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Non uniform stability for the Timoshenko beam with tip load
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In this paper we consider a hybrid elastic model consisting of a Timoshenko beam and a tip load at the free end of the beam. Under the equal speed wave propagation condition, we show polynomial decay for the model which includes the rotary inertia of the tip load when feedback boundary moment and force controls are applied at the point of contact between the beam and the tip load.

Introduction

Beam structures have been studied extensively in the last decades: Euler-Bernoulli, Rayleigh and Timoshenko beams. The latest model is more accurate since it takes into account not only the rotary initial energy but also its deformation due to shear (see Timoshenko's book for physical explanations: [START_REF] Timoshenko | Vibration Problems in Engineering[END_REF]). A non-exhaustive list of contributions is: [START_REF] Ammari | Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force[END_REF], [START_REF] Bassam | Polynomial stability of the Timoshenko system by one boundary damping[END_REF], [START_REF] Castro | Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass[END_REF], [START_REF] Feng | Nonlinear feedback control of Timoshenko beam[END_REF], [START_REF] He | Boundary Output-Feedback Stabilization of a Timoshenko Beam Using Disturbance Observer[END_REF], [START_REF] Kim | Boundary control of the Timoshenko beam[END_REF], [START_REF] Liu | Stabilization of the Timoshenko beam system with restricted boundary feedback controls[END_REF], [START_REF] Mercier | Spectrum analysis of a serially connected Euler-Bernoulli beams problem[END_REF], [START_REF] Mercier | Spectrum of a network of Euler-Bernoulli beams[END_REF], [START_REF] Morgül | Dynamic boundary control of the Timoshenko beam[END_REF], [START_REF] Vu | Spectral analysis and system of fundamental solutions for Timoshenko beams[END_REF], [START_REF] Xu | Riesz basis property of serially connected Timoshenko beams[END_REF].

In this paper, we study the stabilization of a Timoshenko beam which has a tip load attached to one free end. The beam is clamped at one end while the tip load is fixed to the other end x = 1 in such a manner that the center of mass of the load is coincident with its point of attachment to the beam. We assume interaction between the beam and the load. Thus the forces and moments within the vibrating beam are transmitted to the tip load which moves in accordance with Newton's law. Dissipation is introduced into the coupled model by applying feedback boundary moment and force controls on the displacement and shear velocities. Multiplying the initial equations by suitable constants and rescaling in time, the coupled motions of the beam-load structure are governed by the following problem :

(u tt -(u x + y) x )(x, t) = 0, for (x, t) ∈ (0, 1) × (0, ∞), [START_REF] Abdallah | Stabilization and approximation of some distributed systems by either dissipative or indefinite sign damping[END_REF] (y tt -ay xx + b(u x + y))(x, t) = 0, for (x, t) ∈ (0, 1) × (0, ∞), [START_REF] Alabau-Boussouira | Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control[END_REF] u(0, t) = y(0, t) = 0, for t ∈ (0, ∞), [START_REF] Ammari | Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force[END_REF] with the initial conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), for x ∈ (0, 1), [START_REF] Bassam | Polynomial stability of the Timoshenko system by one boundary damping[END_REF] and the boundary dissipation law

u tt (1, t) + k 1 (u x (1, t) + y(1, t)) = -k 2 u t (1, t),
for t ∈ (0, ∞), [START_REF] Benchimol | A note on weak stabilizability of contraction semi-groups[END_REF] y tt (1, t) + k 3 y x (1, t) = -k 4 y t (1, t), for t ∈ (0, ∞), [START_REF] Castro | Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass[END_REF] where a, b, k 1 , k 2 , k 3 , k 4 are strictly positive constants. Denote by ρ, I ρ , EI, κ, ω(x, t) and ϕ(x, t), the mass density, the moment of mass inertia, the rigidity coefficient, the shear modulus of the elastic beam, the lateral displacement at location x and time t and the bending angle at location x and time t respectively. Then, our model coincides with those of [START_REF] Feng | Nonlinear feedback control of Timoshenko beam[END_REF], [START_REF] Grobbelaar-Van Dalsen | Uniform stability for the Timoshenko beam with tip load[END_REF], [START_REF] He | Boundary Output-Feedback Stabilization of a Timoshenko Beam Using Disturbance Observer[END_REF], [START_REF] Vu | Spectral analysis and system of fundamental solutions for Timoshenko beams[END_REF], ... with u(x, t) = ω x, κ ρ t , y(x, t) = -ϕ x, κ ρ t , a = (EI)ρ κI ρ and b = ρ I ρ .

This system is studied by Kim and Renardy ([12]), but with other boundary dissipation laws and it is then proved to be exponentially stable. M. Bassam, D. Mercier, S. Nicaise and A. Wehbe also consider the same system but with other boundary dissipation laws. They study the decay rate of the energy of the Timoshenko beam with one boundary control acting in the rotation-angle equation. Under the equal speed wave propagation condition (a = 1) and if b is outside a discrete set of exceptional values, using a spectral analysis, the authors prove non-uniform stability and obtain the optimal polynomial energy decay rate. On the other hand, if √ a is a rational number and if b is outside another discrete set of exceptional values, they also show a polynomial-type decay rate using a frequency domain approach. See [START_REF] Bassam | Polynomial stability of the Timoshenko system by one boundary damping[END_REF] and the references therein, particularly papers by F. Alabau-Boussouira ( [START_REF] Alabau-Boussouira | Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control[END_REF]), J.E. Muñoz Rivera and R. Racke, papers by S.A. Messaoudi and M.I. Mustafa, papers by A. Wehbe and his co-authors: A. Soufyane and W. Youssef... The stabilization of the Timoshenko beam is a subject of interest for many other authors recently: D. Feng, W. Zhang with a nonlinear feedback control ( [START_REF] Feng | Nonlinear feedback control of Timoshenko beam[END_REF]), W. He, S. Zhang, S. Ge (see [START_REF] He | Boundary Output-Feedback Stabilization of a Timoshenko Beam Using Disturbance Observer[END_REF]), Ö. Morgül with a dynamic boundary control ( [START_REF] Morgül | Dynamic boundary control of the Timoshenko beam[END_REF]). The spectral analysis is studied by M.A. Shubov ([21] and Q.P. Vu, J.M. Wang, G.Q. Xu, S.P. Yung ( [START_REF] Vu | Spectral analysis and system of fundamental solutions for Timoshenko beams[END_REF]). Systems of Timoshenko beams, serially connected or forming a tree-shaped network are another interesting point: see [START_REF] Han | Exponential stabilisation of a simple tree-shaped network of Timoshenko beam system[END_REF], [START_REF] Liu | Stabilization of the Timoshenko beam system with restricted boundary feedback controls[END_REF], [START_REF] Xu | Riesz basis property of serially connected Timoshenko beams[END_REF], [START_REF] Zhang | A New Approach for the Stability Analysis of Wave Networks[END_REF].

The system we consider is also studied by M. Grobbelaar-Van Dalsen in [START_REF] Grobbelaar-Van Dalsen | Uniform stability for the Timoshenko beam with tip load[END_REF] with the same feedback controls as ours. It is proved that uniform stability holds under a condition (called condition Z.) Unfortunately this condition is not easy to check and the exponential stability (for a = 1) remains an open question. This is why, in the present work, we consider the same problem which is still open. The main goal of this paper is to prove that the decay of the energy is not exponential, but polynomial. We conjecture that the same results hold in the case a = 1. The computations are more complicated and still have to be performed.

In Section 2, the abstract framework is introduced and the operator is proved to be m-dissipative in the energy space. The existence and uniqueness of a solution of the abstract evolution problem in appropriate spaces is established. The energy of the solution is then proved to decay to zero, using Benchimol Theorem ( [START_REF] Benchimol | A note on weak stabilizability of contraction semi-groups[END_REF]) (i.e. the operator is proved to have no purely imaginary eigenvalues). Section 3 is dedicated to a thorough analysis of the spectrum of both the dissipative operator and the conservative associated operator. In particular, we give asymptotic expansions for the eigenvalues (cf. (36), (37), ( 38) and ( 39)). It is proved, in Section 4, that the system of generalized eigenvectors of the dissipative operator (introduced in the latest section) forms a Riesz basis of the energy space. To this end, we use Theorem 1.2.10 of [START_REF] Abdallah | Stabilization and approximation of some distributed systems by either dissipative or indefinite sign damping[END_REF] which is a rewriting of Guo's version of Bari Theorem with another proof (see [START_REF] Guo | Riesz basis approach to the stabilization of a flexible beam with a tip mass[END_REF]). The proof requires the asymptotic analysis performed before. At last, the solution is explicitly expressed using the Riesz basis to prove that the energy decays polynomially (see Section 5). To examplify and validate our results, we give numerical computations and figures representing the spectrum of the dissipative operator in Section 6.

Well-posedness and strong stability

In this section we study the existence, uniqueness and strong stability of the solution of System (1)- [START_REF] Castro | Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass[END_REF]. Setting Ω := (0, 1) and H 1 L (Ω) := {f ∈ H 1 (Ω) : f (0) = 0}, we define the energy space H as follows

H := H 1 L (Ω) × L 2 (Ω) × H 1 L (Ω) × L 2 (Ω) × C × C,
with the inner product defined by

< U, U 1 > H := 1 0 vv 1 + b -1 zz 1 + ab -1 y x y 1x + (u x + y)(u 1x + y 1 ) (x)dx + 1 k 1 ηη 1 + 1 k 3 γγ 1 , (7) 
for all U = (u, v, y, z, η, γ),

U 1 = (u 1 , v 1 , y 1 , z 1 , η 1 , γ 1 ) ∈ H. Remark 2.1. The norm < U, U > 1 2
H induced by ( 7) is equivalent to the usual norm of H. For shortness we denote by • the L 2 (Ω)-norm.

Now we define the linear unbounded operator A : D(A) → H by:

D(A) := {U = (u, v, y, z, η, γ) ∈ H : u, y ∈ H 2 (Ω), v ∈ H 1 L (Ω), z ∈ H 1 L (Ω), η = v(1), γ = z(1)}, ∀ U ∈ D(A), AU := (v, (u x + y) x , z, ay xx -b(u x + y), -k 1 (u x (1) + y(1)) -k 2 η, -k 3 y x (1) -k 4 γ). (8)
The associated conservative operator is

A 0 : D(A) → H defined as A but with k 2 = k 4 = 0 i.e. AU = A 0 U -k 2 ηe 5 -k 4 γe 6 , (9) 
where U = (u, v, y, z, η, γ) ∈ D(A), e 5 := (0, 0, 0, 0, 1, 0) and e 6 := (0, 0, 0, 0, 0, 1). System (1)-( 6) is formally rewritten as the evolution equation

(P ) U t (t) = AU (t), t ∈ (0; +∞), U (0) = U 0 , U 0 ∈ H, (10) 
with U (t) = (u, u t , y, y t , u t (1), y t (1)) (note that the notation U is kept for this function of the time t).

Proposition 2.2. The operator A is m-dissipative in the energy space H.

Proof. We start with the dissipativeness. Let U = (u, v, y, z, η, γ) ∈ D(A). Using [START_REF] Feng | Nonlinear feedback control of Timoshenko beam[END_REF] and [START_REF] Grobbelaar-Van Dalsen | Uniform stability for the Timoshenko beam with tip load[END_REF], we obtain :

< AU, U > H = 1 0 (u x + y) x v + b -1 ay xx -b(u x + y) z + ab -1 z x y x + (v x + z)(u x + y) (x)dx + 1 k 1 (-k 1 (u x (1) + y(1) -k 2 η)η + 1 k 3 (-k 3 y x (1) -k 4 γ)γ.
Then, integrating by parts and using the boundary conditions, we get

< AU, U > H = - k 2 k 1 |v(1)| 2 - k 4 k 3 |z(1)| 2 ≤ 0. (11)
Therefore, A is dissipative. Now, we prove that A is maximal. For that purpose, we consider any f = (f 1 , f 2 , f 3 , f 4 , η 1 , γ 1 ) ∈ H and we look for a unique element U = (u, v, y, z, η, γ) ∈ D(A) such that

AU = f. Equivalently, we get v = f 1 , z = f 3 , η = f 1 (1), γ = f 3 (1)
, and we have the following system to solve:

(u x + y) x (x) = f 2 (x), (12) 
(ay xx -b(u x + y))(x) = f 4 (x), (13) 
-k 1 (u x (1) + y(1)) -k 2 η = η 1 , ( 14 
) -k 3 y x (1) -k 4 γ = γ 1 . (15) 
From [START_REF] Kim | Boundary control of the Timoshenko beam[END_REF] it follows u x (x) + y(x) = F 2 (x) + a 1 , where F 2 (x) = x 0 f 2 (u)du and a 1 is a constant. Consequently [START_REF] Liu | Stabilization of the Timoshenko beam system with restricted boundary feedback controls[END_REF] becomes

ay xx (x) = f 4 (x) + bF 2 (x) + ba 1 . (16) Let G 4 (resp. G 2 ) be the unique solution of (G 4 ) xx = f 4 (resp. (G 2 ) xx = F 2 ) satisfying G 4 (0) = (G 4 ) x (0) = 0 (resp. G 2 (0) = (G 2 ) x (0) = 0)
. Then, we find that the solutions of ( 16) satisfying y(0) = 0 are

y(x) = 1 a G 4 (x) + b a G 2 (x) + b a a 1 x 2 2 + a 2 x,
where a 2 is a constant. Now, let y as previously. Clearly y ∈ H 2 (Ω) ∩ H 1 L (Ω) and we find that necessarily u(x) = x 0 (-y(u) + F 2 (u))du + a 1 x (since u(0) = 0). [START_REF] Liu | Semigroups Associated with Dissipative Systems[END_REF] we get an equation with only the unknown a 1 and this equation admits a unique solution. Therefore [START_REF] Mercier | Spectrum analysis of a serially connected Euler-Bernoulli beams problem[END_REF] becomes an equation with a unique solution a 2 . Finally, inserting these two constants in u and y, it is easy to check that we have found a unique U = (u, v, y, z, η, γ) ∈ D(A) such that AU = f. Therefore we deduce that 0 ∈ ρ(A). Then, by the resolvent identity, for λ > 0 small enough, R(λI -A) = H (see Theorem 1.2.4 in [START_REF] Liu | Semigroups Associated with Dissipative Systems[END_REF]).

Inserting u x (1) + y(1) = F 2 (1) + a 1 in
Due to Lumer-Phillips Theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], Theorem 1.4.3), it follows from Proposition 2.2 that the operator A generates a C 0 -semigroup of contractions e tA on H. Consequently it holds: Theorem 2.3. (Existence and uniqueness) (1) If U 0 ∈ H, then System (P ) has a unique solution

U ∈ C 0 (R + , H).
(2) If U 0 ∈ D(A), then system (P ) has a unique solution

U ∈ C 0 (R + , D(A)) ∩ C 1 (R + , H).
Remark 2.4. Let (P 0 ) be the conservative problem associated to problem (P ) (in other words (P 0 ) is Problem (P ) with k 2 = k 4 = 0) and A 0 be the associated operator then Proposition 2.2 (resp. Theorem 2.3) remains true for A 0 (resp. (P 0 ) ).

To end this section we give a first stability result: Theorem 2.5. (Strong stability) System (1)-( 6) is strongly stable, i.e for any solution U of (P ) with initial data U 0 ∈ H, it holds

lim t→∞ E(t) = 0, where E(t) = 1 2 U (t) 2 H .
Proof. Since the resolvent of A is compact in H, using Benchimol Theorem [START_REF] Benchimol | A note on weak stabilizability of contraction semi-groups[END_REF], System (P ) is strongly stable if and only if A does not have purely imaginary eigenvalues. We have already seen that A is invertible. Thus we consider λ ∈ R * and U = (u, v, y, z, η, γ) ∈ D(A) such that AU = iλU.

Since < AU, U >= 0, we get from (11) that η = v(1) = 0 and γ = z(1) = 0, and we deduce that (u, v) satisfies

(u xx + y x + λ 2 u)(x) = 0, (ay xx -bu x -by + λ 2 y)(x) = 0, (17) 
with the boundary conditions

   u(0) = y(0) = 0, u(1) = y(1) = 0, u x (1) = y x (1) = 0. ( 18 
)
From the first equation of ( 17),

y x (x) = -u xx (x)-λ 2 u(x). Thus ay xx (x) = -au (3)
x (x)-aλ 2 u x (x). Now, from the second equation of ( 17), it follows: ay xx = bu x (x) + by(x) -λ 2 y(x). Then u is solution of au (4) x (x) + (a + 1)

λ 2 u (2) x (x) + (λ 2 -b)λ 2 u(x) = 0. (19) 
Note that, from the boundary conditions [START_REF] Morgül | Dynamic boundary control of the Timoshenko beam[END_REF] and the relations [START_REF] Messaoudi | On the internal and boundary stabilization of Timoshenko beams[END_REF], it also holds u xx (1) = u xxx (1) = 0. Thus u is solution of [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] and satisfies u(1) = u x (1) = u xx (1) = u xxx (1) = 0. Therefore, from the general theory of ordinary differential equations, we deduce that u ≡ 0. It follows that y ≡ 0 and finally U ≡ 0. Consequently, A has no eigenvalue on the imaginary axis.

3 Spectrum analysis for the case a = 1

Main results and notation

Let us begin with announcing the main results concerning the spectrum analysis. The following theorem is also a way to introduce the notation which is used during the whole section. That is why it is given first whereas establishing its proof is the goal of the following subsections. Let σ 0 be the spectrum of A 0 . We can split σ 0 as follows:

σ 0 = σ 1 0 ∪ σ 2 0 ,
where

σ 1 0 = {κ 0 i } i∈I 0 ,
and I 0 is a finite set, the multiplicity of κ 0 i is m i,0 and is finite.

σ 2 0 = {λ j,0 k } j=1,2,|k|≥k 0 ,
and the multiplicity of λ j,0 k (j = 1, 2) is one.

2. Eigenvectors of A 0 .

For each i ∈ I 0 , we will denote by φl i , l = 0, ..., m i -1, a system of independent eigenvectors associated with κ 0 i ∈ σ 1 0 . For each k ∈ Z, |k| ≥ k 0 , we will denote by φ j k (j = 1, 2) an associated eigenvector of λ j,0 k (j = 1, 2) ∈ σ 2 0 . Moreover, since A 0 is skew-adjoint, the system

F 0 = { φl i } i∈I 0 ,l=0,...,m i -1 ∪ {φ j k } |k|≥k 0 ,j=1,2
can be chosen such that F 0 forms an orthonormal basis of H.

Spectrum of A.

Similarly, let σ be the spectrum of A. We can split σ as follows:

σ = σ 1 ∪ σ 2 ,
where

σ 1 = {κ i } i∈I ,
and I is a finite set, the algebraic multiplicity of κ i is m i and is finite, the geometric multiplicity is n i , with 1 ≤ n i ≤ m i .

σ 2 = {λ j k } j=1,2,|k|≥k 0 ,
and the multiplicity of λ j k (j = 1, 2) is one.

Generalized eigenvectors of A.

For each i ∈ I, we will denote by { ψl ik } δ ik l=1 , k = 1..., n i , a system of independent generalized eigenvectors associated with

κ i ∈ σ 1 , which forms Jordan chains, i.e δ ik ≥ 1, k = 1, ..., n i , n i k=1 δ ik = m i , (A -κ i I)ψ l ik = ψ l-1 ik , l = 1, ..., δ ik ,
where we assume that ψ 0 ik = 0. For each k ∈ Z, |k| ≥ k 0 , we will denote by ψ j k (j = 1, 2) an associated eigenvector of

λ j k (j = 1, 2) ∈ σ 2 . The system F = { ψl i } i∈I,l=0,...,m i -1 ∪ {ψ j k } |k|≥k 0 ,j=1,2 is chosen such that any ψ j k ∈ F, |k| ≥ k 0 , j = 1, 2, satisfies ψ j k H = 1.

Eigenvalues of A.

Let λ ∈ C * and U = 0, U = (u, v, y, z, η, γ) ∈ D(A) such that

AU = λU. ( 20 
) Then η = v(1), γ = z(1) and (u, v, y, z) is solution of                        v(x) = λu(x), x ∈ (0; 1), u xx (x) + y x (x) = λv(x), x ∈ (0; 1), z(x) = λy(x), x ∈ (0; 1), y xx (x) -bu x (x) -by(x) = λz(x), x ∈ (0; 1), u(0) = 0, y(0) = 0, λ 2 u(1) + k 1 (u x (1) + y(1)) + k 2 λu(1) = 0, λ 2 y(1) + k 3 y x (1) + k 4 λy(1) = 0.
Eliminating v and z implies that solving [START_REF] Russell | Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods[END_REF] is equivalent to solving:

               (i) (u xx + y x -λ 2 u)(x) = 0, x ∈ (0; 1), (ii) (y xx -bu x -by -λ 2 y)(x) = 0, x ∈ (0; 1), (iii) u(0) = 0, (iv) y(0) = 0, (v) λ 2 u(1) + k 1 (u x (1) + y(1)) + k 2 λu(1) = 0, (vi) λ 2 y(1) + k 3 y x (1) + k 4 λy(1) = 0. (21) 
From (i) and (ii), it follows that u is solution of u (4) x (x) -2λ 2 u (2) x (x) + (λ 2 + b)λ 2 u(x) = 0 (22) (cf. [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] with a = 1 and λ replaced by (-iλ)).

Denoting by t 1 , t 2 , t 3 and t 4 the solutions of the characteristic equation r 4 -2λ 2 r 2 +λ 2 (λ 2 +b) = 0, i.e.

t 1 (λ) = t 1 = √ λ i √ b + λ, t 2 = -t 1 , t 3 (λ) = t 3 = √ λ -i √ b + λ, t 4 = -t 3 , (23) 
the general solution of (i) and (ii) is proved to be given by

u(x) = 4 i=1 c i e t i x , y(x) = 4 i=1 c i d i e t i x , (24) 
where c i ∈ C, i = 1, ...4 and

d 1 = λ 2 -t 2 1 t 1 , d 2 = -λ 2 + t 2 1 t 1 , d 3 = λ 2 -t 2 3 t 3 , d 4 = -λ 2 + t 2 3 t 3 . ( 25 
)
The values for d i , i = 1, . . . , 4 come from (i), using the expression for u given by [START_REF] Vu | Spectral analysis and system of fundamental solutions for Timoshenko beams[END_REF].

Note that ( 20) and ( 11) imply (λ) ≤ 0. In the proof of Theorem 2.5, the absence of purely imaginary eigenvalues is proved. Thus (λ) < 0 and t 1 does not vanish nor t 3 . The coefficients d 1 , d 2 , d 3 and d 4 are well defined.

Therefore the boundary conditions (iii) -(vi) are equivalent to the system

    1 1 1 1 g 1 (t 1 ) g 1 (t 2 ) g 1 (t 3 ) g 1 (t 4 ) λ 2 e t 1 g 2 (t 1 ) λ 2 e t 2 g 2 (t 2 ) λ 2 e t 3 g 2 (t 3 ) λ 2 e t 4 g 2 (t 4 ) λ 2 e t 1 g 3 (t 1 ) λ 2 e t 2 g 3 (t 2 ) λ 2 e t 3 g 3 (t 3 ) λ 2 e t 4 g 3 (t 4 )         c 1 c 2 c 3 c 4     = 0,
where

g 1 (t) = -t + λ 2 t , (26) 
g 2 (t) = k 2 t + (k 1 + t)λ λt , (27) 
g 3 (t) = (-t 2 + λ 2 ) (k 3 t + λ(k 4 + λ)) λ 2 t . ( 28 
)
Multiplying the third and fourth lines of the previous system by

1 λ 2 , this one is equivalent to     1 1 1 1 g 1 (t 1 )
g 1 (t 2 ) g 1 (t 3 ) g 1 (t 4 ) e t 1 g 2 (t 1 ) e t 2 g 2 (t 2 ) e t 3 g 2 (t 3 ) e t 4 g 2 (t 4 ) e t 1 g 3 (t 1 ) e t 2 g 3 (t 2 ) e t 3 g 3 (t 3 ) e t 4 g 3 (t 4 )

        c 1 c 2 c 3 c 4     = 0. (29)
Let M (λ) be the matrix of the previous system and C = (c 1 , c 2 , c 3 , c 4 ) t , then we deduce that λ ∈ C ( (λ) < 0) is an eigenvalue of A if and only if λ is solution of the characteristic equation

det(M (λ)) = 0 ⇔ f (λ) = 0, with f (λ) := - 1 16b det(M (λ)). (30) 
(The division by (-16b) simplifies the expressions calculated in next subsection for the asymptotic analysis.) If λ is an eigenvalue of A, an associated eigenvector has the form U = (u, λu, y, λy, λu(1), λy(1)), and is given by C a nontrivial solution of (29) and formulas ( 24)- [START_REF] Wehbe | Stabilization of the uniform Timoshenko beam by one locally distributed feedback[END_REF]. Moreover the geometric multiplicity of λ is equal to the dimension of the kernel of M (λ).

Note that the expressions of g 2 and g 3 depend on the values of k 2 and k 4 . Thus the eigenvalues and eigenvectors of A 0 are different from those of A.

Asymptotic analysis

In this part we study the asymptotic behaviour of the large eigenvalues which are proved to lie in the strip

B = {λ ∈ C : -α ≤ (λ) < 0},
where α > 0 is fixed and chosen large enough. The large eigenvalues are also proved to be simple and the asymptotic expansions (36) and (37) are established. We first start by: Lemma 3.2. (Asymptotic behaviour of the characteristic equation) There exists α > 0 such that the eigenvalues of A are in the strip

B = {λ ∈ C : -α ≤ (λ) < 0}.
Moreover the characteristic equation admits the following expansion

f (λ) = f 0 (λ) + f 1 (λ) λ + f 2 (λ) λ 2 + f 3 (λ) λ 3 + O 1 λ 4 , ( 31 
)
where f i , i = 0, ..., 3 is a bounded function on B given by (35) below.

Proof. First, if λ is an eigenvalue of the operator A associated to the normalized eigenvector

U , from (11), 0 > (λ) = - k 2 k 1 |η| 2 - k 4 k 3 |γ| 2 ≥ -k 2 -k 4 , since 1 k 1 • |η| 2 and 1 k 3 • |γ| 2 are both smaller than U 2 H = 1.
Hence the existence of α. Furthermore e t i , i = 1..., 4 is bounded as |λ| -→ ∞, where t i = t i (λ), i = 1, ..., 4 is given by [START_REF] Timoshenko | Vibration Problems in Engineering[END_REF].

By Taylor series it holds

t 1 = λ + i √ b 2 + b 8λ - ib 3 2 16λ 2 + O 1 λ 3 , (32) 
t 3 = λ - i √ b 2 + b 8λ + ib 3 2 16λ 2 + O 1 λ 3 . (33)
Inserting (32) and (33) into (29) and using Taylor series, after long calculations we get

M (λ) = M (λ) + O 1 λ 3 ,
where M (λ) is a matrix which only contains terms of order 1, 1 λ or 1 λ 2 . Computing the determinant of M (λ) and keeping only the terms of order less than or equal to 1 λ 2 , we get after lengthy calculations

f (λ) = f 0 (λ) + f 1 (λ) λ + f 2 (λ) λ 2 + f 3 (λ) λ 3 + O 1 λ 4 , (34) 
where f i , i = 0, ..., 3 is a bounded function given by

f 0 (λ) = 1 4 e -t 1 -t 3 (e t 1 +t 3 -1) 2 , f 1(λ) = - 1 4 2(k 2 + k 4 ) -e t 1 +t 3 (k 1 + k 2 + k 3 + k 4 ) + e -t 1 -t 3 (k 1 + k 3 -k 2 -k 4 ) , f 2 (λ) = - 1 16 {-4(b + 2k 1 k 3 -2k 2 k 4 ) + (3b -4k 1 k 3 -4k 2 k 3 -4k 1 k 4 -4k 2 k 4 )e t 1 +t 3 + (3b -4k 1 k 3 + 4k 2 k 3 + 4k 1 k 4 -4k 2 k 4 )e -t 1 -t 3 + (-b + 2i √ bk 1 -2i √ bk 3 )e t 1 -t 3 + (-b -2i √ bk 1 + 2i √ bk 3 )e -t 1 +t 3 }, f 3 (λ) = - 1 16 {-4b(k 2 + k 4 ) + 1 2 b(7k 1 + 6k 2 + 3k 3 + 6k 4 )e t 1 +t 3 + - 1 2 b(7k 1 -6k 2 + 3k 3 -6k 4 )e -t 1 -t 3 + (-bk 2 -2i √ bk 2 k 3 -bk 4 + 2i √ bk 1 k 4 )e t 1 -t 3 + (-bk 2 + 2i √ bk 2 k 3 -bk 4 -2i √ bk 1 k 4 )e -t 1 +t 3 }.

Lemma 3.3. (Asymptotic behaviour of the large eigenvalues of A)

The large eigenvalues of A can be split into two families λ j k k∈Z,|k|≥k 0 , j = 1, 2, (k 0 ∈ N, chosen large enough.) The following asymptotic expansions hold:

λ 1 k = ikπ + o(1), λ 2 k = ikπ + o(1). (35) Either λ 1 k = λ 2
k and this root is of order 2, or λ 1 k = λ 2 k and these two roots are simple. Proof. The multiplicity of the roots of f 0 given by ( 35) is two and λ is a root of f 0 if and only if

∃k ∈ Z, (t 1 + t 3 )(λ) = 2ikπ. Since (t 1 + t 3 )(λ) = 2λ + b 4λ + o 1 λ
, we deduce that, for each k ∈ Z, with |k| large enough, corresponds a double root of f 0 , denoted by λ 0 k which satisfies

λ 0 k = ikπ + O( 1 k 
).

We will now use Rouché's theorem. Let B k = B(ikπ, r k ) be the ball of centrum ikπ and radius r k = 1 k 1/4 and λ ∈ ∂B k (i.e λ = ikπ + r k e iθ , θ ∈ [0, 2π]). Then we successively have:

(t 1 + t 3 )(λ) = 2ikπ + 2r k e iθ + O( 1 k
),

e (t 1 +t 3 )(λ) = e
2r k e iθ +O(

1 k ) = 1 + 2r k e iθ + O(r 2 k ), and 
f 0 (λ) = (1/4)(1 -2r k e iθ + O(r 2 k ))(2r k e iθ + O(r 2 k )) 2 = (1/4)(1 -2r k e iθ + O(r 2 k ))(4r 2 k e 2iθ + O(r 3 k )) = r 2 k e 2iθ + O(r 3 k ).
It follows that there exists a positive constant c such that

∀λ ∈ ∂B k , |f 0 (λ)| ≥ cr 2 k = c √ k .
Then we deduce from (31

) that |f (λ) -f 0 (λ)| = O( 1 λ ) = O( 1 k ). It follows that, for |k| large enough ∀λ ∈ B k , |f (λ) -f 0 (λ)| < |f 0 (λ)|,
hence we get the result.

Remark 3.4. Since the imaginary axis is an asymptote for the spectrum of A, then System (29) is not uniformly stable.

Remark 3.5. Obviously the previous asymptotic analysis of the spectrum is not necessary to deduce that System (29) is not uniformly stable. Indeed, using the compact perturbation result of Russell (see [START_REF] Russell | Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods[END_REF]), we directly see that the dissipative system (29) is not uniformly stable.

More information concerning the asymptotic behavior of the spectrum of A is given by: Proposition 3.6. (Asymptotic expansions for the eigenvalues of A and A 0 ) Assume Condition (C 1 ) :

k 1 = k 3 or √ b = 2kπ, k ∈ N * .
Then the large eigenvalues of the dissipative operator A are simple and can be split into two families λ j k k∈Z,|k|≥k 0 , j = 1, 2, (k 0 ∈ N, chosen large enough.)

Moreover, we have the following asymptotic expansions for the eigenvalues of A:

λ 1 k = ikπ + i α 1 k - β 1 k 2 + o 1 k 2 , ( 36 
)
λ 2 k = ikπ + i α 2 k - β 2 k 2 + o 1 k 2 , ( 37 
)
where α j ∈ R, β j > 0, j = 1, 2.

If Condition (C 1 ) above is still assumed, the large eigenvalues of the conservative operator A 0 are simple and can be split into two families λ j,0 k k∈Z,|k|≥k 0 0 , j = 1, 2, (k 0 0 ∈ N, chosen large enough) with the following asymptotic expansions:

λ 1,0 k = ikπ + i α 1 k + o 1 k 2 , (38) λ 2,0 k = ikπ + i α 2 k + o 1 k 2 , ( 39 
)
with the same α j as above.

(cf. Figure 1 of Section 6.) Remark 3.7. The explicit values for α 1 and α 2 are given by (47), ( 45) and (46). They only depend on the values of b, k 1 and k 3 . As for β j , it is defined by β j := ω j 2 ω j 1 , j = 1; 2, with ω j 1 and ω j 2 given by (49) and (50). Proof. Step 1. Let λ k = λ j k , with j = 1 or j = 2. From (36), it follows λ k = ikπ + k , where k = o(1). Using (32) and (33) leads to:

t 1 + t 3 = 2ikπ + 2 k - ib 4kπ + o( k ) + o 1 k 2 + o k k ,
which implies:

e t 1 +t 3 = 1 - ib 4kπ - b 2 32k 2 π 2 - ib k 2kπ + 2 k + o( k ) + o 1 k 2 + o k k , (40) e -t 1 -t 3 = 1 + ib 4kπ - b 2 32k 2 π 2 + ib k 2kπ -2 k + o( k ) + o 1 k 2 + o k k . (41) 
Similarly it holds

t 1 -t 3 = i √ b + ib 3/2 8k 2 π 2 + o 1 k 2
, and we deduce that

e t 1 -t 3 = e i √ b + ib 3/2 e i √ b 8k 2 π 2 + o 1 k 2 , (42) e -t 1 +t 3 = e -i √ b - ib 3/2 e i √ b 8k 2 π 2 + o 1 k 2 . (43)
Using (31), inserting (40)-(43) into f (λ k ) and keeping only the terms greater than or equal to

O( 1 k 2 )
, we obtain after calculations

f (λ k ) = 2 k -iγ 1 k k -γ 2 1 k 2 + o 1 k 2 + o( 2 k ) + o( k k ) = 0, (44) 
where

γ 1 = b + 4(k 1 + k 3 ) 4π , (45) 
γ 2 = -8b + b 2 + 8bk 1 + 8bk 3 + 64k 1 k 3 + 8b cos( √ b) + 16 √ b(k 1 -k 3 ) sin( √ b) 64π 2 . ( 46 
)
Multiplying (44) by k 2 leads to:

(k k ) 2 -iγ 1 (k k ) -γ 2 + o(1) + o(k k ) + o(k 2 2 k ) = 0. Thus k k is bounded and (k k ) 2 -iγ 1 (k k ) -γ 2 + o(1) = 0.

The previous equation has two solutions

k k = i 2 (γ 1 -γ 2 1 -4γ 2 ) + o(1) or k k = i 2 (γ 1 + γ 2 1 -4γ 2 ) + o(1). Denoting by α 1 = γ 1 -γ 2 1 -4γ 2 2
and

α 2 = γ 1 + γ 2 1 -4γ 2 2
, (47) it holds:

k = i α 1 k + o 1 k or k = i α 2 k + o 1 k .
Note that, if Condition (C 1 ) holds, α 1 and α 2 are real numbers and α 1 = α 2 . Indeed γ 1 ∈ R and it holds

γ 2 1 -4γ 2 = b + 2(k 1 -k 3 ) 2 -b cos( √ b) -2 √ b(k 1 -k 3 ) sin( √ b) 2π 2 = 1 2π 2 2 k 1 -k 3 - 1 2 √ b sin( √ b) 2 + b 4 (cos( √ b)) 2 -4(cos( √ b)) + 3) ≥ 0 for all k 1 > 0, k 3 > 0, b > 0. Thus γ 2 1 -4γ 2 = 0, if and only if k 1 = k 3 , and 
√ b = 2kπ, k ∈ N * .
Now it must be proved that near ikπ, there are exactly two distinct roots, for |k| great enough.

For that purpose we consider Γ k the disk of center

z 0 k = ikπ + i α 1 k and radius r k = 1 2 |α 1 -α 2 | k and the polynomial p k defined by p k (z) = (z -ikπ) 2 -iγ 1 z -ikπ k -γ 2 1 k 2 .
The roots of p k are z 0 k and ikπ+i

α 2 k (it holds α 2 l -γ 1 α l +γ 2 = 0 since α 1 +α 2 = γ 1 and α 1 α 2 = γ 2 ). But ikπ+i α 2 k does not belong to Γ k , if |k| is large enough. Let z = z 0 k + 1 2k (α 2 -α 1 )e iθ , θ ∈ [0, 2π]
any element of ∂Γ k . Then p k (z) is proved to be:

p k (z) = - e iθ e iθ -2 (γ 2 1 -4γ 2 ) 4k 2 ,
thus there exists a positive constant c independent of k such that

|p k (z)| ≥ c k 2 , ∀z ∈ ∂Γ k .
On the other hand, using (44

) we get |f (z) -p k (z)| = o 1 k 2 .
Therefore, Rouché's theorem implies that f has only one root in Γ k , if k is large enough. Finally, we have proved that the large eigenvalues of A are simple and can be split into two families with the following expansions:

λ 1 k = ikπ + i α 1 k + o 1 k , λ 2 k = ikπ + i α 2 k + o 1 k .
Note that the eigenvalues of the conservative operator A 0 have the same asymptotic expansions, since α 1 and α 2 are independent of the values of k 2 and k 4 .

Step 2.

Since for j = 1, 2, α j ∈ R, we need one more term in the expansion of λ j k , j = 1, 2. From Step 1, the expansion for j = 1 or j = 2 is:

λ j k = ikπ + i α j k + j k k ,
where j k = o(1). Using (31), Taylor series and simplification in the term of order 1 k 2 coming from Step 1, we get after a long calculation

f (ikπ + i α j k + j k k ) = 1 k 2 (ω j 1 j k + ( j k ) 2 ) + ω j 2 1 k 3 + o 1 k 3 = 0 (48)
where ω j l ∈ iR, l = 1, 2 and is given by

ω j 1 = - i(b + 4k 1 + 4k 3 -8α j π) 4π = ∓i γ 2 1 -4γ 2 , ( 49 
)
ω j 2 = i 8π 3 (γ 3 -8π(k 1 k 2 + k 3 k 4 )α j ), (50) j = 1, 2, where γ 3 = b(k 1 k 2 + k 3 k 4 ) + 8k 1 k 3 (k 2 + k 4 ) + 2 √ b(k 1 k 2 -k 3 k 4 ) sin( √ b). (51)
Since we assume (C 1 ) then ω j 1 = 0 (see the remark just below ( 46)) and we deduce from (37) that j k = -

ω j 2 ω j 1 1 k + o 1 k . Setting β j = ω j 2 ω j 1
, then it holds β j ∈ R and (36) holds. Since all the eigenvalues of A are on the left of the imaginary axis, necessarily β j ≥ 0.

Note that, if k 2 = k 4 = 0 (associated conservative operator A 0 ), γ 3 = 0 and thus, ω j 2 and β j vanish as well. Now, if (k 2 , k 4 ) = (0, 0) (dissipative operator A), β j = 0, j = 1, 2 as it is proved below.

Step 3. Assume that (k 2 , k 4 ) = (0, 0) and β j = 0, j = 1, 2. Then ω j 2 = 0, j = 1, 2, thus

α j = γ 3 8π(k 1 k 2 + k 3 k 4 ) , j = 1, 2.
But, since α 1 + α 2 = γ 1 and α 1 • α 2 = γ 2 , it holds:

α 2 j -γ 1 α j + γ 2 = 0, j = 1, 2.
It follows

γ 3 8π(k 1 k 2 + k 3 k 4 ) 2 -γ 1 γ 3 8π(k 1 k 2 + k 3 k 4 ) + γ 2 = 0.
We multiply the previous identity by 16(k 1 k 2 + k 3 k 4 ) 2 π 2 and use (46) and (51) to get:

γ 4 + γ 5 b cos( √ b) + γ 6 b sin 2 ( √ b) + γ 7 √ b sin( √ b) = 0,
where

γ 4 = -2b(k 1 k 2 + k 3 k 4 ) 2 -16k 1 k 2 k 3 k 4 (k 1 -k 3 ) 2 , γ 5 = 2(k 1 k 2 + k 3 k 4 ) 2 , γ 6 = (k 1 k 2 -k 3 k 4 ) 2 and γ 7 = 16k 1 k 2 (k 1 -k 3 )k 3 k 4 . Now, using the fact that γ 2 1 -4γ 2 > 0 or equivalently 2π 2 (γ 2 1 -4γ 2 ) > 0 (which is true if and only if Condition (C 1 )), it holds b + 2k 2 1 -4k 1 k 3 + 2k 2 3 -b cos( √ b) -2 √ b(k 1 -k 3 ) sin( √ b) > 0.
Thus, using the definition of γ 7 ,

γ 7 √ b sin( √ b) < 8k 1 k 2 k 3 k 4 (b + 2(k 1 -k 3 ) 2 -b cos( √ b)).
We get after simplifications

0 = γ 4 + γ 5 b cos( √ b) + γ 6 b sin 2 ( √ b) + γ 7 √ b sin( √ b) < (2(k 1 k 2 + k 3 k 4 ) 2 -8k 1 k 2 k 3 k 4 )(-b + b cos( √ b) + (k 1 k 2 -k 3 k 4 ) 2 b sin 2 ( √ b)) < b(k 1 k 2 -k 3 k 4 ) 2 (-2 + 2 cos( √ b) + sin 2 ( √ b)) = -4b(k 1 k 2 -k 3 k 4 ) 2 sin( √ b 2 ) 4 .
Since this inequality never holds, the assumption β j = 0, j = 1; 2 does not hold either. Now, if Condition (C 1 ) does not hold, the calculations are different (and long). The details are not given here. The results are given without proofs.

Proposition 3.8. (Asymptotic expansions for the eigenvalues of A and A 0 -particular cases)

1. Case k 1 = k 3 , k 2 = k 4 b = 4p 2 π 2 , p ∈ N * .
The large eigenvalues of the dissipative operator A are simple and can be split into two families λ j k k∈Z,|k|≥k 0 , j = 1, 2, (k 0 ∈ N, chosen large enough.) Moreover they satisfy the following asymptotic expansions:

λ 1 k = ikπ + i(2k 1 + p 2 π 2 ) 2kπ - k 1 k 2 k 2 π 2 + o 1 k 2 , (52) 
λ 2 k = ikπ + i(2k 1 + p 2 π 2 ) 2kπ - k 1 k 4 k 2 π 2 + o 1 k 2 . ( 53 
)
(cf. the table and Figure 2 of Section 6.)

2. Case k 1 = k 3 , k 2 = k 4 = 0, b = 4p 2 π 2 , p ∈ N * .
The large eigenvalues of the dissipative operator A can be split into two families λ j k k∈Z,|k|≥k 0 , j = 1, 2, (k 0 ∈ N, chosen large enough.) Moreover they satisfy the following asymptotic expansions:

λ j k = ikπ + i (2k 1 + p 2 π 2 ) 2kπ - k 1 k 2 k 2 π 2 + i(a 3,j -24k 1 k 2 2 ) 24k 3 π 3 + o 1 k 3 ,
where a 3,j ∈ R, j = 1, 2 are given below.

3.

Case

k 1 = k 3 , k 2 = k 4 = 0, b = 4p 2 π 2 , p ∈ N * .
The large eigenvalues of the conservative operator A 0 can be split into two families λ j,0 k k∈Z,|k|≥k 0 0 , j = 1, 2, (k 0 0 ∈ N, chosen large enough) with the following asymptotic expansions:

λ j,0 k = ikπ + i (2k 1 + p 2 π 2 ) 2kπ + ia 3,j 24k 3 π 3 + o 1 k 3 ,
where a 3,j ∈ R, j = 1, 2 are given below

a 3,1 = -24k 2 1 -8k 3 1 -36k 1 p 2 π 2 + 9p 4 π 4 -12pπ 4k 4 1 -43k 2 1 p 2 π 2 -4k 1 p 4 π 4 + p 6 π 6 , a 3,2 = -24k 2 1 -8k 3 1 -36k 1 p 2 π 2 + 9p 4 π 4 + 12pπ 4k 4 1 -43k 2 1 p 2 π 2 -4k 1 p 4 π 4 + p 6 π 6 . Note that, if 4k 4 1 -43k 2 1 p 2 π 2 -4k 1 p 4 π 4 + p 6 π 6 = 0 then λ 1,0 k = λ 2,0 k for k large enough. Idem for λ 1
k and λ 2 k of the previous case.

Riesz basis

In this section, it is proved that the system F of generalized eigenvectors of the dissipative operator A (introduced in Theorem 3.1) forms a Riesz basis of H. To this end, we use Theorem 1.2.10 of [START_REF] Abdallah | Stabilization and approximation of some distributed systems by either dissipative or indefinite sign damping[END_REF] which is a rewriting of Guo's version of Bari Theorem with another proof (see [START_REF] Guo | Riesz basis approach to the stabilization of a flexible beam with a tip mass[END_REF]).

For the sake of completeness, Theorem 1.2.10 of [START_REF] Abdallah | Stabilization and approximation of some distributed systems by either dissipative or indefinite sign damping[END_REF] is recalled :

Theorem 4.1. Let A be a densely defined operator in a Hilbert space H with compact resolvent. Let {φ n } ∞ n=1 be a Riesz basis of H. If there are two integers N 1 , N 2 ≥ 0 and a sequence of generalized eigenvectors

{ψ n } ∞ n=N 1 +1 of A such that ∞ n=1 φ n+N 2 -ψ n+N 1 2 2 < ∞,
then the set of generalized eigenvectors (or root vectors) of A, {ψ n } ∞ n=1 forms a Riesz basis of H.

The family F 0 of eigenvectors of the conservative operator A 0 is an orthornormal basis of the Hilbert space H. Thus, it is enough to show that the eigenfunctions of A 0 associated to the eigenvalues λ j,0 k ∈ σ 2 0 and those of the dissipative operator A associated to the eigenvalues λ j k ∈ σ 2 are quadratically close to one another. Theorem 4.2. (Riesz basis for the operator A) For any j ∈ {1; 2}, it holds:

|k|≥k 0 φ j k -ψ j k 2 H < ∞.
Thus, the set F of generalized eigenvectors of A forms a Riesz basis of H.

Proof.

Step 1. Since ψ j k lies in H, it has six components (see Section 2). Let us write ψ j k := (u j k , v j k , y j k , z j k , η j k , γ j k ) and let us first prove that

|η j k | = O( 1 k ), |γ j k | = O( 1 k ). (54) 
From [START_REF] He | Boundary Output-Feedback Stabilization of a Timoshenko Beam Using Disturbance Observer[END_REF], it follows 36) and (37). Hence (54).

< Aψ j k , ψ j k > H = - k 2 k 1 |η j k | 2 - k 4 k 3 |γ j k | 2 . (55) Now, < Aψ j k , ψ j k > H is also equal to (λ j k ) = - β j k 2 + o 1 k 2 = O 1 k 2 due to (
Step 2. Projection. Let j = 1, 2 and k, |k| ≥ k 0 be fixed and denote by P j k the orthogonal projection on {φ j k } ⊥ , the orthogonal space of the 1-dimensional space directed by φ j k . Clearly there exists α j k which can be supposed to satisfy α j k ≥ 0 without loss of generality, such that

ψ j k = α j k φ j k + R j k , (56) 
where R j k = P j k (ψ j k ) and R j k is orthogonal to φ j k . Thus, due to Lemma 4.3 given later,

1 = ψ j k 2 H = |α j k | 2 • φ j k 2 H + R j k 2 H = |α j k | 2 + O 1 k 2 .
Then, ∃c j k , real number bounded with respect to k, such that

α j k = 1 - c j k k 2 = 1 - c j k 2k 2 + o 1 k 2 = 1 + O 1 k 2 .
Step 3: {φ j k } |k|≥k 0 and {ψ j k } |k|≥k 0 are quadratically close to one another. Using Step 2, The vector R j k , defined in Step 2 of the proof of Theorem 4.2, satisfies:

φ j k -ψ j k 2 H = (α j k -1)φ j k +R j k 2 H = |α j k -1| 2 • φ j k 2 H + R j k 2 H = O 1 k 4 +O 1 k 2 = O 1 k 2 . Hence |k|>0 φ j k -ψ j k 2 H < ∞.
R j k H = O( 1 k ), for j = 1, 2.
Proof. Using (56), it holds, for j = 1; 2:

(A 0 -λ j k )ψ j k = (A 0 -λ j k )(α j k φ j k + R j k ) = α j k (A 0 -λ j k )(φ j k ) + (A 0 -λ j k )(R j k ) = k 2 η j
k e 5 + k 4 γ j k e 6 (this follows from (9)). Since A 0 and P j k commute, then applying P j k to the previous identity, we get

(A 0 -λ j k )(R j k ) = k 2 η j k P j k (e 5 ) + k 4 γ j k P j k (e 6 ). Thus R j k = k 2 η j k (A 0 -λ j k ) -1 P j k (e 5 ) + k 4 γ j k (A 0 -λ j k ) -1 P j k (e 6 )
. Writing e 5 in the orthonormal basis F 0 , it follows

P j k (e 5 ) = i∈I 0 ,l=0,...,m i -1 < φl i , e 5 > H φl i + |l|≥k 0 ,l =k < e 5 , φ j l > H •φ j l + < e 5 , φ j+1 l > H •φ j+1 l > + < e 5 , φ j+1 k > H •φ j+1 k ,
where the exponent j is defined modulo 2.

Then (A 0 -λ j k ) -1 (P j k (e 5 )) H ≤ i∈I 0 ,l=0,...,m i -1 | < e 5 , φl i > H | • 1 |κ 0 i -λ j k | + |l|≥k 0 ,l =k | < e 5 , φ j l > H | • 1 |λ j,0 l -λ j k | + | < e 5 , φ j+1 l > H | • 1 |λ j+1,0 l -λ j k | > + | < e 5 , φ j+1 k > H | • 1 |λ j+1,0 k -λ j k | ≤ C e 5 H + | < e 5 , φ j+1 k > H | • 1 |λ j+1,0 k -λ j k |
, and similarly

(A 0 -λ j k ) -1 (P j k (e 6 )) H ≤ C e 6 H + | < e 6 , φ j+1 k > H | • 1 |λ j+1,0 k -λ j k | .
The existence of the constant C independent of k in the latest expressions comes from the fact that l is different from k in the sum. Indeed the behaviour of |λ j,0 l -λ j k | and that of |λ j+1,0 l -λ j k | are given by (36), (37), (38) and (39). They are both bounded from below by a constant independent of k and l. Note that this still holds in the particular cases described by Proposition 3.8.

The expression |λ j+1,0 k -λ j k | is not bounded from below by a constant independent of k. The same asymptotic expansions prove that, for j = 1; 2:

|λ j+1,0 k -λ j k | = O( 1 k 
). (57) Thus, using (54), the result follows as soon as it has been proved, for j = 1; 2:

| < e 5 , φ j+1 k > H | = O( 1 k ) and | < e 6 , φ j+1 k > H | = O( 1 k ). (58) 
Since φ j k := (u j,0 k , v j,0 k , y j,0 k , z j,0 k , η j,0 k , γ j,0 k ) ∈ D(A), and e 5 = (0, 0, 0, 0, 1, 0) then < e 5 , φ j+1 k

> H = η j,0 k = v j,0 k (1), (59) 
and (u j,0 k , v j,0 k , y j,0 k , z j,0 k ) is solution of System ( 21) with λ = λ j,0 k = ih j,0 k , h j,0 k ∈ R. In particular (i) is (u j,0 k ) xx + (y j,0 k ) x = -(h j,0 k ) 2 u j,0 k . For simplicity, the indices and exponents are dropped from now on.

1 0 (u xx + y x )(x) • (u x + y)(x)dx = - 1 0 h 2 u(x) • (u x + y)(x)dx = -h 2 1 0 u(x)u x (x)dx + 1 0 u(x)y(x)dx .
Integrating by parts, it follows

1 0 u(x)u x (x)dx = - 1 0 u x (x)u(x)dx + |u(1)| 2 + |u(0)| 2
and, due to (iii) of System (21):

2 1 0 u(x) • u x (x)dx = |u(1)| 2 .
And thus

2 1 0 (u xx + y x )(x)(u x + y)(x)dx = -h 2 |u(1)| 2 + 2 1 0 u(x)y(x)dx . (60) 
On the other hand, after an integration by parts, it holds:

1 0 (u xx + y x ) • (u x + y)dx = - 1 0 (u x + y) • (u xx + y x )dx + |u x (1) + y(1)| 2 -|u x (0) + y(0)| 2 which implies 2 1 0 (u xx + y x )(x) • (u x + y)(x)dx = |u x (1) + y(1)| 2 -|u x (0) + y(0)| 2 . (61)
Now, using v = λu and z = λy (cf. the system just before System (21)), ( 60) and (61) imply

|u x (1) + y(1)| 2 + h 2 |u(1)| 2 = |u x (0) + y(0)| 2 -2 1 0 v(x)z(x)dx . (62) Then, (v) of System (21) with k 2 = 0 (φ j k is an eigenfunction of A 0 ) leads to k 2 1 • |u x (1) + y(1)| 2 = |λ| 4 • |u(1)| 2 = h 4 • |u(1)| 2 = h 2 • |v(1)| 2 . And |u x (1) + y(1)| 2 + h 2 |u(1)| 2 = (1 + h 2 k 2 1 )|v(1)| 2 . (63)
Using (iv) of System [START_REF] Shubov | Asymptotic and Spectral Analysis of the Spatially Nonhomogeneous Timoshenko beam Model[END_REF] as well as the trace Theorem applied to u x implies that there exists a constant C 1 such that:

|u x (0) + y(0)| 2 = |u x (0)| 2 ≤ C 1 u xx 2 L 2 (Ω) + u x 2 L 2 (Ω) . (64) 
Now (i) of system [START_REF] Shubov | Asymptotic and Spectral Analysis of the Spatially Nonhomogeneous Timoshenko beam Model[END_REF] gives:

u xx 2 L 2 (Ω) = λ 2 u -y x 2 L 2 (Ω) ≤ |λ| 2 • u 2 L 2 (Ω) + y x 2 L 2 (Ω) ≤ v 2 L 2 (Ω) + b φ 2 H ≤ φ 2 H + b • φ 2 H ≤ 1 + b. And u x 2 L 2 (Ω) ≤ u x + y 2 L 2 (Ω) + y 2 L 2 (Ω) ≤ φ 2 H + 1 |λ| 2 z 2 L 2 (Ω) ≤ 1 + b |λ| 2 ≤ 1 + b h 2 .
Using successively the two previous estimates in (64), the Cauchy-Schwarz inequality applied to the last term of the right-hand side of (62), ( 63) and (59), we get the first result of (58):

| < e 5 , φ j k > H | ≤ C 1 (2 + b h 2 ) + 2 1 + h 2 k 2 1 1/2 . ( 65 
)
Indeed, by definition, h j,0 k is the imaginary part of λ j,0 k which behaves like k for large values of k (cf. Propositions 3.6 and 3.8).

To end this proof, let us give the sketch of the proof of the second estimate of (58). The ideas are similar to those developed just before. That is why the details are not given here. It holds < e 6 , φ j+1 k > H = γ j,0 k = z j,0 k (1) with the same notation as before. Integrations by parts allow to write the analogous of (62): 

Polynomial decay rate of the energy

The energy is already known to be not uniformly stable (cf. Lemmas 3.2 and 3.3 and the remarks just below the lemmas). It is now proved to decay polynomially. To this end, the solution is explicitly expressed using the Riesz basis F of generalized eigenvectors of A (cf. Theorem 4.2).

Theorem 5.1. (Polynomial decay rate of the energy) Assume that a = 1 in System (1)- [START_REF] Castro | Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass[END_REF]. Then there exists a constant C > 0 such that for any initial datum U 0 ∈ D(A), the energy of the system rewritten as [START_REF] Han | Exponential stabilisation of a simple tree-shaped network of Timoshenko beam system[END_REF] satisfies the following estimate: 

E(t) ≤ C • U 0 2 D(A)
(u 0 ) j l ψ j l .
The solution of ( 10) is: Since F is a Riesz basis, there exists a positive constant K such that the energy satisfies, for any t > 0:

U (t) =
E(t) ≤ K   i∈I e 2 (κ i )t • max{t m i -1 ; 1} • n i k=1 δ ik l=1 |(u 0 ) l ik | 2 + |l|≥k 0 ,j=1;2 e 2 (λ j l )t • |(u 0 ) j l | 2   .
Using the asymptotic analysis performed in Propositions 3.6 and 3.8 and since (λ j l ) < 0, for all |l| ≥ k 0 , j = 1, 2, it follows that E(t) ≤ K max i∈I {t m i -1 ; 1} • e -2 min i∈I ( (|κ i |)t Hence the result.

Numerical validation

The asymptotic behavior of λ k , given by Propositions 3. 
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