fathoming criterion is rather time consuming, but this
is compensated for bigger instances by the fact that a lot of computation time is saved
thanks to the important number of elements that are fathomed.
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Fig. 7. Time and memory ratios BHV/S2H.

7. CONCLUSION
In this paper, we have presented a hybrid dynamic programming approach for mul-
tiobjective combinatorial optimization. It has been applied to the biobjective binary
knapsack problem. Our approach outperforms previous dynamic programming meth-
ods from the viewpoint of memory requirements and resolution times. A natural exten-
sion of this work would be to investigate the impact of hybrid dynamic programming
on other MOCO problems (e.g., multiobjective shortest path). Another extension would
be to study how to improve the resolution times on conflicting instances of 0-1 BOKP.
For this purpose, apart from implementation tips (e.g., by speeding up the memory
allocation process), an incremental resolution of the single objective problems (which
is the most cumbersome primitive in our method) is worth investigating. Finally, note
that our fathoming criterion has only been implemented in the biobjective case up to
now. The study of its practical implementation in problems involving more than two
objectives is an interesting and potentially fruitful task in our opinion.
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