N

N

A Preference-Based Approach to Spanning Trees and
Shortest Paths Problems

Patrice Perny, Olivier Spanjaard

» To cite this version:

Patrice Perny, Olivier Spanjaard. A Preference-Based Approach to Spanning Trees and Short-
est Paths Problems. European Journal of Operational Research, 2005, 162 (3), pp.584-601.
10.1016/j.ejor.2003.12.013 . hal-01170393

HAL Id: hal-01170393
https://hal.science/hal-01170393v1
Submitted on 10 Jul 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01170393v1
https://hal.archives-ouvertes.fr

A preference-based approach to
spanning trees and shortest paths problems

Patrice Perny #, Olivier Spanjaard P

aLIP6, Univ. Paris VI, J place Jussieu, 75252 Paris Cedex 05, France
YLAMSADE, Univ. Paris IX, Place du M® De Lattre de Tassigny, 75775 Paris Cedex 16, France

Abstract

Comparison of solutions in combinatorial problems is often based on an additive cost function inducing
a complete order on solutions. We investigate here a generalization of the problem, where preferences
take the form of a quasi-transitive binary relation defined on the solutions space. We first propose
preference-based search algorithms for two classical combinatorial problems, namely the preferred
spanning trees problem (a generalization of the minimum spanning tree problem) and the preferred
paths problem (a generalization of the shortest path problem). Then, we introduce a very useful
axiom for preference relations called independence. Using this axiom, we establish admissibility results
concerning our preference-based search algorithms. Finally, we address the problem of dealing with
non-independent preference relations and provide different possible solutions for different particular
problems (e.g. lower approximation of the set of preferred solutions for multicriteria spanning trees
problems, or relaxation of the independence axiom for interval-valued preferred path problems).

Key words: Preference Modelling, Combinatorial Optimization, Preference-based search,
Multiobjective Optimisation.

1 Introduction

In combinatorial optimization, the quality of a potential solution is usually evaluated by a
single criterion, mostly a cost function to be minimized, defined as the sum of the costs of its
elementary components (e.g. in a shortest path problem, the value of a path is often seen as the
sum of the values of its arcs). This particular feature makes it possible to design constructive
search algorithms based on local optimizations and implicit enumeration for identifying an
“optimal” solution. However, in practical situations, preferences over solutions are not always
representable by such a numerical cost function and the traditional search algorithms do not
fit.

Indeed, even if preferences can be represented by a numerical cost function, the quality of each
potential solution is not always decomposable as a function of the quality of its components.

Preprint submitted to Elsevier Science 19 February 2003

Throughout this paper, we will see several examples in which the value of a path in a graph
depends on the whole set of arcs composing the path and cannot be simply defined as a
combination of the value of its arcs. Moreover, even if the value of a path is defined as a
function of the value of its arcs, the function is not necessarily additive (e.g when the valuation
represents risk levels attached to each arcs, the value of a path may be the minimum of the
values of its arcs).

Moreover, in many practical applications, we have to deal with imprecision or uncertainty about
the evaluation of elementary decisions and, consequently, in the evaluation of the quality of
a feasible solution. Consider, for example, the case where the arcs of a graph are valued by
intervals of possible costs. Assuming the costs are additive, the value of a path becomes itself
an interval. Hence, we might decide that a path is at least as good as another path when the
minimal possible cost of the former does not exceed the maximal possible cost of the latter.
Such a comparison method defines a semi-order preference structure (see [28]) on the set of
paths of the graph. Such preferences are quite natural but not transitive (due to intransitivity
of the indifference) and therefore not representable by the traditional model based on a single
criterion.

Finally, the relative quality of the potential solutions may not even be representable by a
single criterion. In many cases, multiple viewpoints must be considered (diverging opinions
of different experts, conflicting information provided by various sensors, multi-attribute or
multicriteria evaluation of the quality of the solution) to decide whether a solution is better
than another. Due to the potentially conflicting nature of these points of view, some pairs
of feasible solutions remain incomparable (see e.g. the notion of dominance in multicriteria
optimization) and the preference model is not reducible to a single criterion.

In all these examples, we have to deal with a preference structure over potential solutions that
could not be represented by an additive scalar cost function to be minimized. Several works
have already been done to provide solutions in such contexts, especially in the framework
of multicriteria decision making. For example, in combinatorial optimization, several papers
deal with the search of non-dominated solutions (Pareto solutions) in multicriteria problems.
Among others, we could mention [20,23] for multicriteria shortest paths problems and [6,33,19]
for multicriteria spanning trees problems. To go further, additional search algorithms have been
proposed to focus on best compromise solutions in multicriteria combinatorial optimization,
see for instance [38,16,15]. Besides these studies, algorithms for the search of robust solutions in
combinatorial optimization problems (search for an adequate solution when multiple scenarios
are considered) have been proposed in [21] and [40].

Similar problems have also been investigated in the framework of artificial intelligence and
several heuristic search algorithms have been proposed. Let us mention, for example, the mul-
ticriteria versions of the A* algorithm proposed in [35,15], or the algorithms proposed for game
tree search with partially ordered evaluations in [27,9].

Finally, some other works focus on the search of best solutions when costs are qualitative. For
example, we could mention [14,3,32] for minimal trees problem, [2] for minimal paths problem,

and [7] for lexicographic bottleneck optimization.

All these papers aim at proposing preference-based search algorithms for combinatorial prob-
lems with non-conventional preferences (i.e. preferences which are not representable by a single
additive cost function). However, until now, the preference-based search problem formulated at
this very general level has not received much attention ' . The goal of this paper is to introduce
a general framework for preference-based search in combinatorial problems and to investigate
the possibility of obtaining the preferred solutions. After introducing a general formalism for
preference-based combinatorial problems (Section 2), we propose various general algorithms
for the search of the preferred solutions in combinatorial problems (Section 3). Then we inves-
tigate the ability of these algorithms to determine the set of preferred solutions. This lead us to
introduce an independence axiom characterizing a subclass of preferences structures on which
our algorithms are operational (Section 4). We finally investigate problems where preferences
do not satisfy the independence axiom (Section 5) and show the potential use of our algorithm
to approximate the desired result.

2 A preference-based framework

Let us first recall the following definitions about binary relations.

Definition 1 From any binary relation - on a set E, the asymmetric and symmetric parts of
> are respectively defined on E by:
Ve, € E, (e>¢€) < ((e

¢') and not(e' 7~ e))
/

z
Z€) and (¢ 7 e))

Ve, € E, (e~¢€) < ((e

Definition 2 For any binary relation 7 defined on a set E, the set of maximal elements is
defined by:
M(E,z)={e€ E | Ve e€FE notle>e)}

Moreover, for any X C E, the set M(X,) will be called the set of maximal elements in X.
Note that M (X,) must not be confused with M (F, =) N X.

In this paper, 7~ represents a weak-preference relation and therefore > is the associated strict
preference relation. The proposition e 7~ ¢’ means e is at least as good as € whereas e > €
means e is strictly preferred to ¢’. In such a context, for any X C E, the elements of M (X,)
are said to be = -efficient in X.

1 except in algebraic combinatorial optimization (see e.g. [42,4]), but the link with decision theory

has not been stated explicitly.

Definition 3 A relation = defined on a set T is said to be:

- reflexive iff Ve € E, e 7 e

- complete iff Ye,e' € E, e =€ ore e

- antisymmetric iff Ve,e' € E, ((e 7 €') and
- transitive iff Ve,e',e" € E, ((ezz€') and (e
- quasi-transitive iff > is transitive

=~~~
m\
Y
~—
~—
—

™

I

®,
—

Definition 4
- A partial order is a reflezive, antisymmetric and transitive binary relation? .
- A complete order is a reflexive, antisymmetric, transitive and complete binary relation.

Finally, the following notion will be useful.

Definition 5 Let G = (V,>) be a graph representing a partial order >. We call here topolog-
ical sorting of G any strict complete order =' on V' such that ='D ».

We introduce now the main issue of the paper:

Preference-based graph problems. The basic ingredients of a preference-based graph prob-
lem IT are the set of instances or input objects (each instance including the definition of a graph
and a preference relation over the set of edges), the set of feasible solutions or output objects
associated with any instance, and the goal of the problem. More formally, any preference-based
graph problem II is defined using the following components:

e 7 the set of instances of II;

Given I € Z, (V(I), E(I)) is a finite connected graph (V' (I) representing the set of vertices
and F(I) the set of edges or arcs);

Given I € Z, §(I) C P(E(I)) is the set of feasible solutions of I;

Given I € 7, 7= (I) is a preference relation defined on the power set P(E(I));

the goal (goal): we want to determine one or the whole set of maximal feasible solutions
defined by M(S(I), 7, (I)).

Thus, a preference-based graph problem II is characterized by a four-tuple (Z,S, =, goal) 3.

Many classical graph problems could be casted in that framework, e.g. search of optimal trees,
paths, hamiltonian cycles, cuts, matchings... In this paper we focus on preferred spanning trees
problems and preferred paths problems which are defined as follows:

7-ST (PREFERRED SPANNING TREES)

Input objects: A finite connected graph G = (V, E) and a preference relation - on P(FE);
Output objects: The set T of spanning trees on G}

Goal: We want to determine the whole set M(T, 7).

2 Such relations are often denoted > since their symmetric part consists only in reflexivity.
3 For the sake of simplification, we work on a preference relation on P(E(I)). Obviously, we could
also work with a preference relation on valuations as well.

7-P (PREFERRED PATHS)

Input objects: A finite connected digraph G = (V, E) without circuit, two vertices s and ¢
included in V and a preference relation - on P(FE).

Output objects: The set P of paths from s to t;

Goal: We want to determine the whole set M (P,).

Note that the classical minimum spanning tree and shortest path problems are particular
instances of ~-ST and ~—-P respectively, obtained for a preference defined by: VA, B C E, A 7
B <= Y cav(e) <Y .cpv(e) where v: E — R is a cost function.

In the general case, =-ST is obviously intractable® since we can assume the preference relation
>~ to be empty. In such a case, all the spanning trees of the graph are 7~ -efficient. Moreover, as
shown by Cayley [5], a complete graph with n vertices has n" 2 spanning trees. This shows the
intractability of 7Z-ST (since the output cannot be described by an expression having length
bounded by a polynomial function of the input length). Concerning 7--P, note that an instance
of that problem is the bicriteria shortest paths problem which is known as intractable [20]. As
a consequence, --P is also intractable.

3 The algorithms

We propose here preference-based counterparts of standard algorithms used for minimal span-
ning tree problems and shortest path problems. We will investigate the correctness of these
algorithms in the next section. The two following algorithms are designed to determine the
set of 7—-efficient spanning trees of a connected graph on n vertices. They realize a width-first
search directed by the preference relation 7.

Our first algorithm (Algorithm 1) consists in a generalization of the Kruskal algorithm (see e.g.
[18]) where, instead of choosing one edge at each step, we test all ~-efficient edges among the

non-chosen edges which do not create cycles. Let T\ = (V(Ti(t)), E(Ti(t))) be the i subtree
enumerated in the algorithm where V(T1") is the set of vertices and E(T\") is the set of edges.
Let ¢ indicate that it contains ¢ edges and I denote the set containing the indexes of such
subtrees. When all the subtrees of size ¢ are generated, if there exists two indexes i # j € I®)

such that Ti(t) = Tj(t) then 1) = 1\ {;}.

Our second algorithm (Algorithm 2) consists in a generalization of the Prim algorithm (see
e.g. [18]), where, instead of choosing one edge at each step, we test all ~-efficient edges in the
cocycle linking covered vertices and non-covered vertices. In order to present more formally
the Prim-like algorithm we introduce additional notations. For any X C V, Q(X) denotes the
cocycle {(v,w) € E, v € X and w € V' \ X}. The set V(e) denotes the endpoints of e for any
e € E. Without loss of generality, the initial vertex is denoted v; € V.

4 Following [17], we shall refer to problems as intractable if it is so hard that no polynomial time
algorithm can possibly solve it

Algorithm 1 Kruskal like algorithm for =-ST
Initialization: 1 « {1}; B(T\") « 0; j « 1;
Fort <+ 1ton—1do
IM «— f;
For every i € IV do
For every e € M(E \ E(Ti(tfl)), ~) such that E(Tz-(tfl)) U {e} is without cycle

do
J <_(]
E(T e E(“Dyu {e}:
e Ju {J}
end
end
Eliminate the duplicates in the sequence (T" | i € I®);
end
Output: {7V | eI},
end
end

Algorithm 2 Pm’m like algorithm for =-ST
Initialization: I© < {1}; T\ < ({v1},0); j + 1;
Fort < 1ton—1do
I® «—

For any i € 11 do
For any edge e € M(Q(V(Ti(t*l))), ~)

/ <_é (t-1)

V(T; <— V(T) U Vi(e);

E(T(>) e E(T V) U {e}:

IV« 19U {j};
end
end
Eliminate the duplicates in the sequence (T” | i € I®);
end
Output: {T"~" | i€ ™V},
end

Our third algorithm is designed to determine the set of ~-efficient paths from s to ¢ in a
connected acyclic digraph. It consists in a generalization of the Bellman algorithm (see e.g.
[18]), where at each step and at each vertex v one keeps all ZZ-efficient paths from s to v in a
label-set L(v). Denoting I'"!(v) = {w € V, (w,v) € E} the set of precedents of v, the algorithm
writes as follows:

Algorithm 3 Bellman-like algorithm for =—-P
L(s) <+ 0;
For any unlabelled vertex v for which all the previous are labelled do
L(U) — M(UwEI‘—l(v){P U (’U),U), P e L(’U))}, i):
end
Output: L(t);
end

4 The independence property

We investigate now under which conditions the above algorithms reach their goal. Consider
the graph pictured on the left upper corner of Figure 1 with 3 colored edges (Blue, Yellow,
Red). Assume we want to use Algorithm 1 to determine the --efficient spanning trees of this
graph, for the preference relation - defined on subsets of colors® and pictured on the left
side of Figure 2 (case 1). On this preference graph, every vertex represents a subset of colors
and every arc represents a strict preference of type A > B between two subsets of colors A
and B. Note that this preference relation is strictly monotonic with respect to set inclusion
(i.e. A C Bimplies A = B for all subsets A, B). Since the only strict-preference that holds on
singletons is Blue > Yellow, the ~-efficient edges of the graph are the Blue one and the Red
one. Applying Algorithm 1, we get two Z-efficient trees which are {Blue, Yellow} and {Blue,
Red}. The complete search tree outputs {Blue, Yellow} and {Blue, Red} as pictured on the
right side of Figure 1. Note that this result is correct; we remark that we would obtain the
same search tree and the same result with Algorithm 2 starting from the starred vertex on
Figure 1.

Similarly, consider the colored graph pictured at the bottom of Figure 1 with 5 arcs. When
applying Algorithm 3 with the same preferences on colors to identify the 7~-efficient paths from
the leftmost vertex to the rightmost, we obtain the upper path as the preferred solution with
colors {Blue, Red} (the labels obtained at each step and storing the ~-efficient subpaths at
each intermediary vertex are represented by boxes above the vertices). Hence the path {Blue,
Red} is output by Algorithm 3, which is the right result in case 1.

However, in the general case, our preference-based search algorithms may lead to non 7--efficient
solutions. This can be easily shown by considering the preference relation pictured on the right
side of Figure 2 (case 2). It is clear that the outputs of Algorithms 1, 2 and 3 on the previous
problems would remain unchanged after substituting the preference relation of case 2 for the
initial one. Indeed, by definition, Algorithms 1 and 2 take only into account preferences on
singletons (note that such preferences are identical in case 1 and 2). Concerning Algorithm
3, the search is early conditioned by preferences on partial solutions (myopic view), which
explains the result. More precisely, the following change in the preference relation misleads the

5 The preference relation on subsets of arcs directly derives from preferences on subsets of colors.
For the sake of simplification, we use the latter instead of the former. Moreover, we mean a color to
indicate an edge.

R
Tree Problem Y

PNl
R
Path Problem \ »
Y /

Y

Fig. 1. Ilustration of the algorithms.

YBR YBR
\ /
YBYR>—{YR YB BR 4——LYR
f WX
B —» Y R B —p Y R
W W
] @
Casel Case?2

Fig. 2. Two preference relations.

algorithms:

{B} > {Y} and {B, R} > {Y, R} in case 1
whereas:

{B} = {Y} but {Y, R} > {B, R} in case 2

In case 1, the preference between {B} > {Y} remains unchanged by addition of {R} on both
sides of the inequality. This property is no longer true in case 2.

The above negative examples have been obtained from a non-complete and non-linear pref-
erence relation. We might think that these properties are involved in the malfunction of the
algorithms. However, even if the preference relation - induces a complete order on P(E), Al-
gorithms 1, 2 and 3 might lead to non 7-efficient solutions, as shown in the following examples:

Example 6 Let G be a complete graph with three vertices. Let a, b, ¢ be the edges of the graph.
Suppose that a = b > ¢ > {a,c} = {a,b} = {b,c} = {a,b,c}. Note that we have:

b > ¢ and however {a,c} > {a, b}

Hence, Algorithm 1 yields {a,b} as output instead of {a,c} which is the only 7 -efficient solu-
tion. Algorithm 2 yields the same result whatever the starting vertex.

Example 7 Let G be a graph on 4 vertices with the following arcs: (v1,vs), (v1,v3), (v1,v4),
(v9,v4), (v3,v4). The qualitative valuations are: v(vi,vy) = c,v(vy,v3) = d,v(vy,v4) = a,
v(ve,v4) = b, v(vs,vy) = d. Suppose that 7= is a strictly monotonic preference relation in-
ducing a complete order on P({a,b,c,d}) such that a = b > ¢ > d and {a,c,d} > {a,b,d}. Let
us notice that:

b > ¢ and however {a,c,d} > {a,b,d}

Applying Algorithm 1 yields the two trees valued {a,b,d} whereas any tree with valuations
{a,c,d} was strictly better. The same statement holds with Algorithm 2 whatever the starting
vertez.

Thus, we have to study on which class of preference structures our preference-based search
algorithms are able to determine the set of ~—-efficient solutions. In this respect, we introduce
now the independence axiom:

Independence (I)
VA, B,C € P(E) such that CN(AUB)=0, (A= B= AUuC = BUC(C)

This independence axiom is a weak version of the De Finetti’s qualitative additivity [10]. It can
also be seen as a qualitative counterpart of the monotonicity property considered in dynamic
programming (see e.g [24,25]). More generally, let us consider v : P(F) — U a valuation
function (where (U, >r) is a partially ordered set) such that v(A) =y v(B) <= A > B, and
® an internal composition operator on U such that v(AUB) = v(A)®uv(B) for all A, B € P(E).
Then, considering the ordered semigroup (U, ®, >), axiom (I) translates into monotonicity of

® over > . This type of monotonicity is a classical assumption in the algebraic path problem
[42,30].

The independence condition is naturally satisfied in various classical problems. We give here
some examples of usual preference relations obviously satisfying axiom (T).

Example 8 Assuming that v is a valuation on E, aziom (I) holds for the numerical additive

preference relation defined by:

AZ B <= Y v(e) < u(e)

ecA ecB

This example shows that, in the classical framework, we choose implicitly a preference relation
that does satisfy the independence axiom. Now, in the context of multicriteria optimization
where the quality of each element e € E is defined by the valuation vector (vq(e),...,v,(e)),
we have the following result:

Example 9 In multicriteria problems, aziom (I) holds for lexicographic preference relations
defined as follows:

A= B <= Fke{l,....q}, D uvle) <D wple) andVj<k D wvile) = v;(e)

ecA ecB ecA ecB

The same result holds for the dominance relation and other oligarchic preferences as shown by
the following:

Example 10 In multicriteria problems, axiom (I) holds for oligarchic preference relations
defined for any subset of criteria O C {1,...,q} by:

AZ B = (Vj€0,) vi(e) <Y vj(e))

e€EA ecB

Our last example concerns a preference relation on sets derived from a preference relation on
elements using a construction proposed in [2]:

Definition 11 Let 7 be a reflexive preference relation on a finite set E. We define the
preference relation 7p on P(E) by: A Zp B if and only if |B| > |A| and there exists an
injective mapping w: A — B such that Ya € A, a 7 7(a).

Hence, we have the following result:

Lemma 12 If =g is transitive then = p is transitive.

PROOF. If A =p B and B 7 p C there exist two injective mappings m : A — B and
me : B — C such that:
Va € A, aZpm(a) Ze mom(a)

By transitivity of g, Ya € A a g m o m1(a). Moreover, the composition of injective map-

~o

pings is an injective mapping. O

Moreover, we have the following positive result:

10

Proposition 13 If =g is reflerive and transitive, then

VA, B,C € P(E) such that CN(AUB) =0, (A=p B <= AUC =p BUCO)

PROOF. Consider A, B,C, three subsets of edges such that C N (AU B) = (). We establish
the result in two stages:

e Arp B— AUC ~p BUC
We know that there exists 7 : A — B an injective mapping such that Va € A,a =g m(a). As
7 is a mapping and A N C = (), we can construct a mapping p: AUC — BUC as follows :

Va € A, p(a) = m(a)
Vee C, ule)=c

As 7 is injective and BN C = (), p is injective. Moreover, we have:

Va € A7 a iE /L(Cl)
Ve € C, ¢ g p(e) (reflexivity of 72 p)

Therefore we get: AUC —p BUC.

e AUCZpBUC = A7rp B
By construction, we know that there exists an injective mapping verifying:

Vee AUC, e g m(e)

For any a € A, we set 7°(a) = a, 7%(a) = 7 o 7¥1(a) for k > 1, and

k(o) = min{k |k > 1 and 7*(a) ¢ C} if Ik > 1,7%(a) ¢ C

+o00 otherwise

We claim that, for any a in A we have: Vk € {2,...,k(a)}, 7*(a) & {7'(a),1 <1 <k —1}.
Indeed, if that is not the case, we can define (4, j) as the smallest pair such that 7¢(a) = 77 (a).
By construction, we know that 70~V (a) # 7V~ (a) whereas 7(7~Y(a)) = n(7U~Y(a)) which
contradicts the injectivity of 7 (if i = 1, 777'(a) # 7°(a) since AN C = @ by hypothesis).
Hence the 7*(a) for 1 < k < k(a) are all different and therefore k(a) < |C| + 1. As C is finite,
k(a) is finite and for all a in A, 7%(®)(a) is well defined. Let p : A — B be the mapping
defined by: Ya € A, u(a) = 7% (a). We prove the following assertions: i) y is an injection; ii)
Va € A, aZpp(a).

proof of i). Assume that p(a) = u(a’) for some pair (a,a’) € A x A such that a # a'. Then, the
sequences (m"(a))g>1 and (7'(a’));>1 necessarily meet at some point. Let (4,5) be the smallest

11

pair of indices such that 7i(a) = 7/(a’) (4,5 # 0 since a # @’). By definition, we know that
70D (a) # 70D (a') whereas 7(7V(a)) = n(7U~Y(a")) which contradicts the injectivity of
.

proof of ii). By transitivity of =g, a =g 7(a) =g ... Zp 7 (a) = pla) = a =g pu(a). O

From Proposition 13 we derive immediately the following:
Corollary 14 If =g is reflexive and transitive, then -p satisfies (I).

The importance of axiom (I) in 7—-ST problems is established by the following result which
generalizes a result from Serafini [33] (see also [12]):

Theorem 15 If 7 is quasi-transitive and satisfies (I), for any 7 -efficient spanning tree T
there exists a topological sorting of the preference graph on E for which Kruskal algorithm
yields T

PROOF. Let E = {ey,...,en} be the set of edges of the initial graph and G = (E,) be
the preference graph, where >= {(e;, ¢;) such that e; > e;}. G is without circuit since 7 is
quasi-transitive. Let A C E be a Z-efficient spanning tree and B = E'\ A. Let us consider the
augmented preference graph:

Ga = (E,> U F4) where Fy = | J{(a,b) : a € C(b)}

beB

(where C'(b) is the chain linking the endpoints of b in A).

To illustrate these notions, we give an example on Figure 3 (the edges are {z,y, «, 3,7} and
the preference relation is: x > y, a > 3 > 7).

X

A G Fa Ga
Fig. 3. The preference graph.

We show now that G4 does not contain a circuit. Assume there exist circuits in G 4. Let C be
a circuit of minimum size (among them). Since there is no loop, C contains at least two arcs.
We claim that:

12

i) C iteratively alternates one vertex from A and one vertex from B,
ii) C iteratively alternates one arc from F4 and one arc from .

proof of i). Assume there exist (v, a), (a,d’) in C with a,a’ € A. As (v,a) € =% and (a,d’) € =,
we deduce that (v,a’) € > by quasi-transitivity of . So we get a contradiction with respect
to the minimality of C. Similarly, if there exists a sequence (b,8'), (b',v) in C with b,V € B, we
have (b,b') € > and (b',v) € >, which yields a contradiction.

proof of ii). By construction, any arc (b,a) € B x A does not belong to F4 and therefore
belongs to . Suppose now there exists an arc (a,b) € A x B such that (a,b) € F in C. Then
(a,b) € >. As there is no loop, there exists an arc (b,v) € > in C (v # a by quasi-transitivity
of 7). By quasi-transitivity of -, we get a contradiction with respect to the minimality of C.

We have proved that C is of the following form: (aq,bq, ..., ax, by, a;) where a;’s are in A and
bi’s are in B. Let C = {a;,i = 1,...,k} U{b;,i = 1,...,k}. Now, we show by contradiction
that A" = (AU (CNB))\ (CNA)is aspanning tree. Assume that A’ is not a spanning tree.
Then, consider the sequence of partial graphs of G defined by Ay = A, 4; = (4, 1\ {a;}) U{b;}
for i = 1,...,k. Thus we have A, = A’. Note that the following proposition holds for any
ie{l,... . k}:

[A; 1 is a spanning tree of G and a; € C;_1(b;)] = A; is a spanning tree of G (%)

where C;_1(b;) denotes the chain in A;_; linking the endpoints of b;. Let j be the smallest index
in {1,...,k} such that A; is not a tree. Then thanks to () we deduce that a; ¢ C;_1(b;).
Therefore an edge a; € C(b;),1 € {1,...,j — 1} initially present in A has been removed (since
(aj,b;) € Foa = a; € C(b;)). Hence, (a;,b;) € F4 and constitutes a shortcut of C which
contradicts its minimality. Therefore, A’ is a spanning tree.

In order to show that A’ = A, let us first note that A’ could be derived from A by iteratively
replacing a;,1 by b;, forall i = 1,...,k—1, and then a; by b;. From the sequence of preferences
b; = a;p1 (1 < k—1) and by > a1, we deduce by (I) and quasi-transitivity of 7~ that A" > A
which contradicts the 7 -efficiency of A. Therefore there is no circuit in G4 and the notion of
topological sorting of G 4 makes sense.

Finally, we prove by contradiction that the Kruskal algorithm directed by any topological
sorting of G4 yields T'. Assume that the Kruskal algorithm yields a tree different from T for a
given topological sorting of G'4. Let e; be the first edge outside 1" which is selected during the
search. By definition of G 4, we know that any edge e outside 7" is ranked after all the edges of
C'(e) in the topological sorting. Consequently, as long as there remains an edge in C'(e;) which
is not selected, the Kruskal algorithm cannot select e; (note that all the edges of C'(e;) cannot
create a cycle since all the selected edges are in 7). Once all the edges of C(e;) have been
selected, e; will not be selected since it would create a cycle, which leads to a contradiction. O

From the previous result we get the following important corollary:

6 Any arc in F4 gets its initial endpoint in A and its terminal endpoint in B.

13

Corollary 16 If = is quasi-transitive and satisfies (I), then Algorithm 1 yields a superset of
M(T, Z).

PROOF. At the end of the algorithm, U;¢ -1 Tj("71) is a superset of M (7, 7)) by Theorem 15
since implicitly we enumerate all the topological sortings of the preference graph in our search
tree. Indeed, we develop a search tree A such that at any vertex the path from the root to
that vertex represents a set A of selected elements and each branch starting from that vertex
represents an element e 2—-efficient in £'\ A such that AU {e} is acyclic. The length of a branch
is equal to n—1. Thus, we enumerate all the trees of U; M (T, =) for all topological sortings >
of the preference graph (with duplicates since in each branch we do not explicit the complete
order on non-considered elements). a

However, non ~-efficient trees may be generated by the Algorithm 1, as it will be shown in
Section 5. Nevertheless, it suffices to apply a test of Z-efficiency on the output set of the
algorithm to get the set of ~-efficient trees.

Another approach to get all 7 -efficient trees of the graph consists in a generalization of the
Prim algorithm. In order to prove the correctness of Algorithm 2, we need the following lemma:

Lemma 17 Let X be a set and 7, a quasi-transitive preference relation on X, then for any
finite set Y C X such that Y N M(X,7) = 0 then:

VyeY, Jxe X\Y, x>y

PROOF. For any y € Y, we know that y & M (X,) and therefore there exists z; € X such
that z; > y. If z; € X \ 'Y then the result follows. If z; € Y, then there exists zo € X such

that zo > z;. By this way, we construct a sequence z1, ..., z, of distinct elements in X. As Y is
finite there exists k& such that z; € X \ Y. Hence we have z; > 2,1 > ...2; > y and therefore
2 » 1y by quasi-transitivity of 72 which establishes the result. O

Hence, we can establish the following theorem:

Theorem 18 Let T be a = -efficient spanning tree of G. If 77 is quasi-transitive and satisfies
(1), then for any cocycle Q # O of G, there is an edge in QN T that is =-efficient in €.

PROOF. Let A be a Z-efficient spanning tree on the graph G = (V, E) and B = F'\ A. We
prove the result by contradiction. Let us assume that there exists a cocycle € # () such that
there is no edge of QN A that is Z—-efficient in €. There exists a; € 2N A since € is a cocycle.
Then, by Lemma 17, there exists b, € Q N B such that b; = a;. We cannot have a; € C(b;)” .
Indeed, if a; € C(by) then by > a; implies (A \ {a1}) U {b1} > (A\{a1}) U{a1} = A by (I)

" Here again, C(b;) denotes the chain in A linking the endpoints of b;.

14

which contradicts the Z--efficiency of A since by construction (A \ {a1})U{bi} is a tree. Since
a; ¢ C(by) and 2 is a cocycle, the tree A necessarily contains another edge a; € QN C(by).

Following this way, we construct two sequences (a,) and (b,) of distinct elements by taking
alternately an edge b, 1 > a,_; in QN B and an edge a, € C(b,—1) N2 so as to satisfy the
following properties:

V€ {1,....p—1}Cb) N far.....a} = 0 (1)
VEe{l,...,p—1}.Yj € {L,....k}, not(b; = aps1) 2)

Note that Equation 1 implies that a4, . .., a, are all distinct (since g1 € C(by)) and Equation 2
implies that by, ..., b, ; are all distinct (since byy1 > ag1)-

e Definition of b, from {ai,...,a,} and {by,...,b,_1}

As a,, is not -efficient and not(b; > a,) for all j € {1,...,p — 1}, we deduce that there exists
an edge b, € QN B such that b, > a, and b, & {by,...,b,_1}.

Now, we show by contradiction that:
Cp) N{ar, ... a5} =0 (%)

Assume that there exists j € {1,...,p} such that a; € C(b,). Then, there exists a greatest j
such that a; € C(b,), so that:

VEe{j+1,...,p}, Clbp) N{ajs1,...,a} =0 (3)

Let us show now that the set of edges A" = (A \ {a;,...,a,}) U{bj,...,b,} is a spanning tree
on G. This can be established by considering the following finite sequence (A4;_1,...,A,) of
sets of edges defined by A; 1 = A, Ay = (Ap_1 \ {aks1}) U{bs} for k=j,...,p—1and 4, =
(Ap_1\{a;})U{b,} = A’. We claim that if A;_; is a spanning tree (k € {j,...,p—1}), then A is
a spanning tree. Indeed, for k£ € {j,...,p—1}, Equation 3 implies that C4,_, (by) = C(b) where
Ca,_, (by) denotes the cycle generated by by in Aj_;. Consequently we have ayi1 € Ca,_, (br).
Since A; 1 = A is a spanning tree, A, ; is therefore a spanning tree. Moreover, Equation 3
implies that Cy,_,(b,) = C(b,) and consequently a; € Cy,_,(by). So A, = A’ is a spanning
tree.

Furthermore, we show that A’ > A. Let us first note that A’ could be derived from A by
iteratively replacing ay by b, for all £ = j, ..., p. From the sequence of preferences by, > a; for
k=7j,...,p, we deduce by (I) and quasi-transitivity of 7~ that A’ > A which contradicts the
~-efficiency of A and establishes ().

e Definition of a,i1 from {ay,...,a,} and {by,...,b,}
By Equation () and since 2 is a cocycle, the tree A necessarily contains another edge a,;; €

C(b,) N Q. As C(b,) N{ay,...,a,} =0 we deduce that a,1 & {a1,...,a,}. We show now by

15

contradiction that:
Vie{l,...,p}, not(b; > api1) (%)
Assume that there exists j € {1,...,p} such that b; > a,1.

Let us show that the set of edges A" = (A\{aj11,...,ap11})U{bj, ..., by} does form a spanning
tree on G. This can be established by considering the following finite sequence (4,1, ..., A,) of
sets of edges defined by A; 1 = A, Ay = (Ak—1 \{ar+1})U{bi} for k = j,....p. We claim that if
A1 is a spanning tree (k € {j,...,p}), then Ay is a spanning tree. Indeed, for & € {j,...,p},
Equations 1 and (x) imply that C'4,_, (bx) = C(by) where Cy,_, (b;) denotes the cycle generated
by by, in Ay_y. Consequently we have a1 € Ca,_, (bx). Since A;_; = A is a spanning tree, A,
is therefore a spanning tree.

Furthermore, we show that A’ > A. Let us first note that A’ could be derived from A by
iteratively replacing ay by by, for all K = j+1,...,p, and then a,,, by b;. From the sequence of
preferences by > ay for k= j+1,...,p and b; > a,1, we deduce by (I) and quasi-transitivity
of 7~ that A" > A which contradicts the Z-efficiency of A and establishes (k).

Note that Equation (x) for index p = [N A| writes C(bjona)) N {ai,...,a0na} = 0. As
{a1,...,a0na} = QN A, we get C(bjgna) NN A = () which is impossible since € is a cocycle.
Thus, we get a contradiction and the result follows. O

Now, we claim:

Corollary 19 If - is quasi-transitive and satisfies (I) then Algorithm 2 for 7-ST yields a
superset of the set of 7--efficient spanning trees.

PROOF. Since each cocycle is met once in a branch of the search tree during the execution of
the algorithm, we deduce from Theorem 18 that every 7 -efficient tree is reachable by Algorithm
2 for -ST. O

Note that non ~-efficient trees might be generated by Algorithm 2 (here again, note that we
can get the set of 7 -efficient trees by applying a test of 7Z-efficiency on the output set of the
algorithm). Indeed, consider the graph on Figure 4 with a reflexive and transitive preference
relation 7~ on the edges whose asymmetric part is (¢ > b =g ¢, @ =g 0 >g 7); and
consider the Zp preference relation of Definition 11. We see that the tree {b, o,v} in bold is
not - p-efficient (since {a, o, B} =p {b, @, v}), although each edge we choose, starting from the
surrounded vertex, is 7~ g-efficient in its cocycle and the preference relation ~p satisfies quasi-
transitivity and the independence axiom, as shown in Lemma 12 (since transitivity implies
quasi-transitivity) and Corollary 14. Tt is important to note that such a problem cannot occur
with Algorithm 1 when the preference is defined like in Definition 11. Indeed, in this case we
have:

16

Y

Fig. 4. The bold tree is not =~ p-efficient.

Proposition 20 If - induces a partial order on E then Algorithm 1 for 7~ p-ST yields exactly
the set of 7 p-efficient spanning trees.

PROOF. Since = is reflexive and transitive, we deduce from Lemma 12 and Corollary 14
that = p is transitive and satisfies (I). Thus, by Corollary 16, Algorithm 1 yields a superset of
the set of =~ p-efficient spanning trees.

Consider a spanning tree 7" that is not - p-efficient. Then, there exists 7" such that 7" >p T.
By Proposition 13, it implies that 7'\ (T'NT") »=p T\ (T'NT"). Let call X = (TUT")\(T'NT"),
Y=T\(TNT')and Z =T\ (T NT"). Note that Y UZ = X and Y N Z = (). Clearly, we
have Y N M(X,7Zg) = 0 since Z »=p Y. By Lemma 17, for every edge e € Y there exists an
edge ¢’ € X \'Y = Z such that ¢ g e. Moreover, the edges of Z cannot create a cycle by
appending edges of TNT" since ZU (T'NT') =T and T" is a tree. So, for every topological
sorting of the preference graph such that, as long as possible, only edges of T" are taken in the
tree constructed by Algorithm 1, at least one edge of Z is taken before any edge of Y. So this
algorithm cannot yield T since Z NT = (). O

We introduce here a preliminary lemma?® that will be useful in the proof of the next result:

Lemma 21 If 7 is quasi-transitive, then:

VA B CP(E), M(Ax) C BC A= M(B.7) C M(A,x)

PROOF. Let e € M(B, 7). By definition, Vb € B,not(b > e). As M(A,77) C B, it implies
that Va € M (A, 72),not(a > e). Hence we have Va € A, not(a > e) (x). Indeed, if a > e for some
a € A\ M(A,), by quasi-transitivity of 2= there exists ' € M(A, 7)) such that o’ > a > e,
which yields a contradiction. Since e € M (B, 7)) C B C A, we get by (x) that e € M(A, 7). O

The following result establishes the correctness of the Algorithm 3:

8 This property is a particular instance of the so-called Aizerman axiom on choice functions [1] and, as
such, directly derives from the characterization of choice functions rationalizable by a quasi-transitive
preference relation [31].

17

Theorem 22 For any 7--P problem from a verter s to a vertez t, if the preference - is quasi-
transitive and satisfies (1) then Algorithm 3 yields exactly the set M(P,7) where P denotes
the set of paths from s to t.

PROOF. We have to show that L(t) = M(P, 7).

e We first prove that M (P,) C L(t). Consider P € P such that P ¢ L(t). It implies:
Ju; € V(P) 3Qy € L(vy) such that Q; > P(s,v)

where V(P) denotes the set of vertices on P and P(s,v;) denotes the subpath from s to v;.
Note that P(vq,t) N (Q1 U P(s,v1)) = 0 by acyclicity of the graph. Hence, by (I) we have:

QIUP(Ul,t) b P(S,Ul)UP(’Ul,t) =P

Therefore P ¢ M(P, 7).

e The converse inclusion is implied by Lemma 21. Indeed, M(P,7) C L(t) C P implies
M(L(t),) € M(P,Z). As M(L(t), z) = L(t), we get L(t) € M(P, Z). =

Remark 23 When - satisfies the independence axiom, the Bellman principle is verified: any
subpath of a 7 -efficient path is 7 -efficient. Indeed, assume that a path P contains a subpath
P(vy,v9) that is non = -efficient. Then, there exists Q(vy,vs) such that Q(vy,ve) = P(v1,v3)
and by (I) we get P(s,v1) U Q(v1,v2) U P(ve,t) = P(s,v1) U P(vq,t) U Q(v1,v2) = P(s,v1)U
P(vq,t) U P(vy,v9) = P(s,v1) U P(vy,v9) U P(vg,t) = P.

5 Combinatorial problems based on a non-independent preference relation

Examples 6 and 7 have shown that condition (I) does not always hold. In this section, we
consider specific cases where the preference relation does not satisfy (I) and we suggest some
ways to overcome this difficulty using the material introduced before.

5.1 Recovering independence by approximation of preferences

Example 24 (The plainest paths problem) We consider here the problem of determining
the preferred paths on a graph G = (V, E) with colored arcs for a preference relation 7-¢ defined
on subsets of arcs by:

18

where C'(A) denotes the set of colors represented in A.

Unfortunately, = ¢ does not verify (I) since a plain yellow path A is strictly preferred to a blue
and red path B and this preference is inverted by appending a blue and red path C to A and
B respectively. Indeed, the path AU C contains three colors (Yellow,Blue,Red) whereas B U C
contains only two colors (Blue,Red).

Example 25 (The best compromise spanning trees problem) Let us consider a multi-
valued graph G' = (V, E, v) where each edge e € E is valued by a cost vector v(e) = (v1(e), va(e),
., 0g(e), withv; : E =N, j=1,...,n and q is the number of dimensions or criteria (@ > 2).

In multicriteria analysis, a classical preference relation is the dominance relation defined on
N? by:
Ve,ye Nz -y <= Vje{l,....q} z; <y,

Multiple works deal with the determination of the set of =-efficient solutions in combinato-
rial problems: [37,13,6,8,41,56,29,26,19,23,11]. However, in most of these problems, we can
construct instances such that all the solutions are »-efficient, as shown in [20] for the bicri-
teria shortest paths problem or in [19] for the bicriteria spanning trees problem. Therefore,
=-MOSP (search for the »-efficient paths in a multivalued graph) and =-MOST (search for
the ¥ -efficient trees in a multivalued graph) are intractable. Moreover, in practical applications,
most of the =-efficient solutions are irrelevant because they are ill-balanced and thus, cannot
be considered as acceptable compromises.

That’s why we suggest looking for a narrower set of =-efficient solutions limited to the best
“compromise solutions”. In multiobjective mathematical programming, the notion of best com-
promise solutions often refers to points minimizing a scalarizing function representing a dis-

tance to a given ideal (vi, vy, ..., vy) within the criteria space [34,89]. This function is generally

based on a weighted augmented Chebychev metric, and is defined, for any solution A C E, by:

q
sa(A) = max {X;(v;(A) —v))} +e)] Au;(A)
je{l.....q} =
where v;(A) = Yacavj(a),j = 1,...,q are cost functions to minimize and € is an arbitrary
small and strictly positive coefficient. It induces the following preference relations between so-

lutions:

A Eﬁ)\ B <— S)\(A) < S)\(B)

It has been proved in [{0] that 7, -MOSP is NP-hard (when looking for one
solution), and it could be similarly shown that 75, -MOST is NP-hard.

~Y

7 s, -efficient

We would like to apply Algorithms 1 or 2 to solve 75, -MOST. Unfortunately, 75, does not
verify (I). Indeed, consider a bicriteria minimization problem where the ideal point is (0,0) and
e =0.01. Let A, B,C be three feasible solutions valued as follows: v(A) = (1,2), v(B) = (3,1),
v(C) = (0,2). It can be easily checked that A >, B whereas AU C <5, BUC for A = (1,1).

19

Thus, in the two previous examples, the violation of independence does not allow the use of
Algorithms 1, 2, 3 to determine the 7 -efficient solutions. Nevertheless, these algorithms might
be properly used with an approximation of - which satisfies axiom (I). For this reason, we
introduce the following definition:

Definition 26 A preference relation 7= is an approximation of 7~ if and only if:

M(S.7z) € M(S,Z)

Then, we have:

Proposition 27 Let 7, be a preference relation and =" an approzimation of 7= which satisfies
(1), applying Algorithms 1, 2 and 3 with =" yields a superset of M (S, 7).

PROOF. Thanks to independence, we know by Corollary 16, Corollary 19 and Theorem 22
that Algorithms 1, 2 and 3 yield a superset of M(S, '), which is itself a superset of M (S, 7-).0

Hence, for any preference relation 7~ which does not verify (I), the set M(S,) can be obtained
in three steps:

(1) Look for an approximation =" of 7 that do satisfy (I)
(2) Determine a superset S of 2~'-efficient solutions using either Algorithm 1, 2 or 3
(3) Eliminate non 7 -efficient solutions in S by pairwise comparisons

As a first illustration, in Example 24, a natural approximation of 7~¢ is the relation -, defined
by:

Ar. B < C(A) CC(B)
which obviously satisfies (I) and quasi-transitivity.

We consider the preferred paths problem =¢-P on an edge-colored graph? with colors: Blue,
Red , Yellow and Green. Applying Algorithm 3 for 7Z¢-P on the instance of Figure 5 (case 1)
yields the two non 7~ c-efficient paths:

However, applying the same algorithm for 2-/.-P (case 2) yields a strict superset of the set of
~c-efficient paths (the upper path is the unique = c-efficient path on that graph). The two
irrelevant paths will be eliminated by pairwise comparisons (step (3)).

9 Note that this problem has been proved polynomial in [22]. Nevertheless, let us observe that the
proof uses the result that linear programming problems are polynomial (since interior point algorithms
are polynomial), so in this respect it can be considered as a “weakly polynomial”-proved problem.

20

{(5,2,3)} {(s,2,3,5,6)} {(s,2,3,5,6,7,1),

(5,2,3,5,6,31)}
(C19] [S5eer E({g}“gﬁgg}’

\

o o T
LB A

Fig. 5. An instance of the plainest path problem.

As a second illustration, let us come back to the best compromise spanning tree problem
considered in Example 25. Here again the three steps procedure is useful:

(1) Approximate =, by the dominance relation = ' which obviously satisfies (I) and quasi-
transitivity.

(2) Run Algorithm 1 or Algorithm 2 with > so as to provide a superset of M(T, 7,). For
example, consider the particular instance depicted on Figure 6 and assume we want to
find the best compromise solution for the scalarizing function s, defined for A = (1,1),
v* = (0,0) and ¢ = 0.01. On this particular instance, we get a strict superset of M (T, 2Zs,)-
Indeed, it can easily be checked that the tree {a, c, d} whose cost vector is (7,7) belongs to
the output. This is however a mistake since {b, ¢, e} >, {a,c,d} (note that v({(b,c,e}) =
(6,6) which strictly dominates (7, 7)).

(3) Perform pairwise comparisons so as to eliminate the irrelevant elements.

a(14)

d(@.1 e22 | b2

c(22)
Fig. 6. An instance of best compromise spanning trees problem.

10 Note that a solution minimizing sy is always =-efficient [39].

21

Note that, besides these particular examples, the preference relation 2~ p, as defined in Defini-
tion 11, could be used as a relevant approximation provided that M(S,7) C M(S,Zp).

5.2 The shortest path with interval-valued costs

Another approach to deal with preferences that do not satisfy (I) is to establish correctness
results using weaker axioms. In this respect, we introduce the following axiom:

Weak Independence (WI)
VA,B,C,D € P(E) such that CN(AUB)=0 (A>B)= (BUC >D = AUC > D)
Note that, for quasi-transitive preferences, the Weak Independence axiom is a weakening of

axiom (I), as shown by the following proposition.

Proposition 28 For any quasi-transitive preference relation, Independence implies Weak In-
dependence.

PROOF. Let A, B,C C E such that C N (AU B) = (), and let = be a preference relation on
P(E) satisfying (I). Assume that:

A>B

BuC =D
Then AUC = BUC by (I) and AUC > D by quasi-transitivity of z. Therefore, Weak
Independence is satisfied. O

Remark 29 The converse statement is not true: Weak Independence does not imply Indepen-
dence. Indeed, let E = {a,b, c} and consider a preference relation 7 on P(E) whose only strict
preference is a > b. Clearly, (WI) is satisfied by default. Besides, (I) is not satisfied since {a}
is strictly preferred to {b} and there is no preference between {a,c} and {b,c}.

Remark 30 Weak Independence of - implies quasi-transitivity of 7. Indeed, assume that
A» B and B = D. Applying (WI) with C = (), we deduce that A = D.

Using this weaker axiom, we establish the following result:

Theorem 31 If =, satisfies (WI) then Algorithm 3 for =-ST yields a subset of the set of
~-efficient paths.

PROOF. We show that L(t) C M(P,7z) by proving that P ¢ M(P,z) = P ¢ L(t).

22

Consider P € P such that P ¢ M (P,). It implies:
Qo € M (P,) such that Qg > P
If Qo & L(2):
Ju, € V(Qo) 3Qi € L(vy) such that Qy > Qo(s,vy) with vy # ¢
If QU Qo(v1,t) & L(t), then:
Juy € V(Qo(v1,t)) 3IQs € L(vs) such that Qy = Q1 U Qo(v1,vs) with vy # v
Since @ is finite, by iterating we will find v; € V(Qo(vi—1,1)) and @Q; € L(v;) such that:
Qi = Qi—1 UQo(v;_1,v;) and Q; U Qo(v;,t) € L(t)

with v; & {v1,...,v;_1} (possibly v; = ¢, which guarantees that Q; U Qq(v;,t) = Q; € L(t))

Let show by induction that:

V]G{]_,,Z} QjUQo(Uj,t)>P

o [t is true for j = 1:
By construction,
Q1 = Qo(s,v1) (4)
and
Qo = Qo(s,v1) UQo(vy,t) = P (5)
From Equations 4 and 5, we deduce that Q1 U Qq(vq,t) > P by (WI).

e If it is true for j = k < ¢, then it is true for j = k + 1:
Assume that Qr U Qo(vg, t) > P. Since Qo(vk,t) = Qo(vk, Vkr1) U Qo(vki1,t), we have

Qr U Qo(vg, Vp11) U Qo(vgs1,t) = P (6)

Moreover, by construction:

Q1 = Qr U Qo(vk, g 11) (7)
Hence, we derive Qg1 U Qo(vgs1,t) > P from Equations 7 and 6 by (WI).

Thus, for j =i, we have Q; U Qo(v;,t) > P and @Q; U Qo(v;,t) € L(t). Therefore P ¢ L(t) and
the result follows. O

To illustrate the interest of such a result, consider the graph of Figure 7, with interval-valued
arcs. We are looking for determining the set of preferred paths from s to t. We use the preference

23

(s}

{(s1.4.}

[13]

Fig. 7. An interval-valued graph.

relation ;] on intervals, which is defined as follows: For any A, B C E such that v(A) =
[[(A), 7(A)] and v(B) = [I(B), r(B)],

A =11 B «— r(A) < I(B)
A~ B I(B) <r(A) and r(B) > I(A)

When we define v(AUB) as [[(A) +1(B),r(A)+r(B)], we remark first that 27| ; does not verify
(I). Indeed, consider three sets A, B, C' ((AUB)NC =) such that v(A) = [3,4], v(B) = [5, 6]
and v(C') = [1,2]. We have A ~[; B whereas AU C ~;; B U C. Consequently, we can not
use Theorem 22 to guarantee the correctness of Algorithm 3 on such a problem. However, =
verifies (WI). Indeed, suppose A (1 B and BUC > D:

A>HB < T(A)<Z(B)
BUC =, D < r(BUC) =1r(B)+r(C) < (D)

Now, 7(AUC) = r(A)+r(C) < I(B)+r(C) < r(B)+r(C) < I(D). Therefore AUC' -1 D, which
shows that 77; 1 satisfies (WI). By Theorem 31, we deduce that Algorithm 3 yields a subset of
M(P, 7z 7). On the graph of Figure 7, it yields the path {(s,1),(1,4),(4,t)}. This path is indeed
7 j-efficient, but we miss the path {(s,2),(2,4),(4,t)} which is also 7 j-efficient. Here, we have
so obtained a strict subset of M (P, ;). Note that the path {(s,3)(3,t)} has been soundly
eliminated. However, applying Algorithm 3 with a preference relation that does not satisfy (I)
nor (WI) might lead to irrelevant results. As an illustration, let us come back to the plainest
path problem. Note that the preference relation 7-c doesn’t satisfy (I) nor (WI). Applying
Algorithm 3 on the graph of Figure 5 (case 1) yields only = ¢-dominated paths, whereas there
exists a unique ~c-efficient path. Such a situation cannot happen with a preference relation
satisfying (WI).

24

6 Conclusion

In this paper, we have presented a preference-based framework for combinatorial problems.
This approach is general in the sense that it could be used to solve a lot of variations of usual
combinatorial problems. The main drawback of our approach is a possibly high computational
demand. However, this difficulty could be partially overcome by making cuts in the search tree
(using a depth-first search and adequate bounds). In order to reduce the size of the search
tree, it could be interesting to restrict the search to a complete set of alternatives, i.e. a set of
solutions such that any ~—-efficient solution is represented in that set by an equivalent solution.
Last but not least, other axioms on preferences and other combinatorial problems may be ex-
plored to get new theoretical results.

Acknowledgement. We wish to thank Jérome Monnot for helpful comments on an earlier
version of the paper.

References

[1] M.A. Aizerman and A.V. Malishevski. General theory of best variants choice. IEEE Trans.
Automat. Control, pages 1031-1041, 1981.

2] U. Bossong and D. Schweigert. Minimal paths on ordered graphs. Report in
Wirtschaftsmathematik no. 24/1997, University of Kaiserslautern, 1997.

[3] U. Bossong and D. Schweigert. Minimal trees on ordered graphs. Working Paper, 1998.

[4] R. E. Burkard, R. A. Cuninghame-Green, and U. Zimmermann. Algebraic and Combinatorial
Methods in Operations Research. Number 19 in Annals of Discrete Mathematics. North-Holland,
Amsterdam, 1984.

[5] A. Cayley. A theorem on trees. Quaterly Journal of Mathematics, 23:376-378, 1889.

6] H. W. Corley. Efficient spanning trees. Journal of Optimization Theory and Applications,
45(3):481-485, 1985.

[7] F.Della Croce, V. Th. Paschos, and A. Tsoukias. An improved general procedure for lexicographic
bottleneck problems. Operations Research Letters, 24:187-194, 1999.

8] J. Current and M. Marsh. Multiobjective transportation network design: Taxonomy and
annotation. Furopean Journal of Operational Research, 65:4-19, 1993.

9] P. Dasgupta, P.P. Chakrabarti, and S.C. DeSarkar. Searching game trees under a partial order.
Artificial Intelligence, 82:237-257, 1996.

[10] B. De Finetti. Probability Theory Vol. I. Wiley, London, 1974.

25

[11] L.C. Dias and J.N. Climaco. Shortest path problems with partial information: Models and
algorithms for detecting dominance. Furopean Journal of Operational Research, 121(1):16-31,
2000.

[12] M. Ehrgott. Multicriteria optimization. Number 491 in Lecture Notes in Economics and
Mathematical Systems. Springer, Berlin, 2000.

[13] M. Ehrgott and X. Gandibleux. A survey and annoted bibliography of multiobjective
combinatorial optimization. OR Spektrum, 22:425-460, 2000.

[14] C. Flament and B. Leclerc. Arbres minimaux d’un graphe préordonné. Discrete Mathematics,
46:159-171, 1983.

[15] M. Futtersack and P. Perny. BCA*: une généralisation d’A* pour la recherche de solutions de
compromis dans des problémes d’optimisation multi-objectifs. In RFIA, 2000.

[16] V. Gabrel and D. Vanderpoooten. Generation and selection of efficient paths in a multiple criteria
graph: the case of daily planning the shots taken by a satellite with an interactive procedure.
Cahier du Lamsade no. 136, Université Paris Dauphine, 1996.

[17] M.R. Garey and D.S. Johnson. Computers and intractability. W.H. Freeman and company, 1979.

[18] M. Gondran and M. Minoux. Graphes et algorithmes. Collection de la Direction des Etudes et
Recherches d’Electricité de France. Eyrolles, 1995.

[19] H. W. Hamacher and G. Ruhe. On spanning tree problems with multiple objectives. Annals of
Operations Research, 52:209-230, 1994.

[20] P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, editors, Multicriteria Decision
Making, 1980.

[21] P. Kouvelis and G. Yu. Robust discrete optimization and its applications. Kluwer Academic
Publisher, 1997.

[22] X. Li, S. Zhang, and H. J. Broersma. Directed paths with few or many colors in colored directed
graphs. Memorandum no. 1543, University of Twente, 2000.

[23] E. Q.V. Martins. On a multicriteria shortest path problem. FEuropean Journal of Operational
Research, 16:236-245, 1984.

[24] L.G. Mitten. Composition principles for the synthesis of optimal multi-stage processes. Operations
Research, 12, 1964.

[25] T.L. Morin. Monotonicity and the principle of optimality. Journal of Mathematical Analysis and
Applications, 86:665—674, 1982.

[26] J. Mote, I. Murthy, and D.L. Olson. A parametric approach to solving bicriterion shortest path
problems. FEuropean Journal of Operational Research, 53:81-92, 1991.

[27] M. Miiller. Partial order bouding: a new approach to evaluation in game tree search. Artificial
Intelligence, 129:279-231, 2001.

[28] M. Pirlot and Ph. Vincke. Semiorders: properties, representations, applications. Kluwer Academic
Publishers, 1997.

26

[29] R.M. Ramos, S. Alonso, J. Sicilia, and C. Gonzalez. The problem of the optimal biobjective
spanning tree. Furopean Journal of Operational Research, 111:617-628, 1998.

[30] G. Rote. Path problems in graphs. In G. Tinhofer, E. Mayr, H. Noltemeier, and M. M. Syslo,
editors, Computational Graphs Theory, volume 7 of Computing Supplementum, 1990.

[31] T. Schwartz. Choice functions, “rationality” conditions, and variations on the weak axiom of
revealed preference. Journal of Economic Theory, 13:414-427, 1976.

[32] D. Schweigert. Ordered graphs and minimal spanning trees. Foundations of Computing and
Decision Sciences, 24(4):219-229, 1999.

[33] P. Serafini. Some considerations about computational complexity for multiobjective combinatorial
problems. In J. Jahn and W. Krabs, editors, Recent advances and historical development of vector
optimization, volume 294 of Lecture Notes in Economics and Mathematical Systems, Berlin, 1986.
Springer-Verlag.

[34] R.E. Steuer. Multiple criteria optimization: theory, computation and application. John Wiley and
Sons, New York, 1986.

[35] B. S. Stewart and C. C. White ITI. Multiobjective A*. Journal of the Association for Computing
Machinery, 38(4):775-814, 1991.

[36] C. Tung Tung and K.L. Chew. A multicriteria pareto-optimal path algorithm. Furopean Journal
of Operational Research, 62:203-209, 1992.

[37] E. L. Ulungu and J. Teghem. Multi-objective combinatorial optimization: a survey. Journal of
Multicriteria Decision Analysis, 3:83-104, 1994.

[38] C. C. White, B. S. Stewart, and R. L. Carraway. Multiobjective, preference-based search in acyclic
OR-graphs. FEuropean Journal of Operational Research, 56:357-363, 1992.

[39] A.P. Wierzbicki. On the completeness and constructiveness of parametric characterizations to
vector optimization problems. OR Spektrum, 8:73-87, 1986.

[40] G. Yu and G. Yang. On the robust shortest path problem. Computers and Operations Research,
25(6):457-468, 1998.

[41] G. Zhou and M. Gen. Genetic algorithm approach on multi-criteria minimum spanning tree
problem. European Journal of Operational Research, 114:141-152, 1999.

[42] U. Zimmermann. Linear and Combinatorial Optimization in Ordered Algebraic Structures.
Number 10 in Annals of Discrete Mathematics. North-Holland, Amsterdam, 1981.

27

