
HAL Id: hal-01170465
https://hal.science/hal-01170465

Submitted on 28 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Discrete Time Exact Solution Approach for a
Complex Hybrid Flowshop Scheduling Problem with

limited Wait Constraints
Céline Gicquel, Laura Hege, Michel Minoux, W. van Canneyt

To cite this version:
Céline Gicquel, Laura Hege, Michel Minoux, W. van Canneyt. A Discrete Time Exact Solution Ap-
proach for a Complex Hybrid Flowshop Scheduling Problem with limited Wait Constraints. Computers
and Operations Research, 2012, 39 (3), pp.629-636. �10.1016/j.cor.2011.02.017�. �hal-01170465�

https://hal.science/hal-01170465
https://hal.archives-ouvertes.fr

A discrete time exact solution approach for a complex

hybrid flow-shop scheduling problem with limited-wait

constraints

C. Gicquel1a, L. Hegea, M. Minouxb, W. van Canneyt

aLaboratoire de Genie Industriel, Grande Voie des Vignes,

92290 Chatenay-Malabry, France
bLaboratoire d’Informatique de Paris 6, 4 place Jussieu, 75005 Paris, France

Abstract

We study a real-world complex hybrid flow-shop scheduling problem arising
from a bio-process industry. There are a variety of constraints to be taken
into account, in particular zero intermediate capacity and limited waiting
time between processing stages. We propose an exact solution approach for
this optimization problem, based on a discrete time representation and a
mixed-integer linear programming formulation. The proposed solution algo-
rithm makes use of a new family of valid inequalities exploiting the fact that
a limited waiting time is imposed on jobs between two successive produc-
tion stages. The results of our computational experiments confirm that the
proposed method produces good feasible schedules for industrial instances.

Keywords:

Hybrid flow-shop scheduling, batch scheduling, limited-wait constraints,
discrete-time model, mixed-integer linear programming, valid inequalities

1. Introduction

Hybrid flow-shop scheduling (HFS) problems arise in manufacturing en-
vironments in which a set of jobs are to be processed following the same
production flow in a series of stages, each stage comprising several parallel
machines. Hence, the main decisions in operating such a system consist in

1Corresponding author. E-mail: celine.gicquel@ecp.fr . Tel: (+33) 1 41 13 16 30. Fax:
(+33) 1 41 13 12 72.

Preprint submitted to Computers and Operations Research January 3, 2011

*Manuscript

Click here to view linked References

assigning jobs to machines and in scheduling jobs on machines at each stage
of the production process while optimizing a given objective function.

As mentioned in [1], in the standard form of the HFS problem, machines
at a given stage are identical, a machine can process only one operation at
a time, each job has to be processed on exactly one machine at each stage,
setup and removal times are negligible, buffer capacities between stages are
unlimited and there is no restriction on the waiting time of a job between
two stages.

In the present paper, we investigate a complex hybrid flow-shop schedul-
ing problem arising from a bio-process industry. This problem significantly
deviates from the standard form recalled above due to the presence of several
additional constraints and assumptions to be taken into account, in particu-
lar:

• a job may be processed simultaneously by more than one machine at
some stages of the production process, i.e. there exist multiprocessor
tasks.

• there is no buffer capacity between stages so that if no machine is
available at the next stage, a completed job is ”blocked” in the previous
stage and must wait on the machine which processed it.

• due to unstable intermediate products, there is a limited waiting time
between operations of a given job (”no-wait” or ”limited-wait” con-
straints).

• time-consuming setup and removal operations are required before and
after the processing of a job, leading to positive setup and removal
times.

The main contributions of this paper can be summarized as follows. First,
we report a real-world complex hybrid flow-shop scheduling problem found in
a bio-process industry, thus making a step toward reducing the gap between
the theory and practice of scheduling mentioned in [2] and [3]. Second, we
present an exact solution approach based on discrete time representation and
mixed-integer linear programming. The proposed solution algorithm makes
use of a new family of strong valid inequalities exploiting the fact that a
limited waiting time is imposed on jobs between two successive production
stages. As far as we know, this is the first time the issue of valid inequalities is

2

addressed in the context of limited waiting time constraints. Computational
experiments confirm that the proposed method consistently produces good
feasible schedules for industrial-size instances involving up to 35 jobs.

The rest of this paper is organized as follows. We provide in section
2 a detailed review of the related literature. In section 3, we describe the
industrial scheduling problem in more detail. We then develop in section 4 the
proposed exact solution approach and report in section 5 numerical results
based on industrial data. Finally, we provide some concluding remarks in
section 6.

2. Literature review

2.1. Hybrid flow-shop scheduling

Recent literature reviews on the HFS problem can be found in [1] and
[3]. Both papers use the standard α|β|γ structure to describe the schedul-
ing problem with respect to shop configuration (α), job constrains (β) and
objective functions (γ). References are then classified according to the char-
acteristics of the production system and/or the type of approach used to
solve the optimization problem. The reader is referred to these papers for
comprehensive surveys on the HFS literature. In the present literature re-
view, we focus on those papers in which one of the complicating features
mentioned in the introduction is considered.

The situation where an operation at a certain stage requires more than
one machine (”multiprocessor task”) is addressed among others in [4] and
[5]. The authors of [6], [7] and [8] study the case of limited buffer capacities
between production stages which leads to a ”blocking scheduling problem”
where a completed job remains on a machine and blocks it until a downstream
machine becomes available. Contributions on hybrid flow-shop scheduling
under no-wait constraints can be found for instance in [9] and [10]. We point
out here that the case of limited-wait constraints has only received limited
attention: noticeable exceptions can be found in [11], [12] and [13]. Finally,
HFS with positive setup and/or removal times is studied e.g. in [14]. How-
ever, as mentioned in [2], even if there are several papers addressing realistic
extensions of the hybrid flow-shop scheduling, very few papers consider sev-
eral complicating features jointly. Moreover, as can be seen from the detailed
survey presented in [1], there seems to be no previous attempt in the Oper-
ations Research literature to solve the variant of the HFS problem studied
in the present paper, i.e. the HFS problem with multiprocessor tasks, zero

3

buffer capacity, limited waiting time between consecutive operations of a job
and positive setup and removal times.

There is a wide variety of solution approaches for the HFS problem. The
authors of [1] propose a classification into three broad classes: exact meth-
ods, heuristics and metaheuristics. Exact solution approaches for the HFS
problem mostly rely on problem-specific Branch & Bound algorithms where
nodes correspond to partial schedules and lower bounds are computed by ex-
ploiting specific properties of the HFS problem. But, as can be seen from the
surveys presented in [1] and [15], research in this area has focused on simpli-
fied versions of the problem by considering either problems with a restricted
number of processing stages (typically 2) or problems close to the standard
form of the HFS. Moreover, existing Branch & Bound algorithms appear
to be limited to situations where the objective is to minimize makespan or
mean flow time. In the present paper, we handle a HFS problem involving
a general number of processing steps, several complicating job constraints
and a more complex criterion, namely total weighted tardiness. This is why
we did not consider the development of an exact solution approach based
on a specific Branch & Bound algorithm but rather chose to use a standard
Branch & Bound algorithm with a tight mixed-integer programming linear
formulation.

2.2. Batch scheduling in chemical processes

A variant of the HFS problem has been widely studied in the context
of chemical process industries where the problem is often referred to as
the ”scheduling problem for multi-product multi-stage batch plants”. Such
plants usually produce similar chemical compounds by performing on each
batch of product an identical sequence of processing operations defined by
the product recipe. Each batch to be processed corresponds to a job in the
HFS problem and has to be assigned to a production unit and scheduled on
this unit at each stage of the production process.

Recent reviews on the chemical engineering literature on short-term schedul-
ing of batch processes are provided in [16] and [17]. One of the main features
used in these papers to distinguish among scheduling problems is the so-called
inventory storage policy. Namely, unlike discrete manufacturing industries,
chemical industries are commonly characterized by the use of buffer tanks
to store intermediate liquid or powder products between production stages.
Moreover, it is usually impossible to mix in the same storage tank different
batches of the same product. The authors of [18] propose a classification of

4

storage policies in multi-stage batch plants based on the available storage
capacity and the amount of time a batch can wait after its processing at a
given stage before undergoing the next production operation. They identify
three types of storage policies: (1) unlimited intermediate storage, (2) lim-
ited intermediate storage (i.e. there is a limited number of available storage
tanks which can be either dedicated to a given type of product or shared
among all products), (3) no intermediate storage (i.e. there is no interme-
diate storage tank but a batch, once processed by a production unit, can
wait in this unit until a unit in the next stage becomes free to receive it). In
terms of the time a batch can wait between two production operations, the
authors of [18] distinguish between unlimited and limited waiting time poli-
cies and classify the ”zero-wait” constraint as a special case of the limited
waiting time policy. Contributions on multi-stage batch plants scheduling
with limited intermediate storage capacity and/or zero waiting time can also
be found among others in [19], [20], [21], [22]. In what follows, we study
a multi-product multi-stage batch scheduling problem with no intermediate
storage capacity and non-zero limited waiting time between operations. To
the best of our knowledge, the case of non-zero limited waiting time has only
been considered in [18] where, in contrast with the model investigated in
the present paper, an approach based on a continuous-time formulation is
proposed.

Optimization models for sequential batch scheduling can be broadly clas-
sified into two main groups based on the time representation. Discrete time
models rely on a division of the scheduling horizon into a number of time
intervals of identical duration and allow events such as the beginning or end-
ing of the processing of a batch on a unit to happen only at the boundaries
of these time intervals. Examples of work based on such an approach can be
found in [23], [24], [25], [26] and [27]. One of the main advantages of discrete
time models is that scheduling constraints have to be monitored only at spe-
cific and known time points. This reduces the problem complexity and makes
the model structure simpler and easier to solve, particularly when limitations
on renewable resources availability or on storage capacity must be taken into
account. However, to achieve a suitable accuracy of the solution, it is usually
needed to use a sufficiently small time interval, resulting in large-size com-
binatorial optimization problems. In contrast, continuous time models avoid
an external discretization of the scheduling horizon and allow events to take
place at any time instant. A first type of approach following this direction is
based on the concept of time-slots which stands for a set of predefined time

5

intervals with unknown durations. The production schedule is obtained by
assigning a batch to be processed to each time slot on each production unit.
The authors of [21], [28] and [29] among others use slot-based models to solve
short-term batch scheduling problems. A second type of approach is based
on sequence-based models where the batch sequence on each unit is given by
a set of binary variables defining precedence relations between batches. Con-
tributions on sequence-based models can be found for instance in [18], [30]
and [31]. Continuous-time models usually lead to smaller combinatorial op-
timization problems as compared to discrete time models. However resource
constraints (such as the limitations on manpower availability or on storage
capacity arising in our problem) are difficult to handle with continuous time
formulations. Namely, as mentioned in [17], they require ”the definition of
more complicated constraints involving many big-M terms, which tends to
increase the model complexity and the integrality gap and may negatively
impact on the capabilities of the method”. This is why we propose a discrete
time representation to model and solve the batch scheduling problem under
study.

3. Problem description

We now provide a detailed description of the industrial case study which
provided the initial motivation for this work. The optimization problem
consists in scheduling production for a bio-process in which fermentation
techniques are used.

Bio-processes are processes that use living cells or microorganisms (bac-
teria, yeasts, fungi...) to obtain products such as antibiotics, antibodies or
enzymes. Bio-processes often involve a processing step called fermentation.
Fermentation consists in placing the living organisms together with nutrients
in an appropriate environment where temperature, pressure and oxygen con-
tent are controlled so that their metabolism produces the expected material.
These biochemical reactions result in the formation of many undesired by-
products. Therefore, after the fermentation is completed, it is necessary to
carry out recovery operations to separate the desired end product from the
other residues and isolate it in its pure form. Optimization of production
scheduling in such bio-processes have been studied e.g. in [32] for penicillin
production and in [33] for intra-cellular enzyme production.

In the considered case study, the production process comprises four pro-
duction stages: (1) fermentation step 1, (2) fermentation step 2, (3) broth

6

preparation, (4) recovery. The first step of fermentation consists in plac-
ing the microorganisms in a small tank (called a fermenter) where they start
growing and reproducing. The cells are then transferred in a larger fermenter,
containing previously sterilized nutrients and water. During this second step
of the fermentation, the cells continue to grow and multiply, while producing
the expected end product. When the fermentation is complete, the mixture of
cells, nutrients, residues and end product, called the broth, is transferred in a
preparation tank where it undergoes some transformations prior to recovery
operations. The final step is the recovery where the desired end product is
separated from the broth, using mainly filtration and purification techniques.

There is a variety of aspects that need to be considered when developing
scheduling models for the above specific batch process. The main features
are as follows:

1. This is a multi-product multi-stage sequential process. Production
is represented by a predefined number of fixed-size batches which have to
be processed under the same production flow according to similar recipes.
There are four production stages with several identical production units at
each stage. Recipes differ only with respect to the value of processing times
and production unit requirements.

2. There is no intermediate storage capacity so that after being processed
at a given stage, a batch is either transferred immediately to a production
unit in the next stage or must wait in the current production unit until one
becomes available at the next production stage. Moreover, waiting times
between processing stages are limited. More precisely, in the application
considered here, there are no-wait constraints between stages 1-2 and stages
2-3 and limited-wait constraints between stages 3-4.

3. There are some multiprocessor tasks at stage 3. Namely, depending
on its size, a batch may require simultaneously one or two preparation tanks
during the broth preparation.

4. There are sequence-independent setup and removal times at stages 1
and 2. Indeed, fermenters need to be sterilized and filled up with the appro-
priate cell culture medium prior to processing of a new batch and some clean-
ing operations are required in fermenters after the batch has been transferred
to the next production stage. Moreover, there also are sequence-independent
removal times at stage 3 due to the fact that during recovery operations, the
volume of a batch is progressively transferred from the preparation tanks to
the recovery unit. More precisely, the preparation tanks in which the batch
is processed remain occupied during its recovery and are freed only when the

7

filtration process for the entire batch has been completed.
5. The setup of a fermenter at stage 2 of the production process requires

a number of difficult manual operations to be carried out by the plant staff,
especially during the first period of setup. Due to manpower restrictions, it
is possible to start the setup of at most one fermenter in stage 2 during any
specified time period.

The batch scheduling problem can thus be stated as follows: given a set
of batches with specified due-dates, we seek to determine an assignment of
batches to units and a sequence of the processing of the batches in units at
each stage so that all operating constraints are satisfied and total weighted
tardiness is minimized. According to the α|β|γ notation used in [1] and
[3], the scheduling problem considered in the present paper can be noted:
FF4, ((PM (i))4i=1)|block, no− wait, sizej3, STSI , RSI |T

w
.

4. An exact solution approach

We now discuss a mathematical programming model to describe and solve
the batch scheduling problem stated in section 3. We assume here that time is
uniformly discretized, i.e. that the horizon is divided into planning periods
of identical duration and that events such as the beginning or the end of
the processing of a batch occur only at the beginning of a planning period.
Moreover, we make use of the fact that identical parallel production units are
available at each stage to reduce the model complexity. Namely, we do not
treat the detailed assignment of batches to units at each stage s but rather
use an aggregate representation of production capacity and consumption at
stage s. This yields the detailed MILP formulation described in the next
subsection.

4.1. MILP formulation

We wish to schedule production of a number of batches indexed b = 1...B
over a scheduling horizon divided into t = 1...T periods of identical duration.
Each batch is to be processed according to a production flow involving s =
1...S processing stages, with Us identical production units available at stage
s. We denote M the amount of available manpower.
Parameters relative to batch b are denoted as follows:
- DDb: due-date of batch b,
- wb: weight of batch b,
- kbs: number of units needed to process batch b at stage s (kbs > 1 for

8

multiprocessor tasks),
- ατ

bs: amount of manpower needed by batch b at stage s τ periods after the
beginning of setup operations for this batch,
- σbs: setup time required on the production units of stage s before batch b

can be transferred to stage s,
- πbs: production time of batch b at stage s,
- ρbs: removal time (due to cleaning or transfer operations) needed on stage
s after batch b has been transferred to stage s+ 1,
- δbs: maximum amount of time a batch can wait after completion of its
processing at stage s before being transferred to stage s+ 1.
We use the following binary decision variables:

ytbs =

{

1 if processing of batch b at stage s starts in period t

0 otherwise.

Using these notation, the batch scheduling problem can be formulated as
follows:

min

B
∑

b=1

wb

T
∑

t=DDb−πbs+1

(t+ πbS −DDb)y
t
bS (1)

T
∑

t=1

ytbs = 1 ∀b, ∀s (2)

B
∑

b=1

kbs

[

t+σbs
∑

τ=1

yτbs −

t−ρbs
∑

τ=1

yτb,s+1

]

≤ Us ∀s = 1...S − 1, ∀t (3)

B
∑

b=1

kbS

[

t+σbS
∑

τ=t−πbS−ρbS+1

yτbS

]

≤ US ∀t (4)

S
∑

s=1

B
∑

b=1

σbs+πbs+ρbs
∑

τ=1

ατ
bsy

t−τ+1+σbs

b,s ≤M ∀t (5)

ytbs +

t+πbs
∑

τ=1

yτb,s+1 ≤ 1 ∀b, ∀s, ∀t (6)

ytbs = yt+πbs

b,s+1 ∀(b, s) s.t. δbs = 0, ∀t (7)

ytbs +

T
∑

τ=t+πbs+δbs

yτb,s+1 ≤ 1 ∀(b, s) s.t. δbs > 0, ∀t (8)

9

ytbs ∈ {0, 1} ∀b, ∀s, ∀t (9)

The objective, minimizing the total weighted tardiness, is expressed by
(1). Constraints (2) ensure that processing of batch b at stage s starts only
once during the scheduling horizon. Constraints (3)-(4) are production ca-
pacity constraints: they state that the number of units required at stage s

in period t cannot be greater than the total number of units available Us.
Note that a batch b requires ks production units at stage s over the set of
periods between the beginning of setup operations (i.e. σbs periods before
its processing at stage s starts) and the end of removal operations (i.e. ρbs
periods after it has been transferred to stage s+1 or its processing at stage S
is finished). Constraints (5) ensure that, in each period, the total demand on
manpower is bounded by the available amount of manpower. Constraints (6)
guarantee that every batch b undergoes operations following the prescribed
recipe, i.e. that processing of batch b at stage s + 1 cannot begin before
processing at stage s is completed. Constraints (7) guarantee that no-wait
restrictions are respected. Similarly, (8) guarantee that the maximum wait-
ing time between operations at stages s and s + 1 is respected. The binary
character of variables ytbs is enforced by (9).

4.2. Valid inequalities

The formulation proposed in subsection 4.1 enables us to solve exactly
only small instances of the scheduling problems. A possible explanation for
this lies in the observation that the linear relaxation of (1)-(9) only provides
a poor approximation to the exact optimal integer solution values. In order
to circumvent this difficulty, we investigate a way of strengthening the formu-
lation based on the use of a new family of valid inequalities. More precisely,
we exploit a feature of the considered scheduling problem which has received
limited attention in the literature, namely the presence of limited-wait con-

straints, to derive the following valid inequalities.

Proposition 1
All solutions of (1)-(9) satisfy:

∀(b, s) s.t. δbs > 0, ∀(t1, t2) s.t. t2 ≥ t1
t2
∑

τ=t1

yτbs +

t1+πbs
∑

τ=1

yτb,s+1 +

T
∑

τ=t2+πbs+δbs

yτb,s+1 ≤ 1 (10)

10

Moreover, (10) can be interpreted as clique constraints associated with max-
imal cliques in an underlying incompatibility graph. �

Before proceeding to the proof, we briefly explain the idea underlying
(10). We consider a batch b at stage s where the waiting time before transfer
to stage s + 1 is assumed to be bounded by δbs. Inequalities (10) state that
starting the processing of batch b at stage s within the time interval [t1, t2]
is incompatible with starting the processing of batch b at stage s+ 1 before
period t1 + πbs or after period t2 + πbs + δbs. In other words, if the starting
date of processing of batch b at stage s is fixed within time interval [t1, t2],
there is a rather tight time window within which processing of batch b at
stage s+ 1 may start, namely [t1 + πbs + 1; t2 + πbs + δbs − 1].

Proof

We now provide the proof for proposition 1. We arbitrarily choose a batch
b and a stage s such that δbs > 0 as well as two time periods (t1, t2) s.t. t2 ≥ t1
and show that the corresponding inequality of type (10) is valid.
The proof relies on the fact that there are a number of explicit or implicit
binary exclusion constraints in formulation (1)-(9) which corresponds to the
edges of an underlying incompatibility graph.
We first derive from formulation (1)-(9) the following binary exclusion con-
straints:

ytbs + yτbs ≤ 1 ∀t, ∀τ (11)

ytb,s+1 + yτb,s+1 ≤ 1 ∀t, ∀τ (12)

ytbs + yτb,s+1 ≤ 1 ∀t s.t. t ≥ t1, ∀τ s.t. τ ≤ t1 + πbs (13)

ytbs + yτb,s+1 ≤ 1 ∀t s.t. t ≤ t2, ∀τ s.t. τ ≤ t2 + πbs + δbs (14)

Indeed, (11) and (12) are induced by (2), (13) are induced by (6) and (14)
by (8).
Now we consider the incompatibility graph G = (V,A) defined as follows:
- there is a node v = (s, t) ∈ V for each binary decision variable ytbs, t = 1..T
and a node v = (s+1, t) ∈ V for each binary decision variable ytb,s+1, t = 1..T .
- there is an edge a ∈ A between any two nodes if the corresponding decisions
are incompatible, i.e. if in system (11)-(14), there is a binary exclusion
constraint linking the corresponding decision variables.

11

A set C ⊂ V is called a clique if each pair of nodes in C is connected by
an edge. A maximal clique is a clique which is not properly contained in
another clique. Each maximal clique in G gives rise to a valid inequality
called a maximal clique constraint stating that the sum of corresponding
binary variables should be less than or equal to 1.
We consider the node set Cs = {(s, t1), ..., (s, t2)}: thanks to constraints (11),
we know that there is an edge between any two nodes of Cs, i.e. Cs is a clique.
Similarly, the node set Cs+1 = {(s+1, 1), ..., (s+1, t1+πbs), (s+1, t2+πbs+
δbs), ..., (s+ 1, T)} is a clique (see constraints (12)).
We first show that the node set Cs ∪ Cs+1 is a clique.
Namely, let v = (s, τ), τ ∈ [t1; t2] be an arbitrarily chosen node in Cs and
v′ = (s + 1, θ), θ ∈ [1; t1 + πbs] ∪ [t2 + πbs + δbs;T] be an arbitrarily chosen
node in Cs+1:
- either θ ∈ [1; t1 + πbs] and there is an edge between v and v′ thanks to
constraints (13),
- or θ ∈ [t2 + πbs + δbs;T] and there is an edge between v and v′ thanks to
constraints (14).
Thus, there is an edge between any pair of nodes (v, v′) such that v ∈ Cs and
v′ ∈ Cs+1: Cs ∪ Cs+1 is a clique.
We now show that the node set Cs ∪ Cs+1 is a maximal clique. Namely, let
us consider a node w not included in Cs ∪ Cs+1:
- either w = (s, τ) with τ < t1: Cs ∪ Cs+1 ∪ {w} is not a clique as w is not
linked to node (s+ 1, τ + πbs + 1) which belongs to Cs ∪ Cs+1,
- or w = (s, τ) with τ > t2: Cs∪Cs+1∪{w} is not a clique as w is not linked
to node (s+ 1, τ + πbs + δbs − 1) which belongs to Cs ∪ Cs+1,
- or w = (s+1, τ) with τ ∈ [t1+πbs+1; t2+πbs+1]: Cs∪Cs+1∪{w} is not a
clique as w is not linked to node (s, τ − πbs − 1) which belongs to Cs ∪Cs+1,
- or w = (s+1, τ) with τ ∈: [t1+πbs+δbs−1; t2+πbs+δbs−1]: Cs∪Cs+1∪{w}
is not a clique as w is not linked to node (s, τ − πbs − δbs + 1) which belongs
to Cs ∪ Cs+1.
As a consequence, Cs ∪ Cs+1 is not contained in another clique, i.e. it is a
maximal clique providing the multiple exclusion constraint (10). �

We note that the maximality property is important since this guarantees
that inequalities (10) are the strongest possible clique constraints based on
(11)-(14). The computational results displayed in section 5 will confirm that
significant strengthening of the linear relaxation is obtained when adding
these constraints to the model.

12

4.3. Cut & Branch algorithm

The number of valid inequalities of type (10) grows very fast with prob-
lem size. Namely, for each batch b and each stage s such that δbs > 0, there
are 2T valid inequalities of type (10). Therefore, it is not possible to include
all of them in the formulation. They can however be generated as needed
according to a cutting-plane strategy. This is what we did in our implemen-
tation of the solution procedure. More precisely, we devised the following
cutting-plane algorithm (CPA) which we use at the root node of the Branch
& Bound search tree to generate violated valid inequalities of type (10) and
add them to the initial formulation (1)-(9).

Algorithm (CPA)

Step 1. Solve the linear relaxation of the problem and denote ỹ the
optimal solution of the relaxed problem.

Step 2. For each batch b and each stage s such that δbs > 0,
- for t1 = 1..T , for t2 = 1...T , compute:

LHS(t1, t2) =
∑t2

τ=t1
ỹτbs +

∑t1+πbs

τ=1 ỹτb,s+1 +
∑T

τ=t2+πbs+δbs
ỹτb,s+1.

- let nc = 0 and test = 1.

- while nc < K and test = 1,
- look for V max = LHS(tmax

1 , tmax
2) = max(t1,t2)LHS(t1, t2).

- if V max > 1,
1) add the valid inequality corresponding to (tmax

1 , tmax
2) to

formulation (1)-(9).
2) let LHS(tmax

1 , τ) = LHS(τ, tmax
2) = 0 for τ = 1...T .

3) let nc = nc+ 1.
- else, let test = 0.

Step 3. If no violated inequalities are found in step 2, stop. Otherwise
go back to step 1.

Algorithm (CPA) is intended to generate at each iteration the K most
violated inequalities of type (10) for each batch b and each stage s such that
δbs > 0. However, preliminary computational experiments showed that, if
nothing is done to prevent it, there is a rather high probability that a large
number of similar cutting planes will be generated. This is explained by
the fact that a valid inequality of type (10) is often violated by the current

13

continuous solution due to the values of a small subset of the T + δbs − 1
variables involved in its expression.

For instance, we often have the case where, for the valid inequality corre-
sponding to (tmax

1 , tmax
2), LHS(tmax

1 , tmax
2) > 1 due to the fact that

∑tmax
2

τ=tmax
1

yτbs+
∑tmax

1
+πbs

τ=1 yτb,s+1 > 1 and
∑T

τ=tmax
2

+πbs+δbs
yτb,s+1 = 0. In this situation, any

valid inequality (tmax
1 , θ2) such that θ2 > tmax

2 will also be violated with a
value LHS(tmax

1 , θ2) = LHS(tmax
1 , tmax

2) and might belong to the K cutting-
planes generated during the current iteration of algorithm (CPA). This will
lead to the unnecessary generation of a large number of similar cutting planes,
each one having a rather low contribution to closing the integrality gap.

To avoid this, during a given iteration of (CPA), if a violated valid in-
equality is generated for the pair (t1, t2), we prevent the algorithm from
generating any other cutting plane corresponding to (t1, τ) or (τ, t2). This is
achieved by setting to 0 the corresponding entries in table LHS.

5. Computational results

We discuss the results of some computational experiments carried out to
evaluate the impact of the formulation enhancements proposed in subsection
4.2 and to estimate the size of the largest instances of the problem that could
be solved to optimality within reasonable computation time limit.

5.1. Test instances

We use the data from our industrial case study to create instances of
various size.

Time is discretized in periods of identical duration (typically 4 hours)
and the scheduling horizon comprises 2 to 4 weeks. The plant configuration
is the same for all instances: there are S = 4 processing stages with U1 = 2,
U2 = 5, U3 = 5 and U4 = 1.

The plant produces P = 6 different kinds of end products, i.e. there are
P = 6 different recipes. Each recipe p corresponds to a given set of values
for setup, processing and removal times (σs, πs, ρs) as well as for production
unit requirement (κs). Table 1 provides a detailed description of the recipes
where all time values are expressed as integer multiples of time periods.

There are no-wait constraints after stages 1 and 2 (i.e. ∀b, δb1 = δb2 =
0) and limited-wait constraints after stage 3 (i.e. ∀b, δb3 = 9). Manpower
availability is restricted to M = 1 team and manpower consumption arises

14

Table 1: Data relative to recipes

p σ1 π1 ρ1 κ1 σ2 π2 ρ2 κ2 σ3 π3 ρ3 κ3 σ4 π4 ρ4 κ4

1 2 5 1 1 3 24 2 1 0 3 4 2 0 4 0 1
2 1 1 1 1 2 4 2 1 0 2 2 1 0 2 0 1
3 2 5 1 1 2 19 2 1 0 2 2 2 0 2 0 1
4 2 2 1 1 2 15 3 1 0 2 2 1 0 2 0 1
5 2 2 1 1 3 13 2 1 0 2 4 1 0 4 0 1
6 2 2 1 1 3 15 2 1 0 2 2 1 0 2 0 1

only during the first period of setup operations at stage 2 of the process. We
thus have: ατ

bs = 1 if s = 2 and τ = 1, ατ
bs = 0 otherwise.

The instances tested differ with respect to the following characteristics:

• the length of the scheduling horizon: T ∈ {100, 120, 140, 160}.

• the number of batches involved in the scheduling problem: B ∈ {20, 25,
30, 35}.

• the batch parameters. For each batch b, a recipe p is randomly cho-
sen from a discrete uniform DU(1, P) distribution. Due-dates occur
every 20 periods, i.e. ∀b,DDb ∈ {20, 40, 60, 80, 100, 120, 140, 160}. For
each batch b, a due-date DDb is randomly chosen from a discrete uni-
form distribution over the set of possible due-dates and a weight wb is
randomly chosen from a discrete uniform DU(1, 2) distribution.

We generated two sets of instances:

• a set (set A) of 20 instances of various size to get a first evaluation of
the proposed solution approach,

• a larger set (set B) of 50 instances involving 30 batches and 140 periods
to confirm the conclusions of the first part of the computational study.

Table 2 provides for each set of instances the number of planning pe-
riods in the scheduling horizon T , the number of batches B as well as the
resulting number of binary variables V ar and constraints Const in the initial
formulation (1)-(9).

15

Table 2: Data relative to instances
Instances T B Var Const
A1-A5 100 20 4000 4580
A6-A10 120 25 6000 6640
A11-A15 140 30 8400 9340
A16-A20 160 35 11200 12320
B1-B50 140 30 8400 9340

5.2. Results for set A instances

We solved each instance of set A with a standard MILP software (CPLEX
11.1) using either the initial formulation (1)-(9) or the strengthened formula-
tion obtained after running algorithm CPA. All tests were run on a Pentium
4 (2.8 GHz) with 504 Mo of RAM, running under Windows XP. We used
the default settings of CPLEX MILP solver. This means that some cutting
planes, among which are clique cuts, cover cuts and Gomory fractional cuts,
are added automatically to the model.

The computational results obtained with the two formulations are dis-
played in table 3. We provide:

• CutCPA: the number of violated valid inequalities of type (10) gener-
ated by algorithm CPA and added to the strengthened formulation.

• CutSTD: the number of cutting-planes generated by CPLEX standard
cutting-plane algorithm at the root node of the Branch and Bound tree.

• Gap0: the initial gap, i.e. the relative difference between the lower
bound provided by the linear relaxation of the problem and the best
integer solution found after 4 hours of computation. We use the value
of the lower bound obtained after the cutting-plane generation carried
out by CPLEX algorithm at the root node of the Branch & Bound tree
has stopped.

• Nodes: the number of nodes of the search tree explored before a guar-
anteed optimal solution is found or the time limit of 4 hours is reached.

• CPUIP : the time in seconds needed to find a guaranteed optimal solu-
tion when one has been found. CPUIP comprises the time needed to
strengthen the formulation using algorithm CPA.

16

• GapF : the gap between the best lower bound found and the best integer
feasible solution obtained after 4 hours of computation.

Results from table 3 show that using the strengthened formulation enables
us to significantly enhance the efficiency of the Branch and Bound procedure
embedded in CPLEX. Namely:

• for small size instances (I1-I10), the average computation time to obtain
a guaranteed optimal solution is significantly reduced from 2368s with
the initial formulation to 850s with the strengthened formulation.

• for industrial size instances (I11-I20), the number of instances for which
a guaranteed optimal solution could be found within 4 hours of com-
putation is increased from 4 with the initial formulation to 7 with the
strengthened formulation. Moreover, the average remaining gap after
4 hours of computation is decreased from 6.5% with the initial formu-
lation to 2.7% with the strengthened formulation.

The main explanatory factor for this lies in the observation that the lower
bounds provided by the strengthened formulation appears to be stronger that
the ones provided by the initial formulation. Indeed, the initial gap Gap0 is
on average 8.5% with the initial formulation as compared to 6.1% with the
strengthened formulation. As a consequence, the number of nodes explored
by the Branch and Bound procedure before a guaranteed optimal solution is
obtained or the computation time limits are reached is divided on average
by a factor of 4.6 (from 3010 to 655).

However, in 5 out of the 20 instances of set A (A4, A5, A6, A14 and
A20), the computation time needed to obtain a guaranteed optimal solution
is greater with the strengthened formulation than with the initial formula-
tion. This might be explained by the fact that the number of cutting planes
generated by algorithm CPA is much larger that the number of cutting planes
generated by the standard CPLEX algorithm. As a consequence, the linear
program to be solved at each node of the Branch & Bound tree is larger and
its resolution requires more time. In most cases, this increase of computation
time at each node of the Branch & Bound tree is compensated by a significant
decrease in the number of nodes to be explored before optimality is reached.
But for a small subset of instances (especially the smaller ones), this com-
pensation does not occur and the computation time with the strengthened
formulation is larger than with the initial formulation.

17

T
a
b
le

3
:
R
esu

lts
fo
r
set

A
in
sta

n
ces

Initial formulation Strengthened formulation
CutSTD Gap0 Nodes CPUIP GapF CutCPA CutSTD Gap0 Nodes CPUIP GapF

A1 172 8.0 1796 577 0 1508 8 6.5 434 493 0
A2 175 16.7 2460 1148 0 1258 9 14.1 817 987 0
A3 42 0 0 290 0 1292 33 0 0 289 0
A4 109 0 0 119 0 1349 16 0 0 409 0
A5 247 1.0 3 120 0 1621 5 0.5 0 166 0
A6 95 0 0 928 0 1284 17 0 0 1391 0
A7 244 7.3 3494 3864 0 2000 12 5.9 684 2162 0
A8 199 3.1 469 790 0 1852 10 2.4 6 403 0
A9 202 2.0 472 3780 0 1573 13 1.4 24 512 0
A10 374 4.4 27554 12063 0 2416 11 2.9 836 1692 0
A11 214 4.5 1059 8342 0 2253 33 2.9 114 1741 0
A12 598 6.3 7421 14400 5.2 3766 4 1.8 1879 5833 0
A13 249 3.5 207 1600 0 2293 14 2.2 1 559 0
A14 138 48.5 1096 3323 0 1208 16 47.8 862 5472 0
A15 401 12.4 9103 14400 11.6 2507 7 11.9 2950 14400 9.4
A16 451 8.0 2848 14400 7.4 4418 18 2.6 3703 8143 0
A17 679 14.6 1554 14400 13.5 4720 9 12.1 373 14400 11.9
A18 411 17.6 618 14400 16.8 3115 15 5.8 420 14400 5.2
A19 334 11.1 60 14400 10.8 2323 27 1.5 5 7314 0
A20 327 0 0 12356 0 2608 34 0 10 12765 0

18

To make sure that the formulation strengthening obtained thanks to algo-
rithm CPA has a statistically significant positive impact on the computation
time and solution quality, we carried out additional computational experi-
ments. We considered a larger set of industrial size instances and used a
statistical test to check wether the observed improvements are significant.

5.3. Results for set B instances

The second set of instances comprises 50 industrial size instances involv-
ing 30 batches and 140 periods. The results obtained with the initial and
strengthened formulations are displayed in Table 4 and 5. We first provide:

• #Feas : the number of instances for which a feasible solution could be
obtained within 4 hours of computation,

• #Opt : the number of instances for which a guaranteed optimal solution
could be obtained within 4 hours of computation.

Moreover, for each instance, we computed:

• ∆Gap0 = Gap0(IF)−Gap0(SF) the difference between the initial gaps
obtained with the initial and the strengthened formulations,

• ∆Nodes = Nodes(IF)−Nodes(SF) the difference between the num-
bers of nodes explored with the initial and the strengthened formula-
tions,

• ∆CPUIP = CPUIP (IF)−CPUIP (SF) the difference between the com-
putation times with the initial and the strengthened formulations,

• ∆GapF = GapF (IF)−GapF (SF) the difference between the final gaps
obtained with the initial and the strengthened formulations.

For each of these performance measures, we provide in table 5 the mean,
minimum and maximum values.

Results from table 4 confirm that using the strengthened formulation
enables us to significantly enhance the efficiency of the Branch and Bound
procedure embedded in CPLEX. Namely:

• the number of instances that could be solved to proven optimality is
doubled while using the strengthened formulation,

19

Table 4: Results for set B instances
Initial formulation Strengthened formulation

#Feas 45 49
#Opt 10 20

Table 5: Results for set B instances
Mean value Min/Max values

∆Gap0 11.9 [-0.05; 98.6]
∆Nodes 2952 [0; 11345]
∆CPUIP 3043 [-2150;13181]
∆GapF 12.45 [-1.61;100]

• the mean decrease in computation time (CPUIP) obtained while using
the strengthened formulation is 3043s,

• the mean decrease in the final gap (GapF) obtained while using the
strengthened formulation is 12.45%.

Moreover, we conducted a t-test (see e.g. [34]) to check whether the
observed mean values of ∆CPUIP and ∆GapF are statistically significantly
different from 0.

The results of these tests indicate that:

• the mean decrease in the computation time obtained while using the
strengthened formulation belongs to the interval [1834; 4252] with a
95% probability.

• the mean decrease in the final gap obtained while using the strength-
ened formulation belongs to the interval [4.9%; 19.9%] with a 95%
probability.

This confirms that the use of algorithm CPA to strengthen the initial
formulation leads to a statistically significant improvement of the computa-
tional efficiency of the Branch and Bound procedure embedded in CPLEX
solver.

20

6. Conclusion

We investigated a scheduling problem arising from a bio-process industry.
The problem is a complex variant of the hybrid flow-shop problem in which
there are multiprocessor tasks, zero buffer capacity, limited waiting time be-
tween consecutive operations of a job and positive setup and removal times.
We proposed a mixed-integer linear programming formulation based on a
discrete time representation. We then derived a new family of strong valid
inequalities exploiting the fact that a limited waiting time is imposed on jobs
between two successive production stages and used these valid inequalities to
devise a Cut & Branch algorithm. The results of our computational experi-
ments confirm that the proposed method consistently provides good feasible
schedules for industrial size instances with a reasonable computation effort.

Among the possible research directions suggested by the present work, it
might be worth investigating the development of a heuristic solution approach
so as to be able to provide good feasible schedules for industrial size instances
within a shorter computation time.

References

[1] Ruiz R, Vazquez-Rodriguez J. The hybrid flow shop scheduling problem.
European Journal of Operational Research 2010;205:1–18.

[2] Ruiz R, Serifoglu F, Urlings T. Modeling realistic hybrid flowshop
scheduling problems. Computers & Operations Research 2008;35:1151–
75.

[3] Ribas I, Leisten R, Framinan J. Review and classification of hybrid flow
shop scheduling problems from a production system and a solutions pro-
cedure perspective. Computers & Operations Research 2010;37:1439–54.

[4] Oguz C, Ercan M, Edwin Cheng T, Fung Y. Heuristic algorithms for
multiprocessor task scheduling in a two-stage hybrid flow-shop. Euro-
pean Journal of Operational Research 2003;110:390–403.

[5] Ying K, Lin S. Scheduling multistage hybrid flowshops with multiproces-
sor tasks by an effective heuristic. International Journal of Production
Research 2009;13(1):3525–38.

21

[6] Sawik T. An exact approach for batch scheduling in flexible flow lines
with limited intermediate buffers. Mathematical & Computer Modelling
2002;36:461–71.

[7] Wardono B, Fathi Y. A tabu search algorithm for the multi-stage parallel
machine problem with limited buffer capacities. European Journal of
Operational Research 2004;155:380–401.

[8] Wang X, Tang L. A tabu search heuristic for the hybrid flowshop
scheduling with finite intermediate buffers. Computers & Operations
Research 2009;36:907–18.

[9] Grabowski J, Pempera J. Sequencing of jobs in some production system.
European Journal of Operational Research 2000;125(3):535–50.

[10] Wang Z, Xing W, Bai F. No-wait flexible flowshop scheduling with
no-idle machines. Operations Research Letters 2005;33(6):609–14.

[11] Yang D, Chern M. A two-machine flowshop scheduling problem with
limited waiting time constraints. Computers & Industrial Engineering
1995;28(1):63–70.

[12] Su L. A hybrid two-stage flowshop with limited waiting time constraints.
Computers & Industrial Engineering 2003;47:409–24.

[13] Akkerman R, van Donk D, Gaalman G. Influence of capacity- and time-
constraint intermediate storage in two-stage food production systems.
International Journal of Production Research 2007;45(13):2955–73.

[14] Low C. Simulated annealing heuristic for flow shop scheduling problems
with unrelated parallel machines. Computers & Operations Research
2005;32:2013–25.

[15] Kis K, Pesch E. A review of exact solution methods for the non-
preemptive multiprocessor flowshop problem. European Journal of Op-
erational Research 2005;164:592–608.

[16] Floudas C, Lin X. Continuous-time versus discrete-time approaches for
scheduling of chemical processes: a review. Computers & Chemical
Engineering 2004;28:2109–29.

22

[17] Mendez C, Cerda J, Grossmann I, Harjunkoski I, Fahl M. State-of-the-
art review of optimization methods for short-term scheduling of batch
processes. Computers & Chemical Engineering 2006;30:913–46.

[18] Sundaramoorthy A, Maravelias C. Modeling of storage in batching and
scheduling of multistage processes. Computers & Chemical Engineering
2006;30:913–46.

[19] Moon S, Park S, Kook Lee W. Mixed-integer linear programming model
for short-term scheduling of a special class of multipurpose batch plants.
Industrial & Engineering Chemistry Research 1999;38:2144–50.

[20] Lee D, Vassiliadis V, Park J. List-based treshold-accepting algorithm
for zero-wait scheduling of multiproduct batch plants. Industrial & En-
gineering Chemistry Research 2002;41:6579–88.

[21] Liu Y, Karimi I. Scheduling multistage batch plants with parallel
units and no interstage storage. Computers & Chemical Engineering
2008;32:671–93.

[22] Liu B, Wang L, Qian B, Jin Y. An effective hybrid particle swarm op-
timization for batch scheduling of polypropylene processes. Computers
& Chemical Engineering 2010;34:518–28.

[23] Kondili E, Pantelides C, Sargent R. A general algorithm for short-
term scheduling of batch operations-I. MILP forumation. Computers &
Chemichal Engineering 1993;17(2):211–27.

[24] Shah N, Pantelides C, Sargent R. A general algorithm for short-term
scheduling of batch operations-II. Computational issues. Computers &
Chemical Engineering 1993;17(2):229–44.

[25] Blomer F, Gunther H. LP-based heuristics for scheduling chemi-
cal batch processes. International Journal of Production Economics
2000;38(5):1029–2051.

[26] Maravelias C, Grossmann I. Minimization of the makespan with a
discrete-time state-task network formulation. Industrial & Engineering
Chemistry Research 2003;42:6252–7.

23

[27] Burkard R, Hatzl J. Review, entensions and computational comparison
of MILP formulations for scheduling of batch processes. Computers &
Chemical Engineering 2005;29:1752–69.

[28] Moon S, Hrymak A. New MILP models for scheduling of multiproduct
batch plants under zero-wait policy. Industrial & Engineering Chemistry
Research 1996;35:3458–69.

[29] Lamba N, Karimi I. Scheduling parallel production lines with resource
constraints. 1. Model formulation. Industrial & Engineering Chemistry
Research 2002;41:779–89.

[30] Cera J, Henning G, Grossmann I. A mixed-integer linear program-
ming model for short-term scheduling of single-stage multiproduct batch
plants with parallel lines. Industrial & Engineering Chemistry Research
1997;36:1695–707.

[31] Mendez C, Cerda J. Optimal scheduling of batch plants satisfying mul-
tiple product orders with different due-dates. Computers & Chemical
Engineering 2000;24:2223–45.

[32] Yuan J, Xue Y, Hu K, Wu H, Jia Q. On-line application oriented optimal
scheduling for penicillin fed-batch fermentation. Chemical Engineering
& Processing 2009;48:651–8.

[33] Samsatli N, Shah N. An optimization based design procedure for bio-
chemical processes. Part II: detailed scheduling. Food and Bioproducts
Processing: Transactions of the Institution of Chemical Engineers, Part
C 1996;74(4):232–42.

[34] Crawley M. Statistics: an introduction using R. Chichester, UK: John
Wiley & Sons; 2005.

24

