
HAL Id: hal-01170349
https://hal.science/hal-01170349

Submitted on 1 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hamiltonian fluid closures of the Vlasov-Ampère
equations: from water-bags to N moment models

M Perin, Cristel Chandre, P.J. Morrison, E Tassi

To cite this version:
M Perin, Cristel Chandre, P.J. Morrison, E Tassi. Hamiltonian fluid closures of the Vlasov-Ampère
equations: from water-bags to N moment models. Physics of Plasmas, 2015, 22, pp.092309. �hal-
01170349�

https://hal.science/hal-01170349
https://hal.archives-ouvertes.fr


Hamiltonian fluid closures of the Vlasov-Ampère equations: from water-bags
to N moment models

M. Perin,1 C. Chandre,1 P.J. Morrison,2 and E. Tassi1
1)Aix-Marseille Université, Université de Toulon, CNRS, CPT UMR 7332, 13288 Marseille,

France
2)Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712-1060,

USA

Moment closures of the Vlasov-Ampère system, whereby higher moments are represented as functions of lower
moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using
water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid
velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The
cases of one, two and three water-bags are treated and their Hamiltonian structures are provided. In each case,
we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be
extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments.
The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive
Hamiltonian N -field fluid models is proposed.

I. INTRODUCTION

Due to their high temperature, many plasmas, such as
the ones encountered in the core of tokamaks or in the
magnetosphere, can be considered as collisionless. Conse-
quently, they may be well described by kinetic equations
such as the Vlasov-Maxwell system where the particle dy-
namics is described by a distribution function f(x, v, t)
defined on a six-dimensional phase space (x, v) with x

being the position and v the velocity. It is particu-
larly challenging to solve such kinetic models, even us-
ing advanced numerical techniques. In addition, a full
kinetic description of the system might provide unnec-
essary information, depending on the phenomena under
investigation. This is the justification, e.g., for gyroki-
netic theories where a strong magnetic field assumption1

leads to the perpendicular component of the velocity be-
ing replaced by the magnetic moment considered as an
adiabatic invariant. Similarly, anisotropy due to a strong
magnetic field is also used to reduce the complexity of the
original kinetic problem in the double adiabatic theory2.
More generally, and ideally, reduced models obtained by
some kind of closure leads to a decrease in the complexity
of the original kinetic problem, while maintaining accu-
racy and providing physical insights about the processes
at work. Consequently, fluid reductions of kinetic equa-
tions are often sought.

Generally speaking, fluid models are obtained by pro-
jecting the distribution function as follows:

f(x, v, t) ≃
N∑

i=0

Pi(x, t)ei(v), (1)

where Pi(x, t) is the i-th fluid moment defined as the i-th
moment of the distribution function with respect to the
velocity v, i.e.,

Pi(x, t) =

∫
v ⊗ v · · · ⊗ v︸ ︷︷ ︸

i times

f(x, v, t) dv,

for all i ∈ N and {ei(v)} is some specific fixed set of
basis functions. The dynamics of the distribution func-
tion f(x, v, t) is then given by the dynamics of the fluid
moments that are functions of the configuration space
coordinate x only. This makes fluid models, which in-
volve quantities such as, the density ρ(x, t) = P0(x, t),
the fluid velocity u(x, t) = P1(x, t)/P0(x, t) and the pres-
sure P (x, t) = P2(x, t) − P 2

1 (x, t)/P0(x, t), convenient to
interpret. Furthermore, since fluid variables only depend
on x at each time, they are substantially less expensive
to solve numerically than their kinetic counterpart.

Clearly accurate reduced fluid models are desirable,
but finding effective fluid closures is a difficult and largely
open problem. Indeed, despite their strong physical rele-
vance, a general or optimal procedure for obtaining them
for the Vlasov equation does not exist. For example, con-
sider the following simple free advection equation:

∂tf = −v · ∇f , (2)

which is the Vlasov equation with field dynamics re-
moved. Multiplying Eq. (2) by v

n and integrating with
respect to the velocity, yields the following infinite hier-
archy of moment equations:

∂tPi = −∇ · Pi+1, (3)

for all i ∈ N. In order to be able to solve Eqs. (3), one
has to truncate the infinite set of equations at some order
N ∈ N. However, because the time evolution of PN in-
volves PN+1, the latter must be neglected or expressed in
terms of lower order moments, i.e., PN+1 = PN+1(Pi≤N ).
This is the ubiquitous closure problem for fluid reductions
of kinetic equations.

In conventional fluid closure theory a collision pro-
cess and assumption of local thermodynamic equilibrium
is basic. Instead, in this article we consider Hamilto-
nian fluid reductions, where we investigate closures based
on whether or not they preserve Hamiltonian structure.
This allows us to select out a subset of all possible fluid
closures that preserve the geometrical structure and this
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prevents the introduction of non-physical dissipation in
the resulting fluid moment system, without requiring
nearness to thermal equilibrium.

The case of two moments3 corresponds to the well-
known exact water-bag reduction, so it is not surprising
that it is Hamiltonian. However, as one increases the
number of moments, this increases the dimension of the
subset Pi≤N , and the constraints needed to preserve the
Hamiltonian structure become more difficult to solve4,5,
so that eventually, it is not possible to obtain a general
analytic expression for the closure PN+1 = PN+1(Pi≤N ).

The problem of deriving Hamiltonian fluid models can,
however, be tackled from different angles. Indeed, in-
stead of Eq. (1), other representations of the distribu-
tion function can be used to decrease the complexity of
the initial problem. In this paper we consider a gen-
eral water-bag model6–8, which has also been used, e.g.,
in gyrokinetics9–12. In one dimension, this projection is
obtained by replacing the distribution function with a
piecewise constant function in the velocity v such that

f(x, v, t) ≃
N+1∑

i=1

aiΘ[v − vi(x, t)], (4)

where ai are constants, Θ denotes the Heavyside distribu-
tion and vi(x, t) is a set of contour velocities. Like with
the fluid moment projection, the dynamics of the dis-
tribution function f(x, v, t) defined on phase space has
been replaced by the dynamics of N + 1 fields defined on
configuration space, namely vi(x, t) for all 1 ≤ i ≤ N +1.

The use of the water-bag projection constitutes an ex-
act reduction and consequently the resulting system is
intrinsically Hamiltonian13,14. When the number of field
variables expressed in terms of fluid moments and the
number of contour velocities are the same, the water-bag
projection is easier to handle than that of the usual fluid
moments representation; in particular, this is the case
for the computation of a Poisson bracket. However, even
though the contour velocities vi are rather convenient to
handle from a computational point of view, their macro-
scopic physical interpretation is less obvious than for the
fluid moments. Consequently, there is a balance to seek
between the computational simplicity of the closure pro-
vided by the water-bag model and the physical relevance
of the fluid moments.

In this article, we investigate links between the water-
bag and the fluid moment representations in order to gen-
erate new Hamiltonian closures. Indeed, any truncation
of the infinite series given by Eq. (4) is preserved by the
dynamics and hence constitutes a closure. As a conse-
quence, the subset of all the water-bag distribution func-
tions is invariant. Following the water-bag projection, we
perform a fluid reduction of the distribution function to
obtain a Hamiltonian fluid model. Then, we construct a
systematic procedure to obtain a fluid reduction from the
water-bag distribution function by preserving the Hamil-
tonian structure of the parent kinetic model. We extend
this procedure to build general N -field Hamiltonian fluid
models with N − 2 internal degrees of freedom.

In Sec. II, we provide the Hamiltonian structure of the
Vlasov-Ampère equations which constitute the parent ki-
netic model. The Casimir invariants of the associated
bracket are provided. We introduce the water-bag dis-
tribution function and give the associated Hamiltonian
structure. Some properties of the system such as in-
variants are discussed. In Sec. III, we establish a link
between the water-bag and the fluid models. This is
done by exhibiting a peculiar set of fluid variables that
allows us to make explicit the fluid closure correspond-
ing to the water-bag model. We use the density and
the fluid velocity to account for the macroscopic energy
of the system and we propose suitable variables to take
into account internal degrees of freedom coming from mi-
croscopic phenomena. The Hamiltonian structure of the
resulting equations is provided and their Casimir invari-
ants are discussed. We also address the thermodynamic
implications of the new variables. Lastly in Sec. III D,
new models are proposed to extend the results obtained
from the water-bag model to more general distribution
functions. This allows us to construct general N -field
fluid models that describe plasmas with N − 2 internal
degrees of freedom.

II. THE HAMILTONIAN STRUCTURE OF THE
VLASOV-AMPÈRE EQUATIONS AND THE WATER-BAG
MODEL

We investigate the dynamics of a one-dimensional
plasma made of electrons of unit mass and negative unit
charge evolving in a background of static ions. This sim-
plified system contains essential difficulties of more com-
plete dynamics. We assume vanishing boundary con-
ditions at infinity in velocity v and periodic boundary
conditions in the spatial domain of unit length. The
time evolution of the distribution function of the elec-
trons f(x, v, t) and the electric field E(x, t) is described
by the one-dimensional Vlasov-Ampère equations,

∂tf = −v∂xf + Ẽ∂vf, (5)

∂tE = −̃, (6)

where Ẽ = E −
∫

E dx and ̃ = j −
∫

j dx are the fluc-
tuating parts of the electric field E(x, t) and the current
density j(x, t) = −

∫
vf(x, v, t) dv, respectively.

The Vlasov-Ampère model possesses a Hamiltonian
structure for the distribution function of the electrons
f(x, v, t) and the electric field E(x, t). The Poisson
bracket acting on functionals F [f, E] is15–17

{F, G} =

∫
f
[
∂xFf ∂vGf − ∂xGf ∂vFf

+ F̃E∂vGf − G̃E∂vFf

]
dxdv, (7)

where Ff and FE denote the functional derivative of F
with respect to the distribution function f(x, v, t) and
the electric field E(x, t), respectively. Bracket (7) is a
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Poisson bracket, i.e., it satisfies four essential properties:
it is linear in both its arguments; it is alternating, i.e.,
{F, F} = 0; it satisfies the Leibniz rule, i.e., {F, GH} =
{F, G}H + G{F, H}; it verifies the Jacobi identity, i.e.,

{F, {G, H}} + {H, {F, G}} + {G, {H, F}} = 0.

for all functionals F , G and H . The Hamiltonian of the
system, which corresponds to the total energy, is

H[f, E] =

∫
v2

2
f dxdv +

∫
E2

2
dx, (8)

where the first term accounts for the kinetic energy of the
electrons and the second term corresponds to the energy
of the electric field. Bracket (7) and Hamiltonian (8) lead
to Eqs. (5) and (6) by using ∂tf = {f, H} and ∂tE =
{E, H}.

The Casimir invariants of a bracket {·, ·} are particular
observables C that commute with all observable F , i.e.,
{F, C} = 0 for all functionals F . Bracket (7) possesses a
local (x-dependent) Casimir invariant given by

Cloc = ∂xE +

∫
f dv, (9)

which corresponds to Gauss’s law. There are also global
(x-independent) invariants. Namely,

Ē =

∫
E dx, (10)

which expresses the fact that the mean value of the elec-
tric field remains constant. This results from the periodic
boundary conditions in space and from the definition of
the electric field E = −∂xΦ where Φ(x, t) is the elec-
trostatic potential. Finally, there is a family of global
invariants given by

C1 =

∫
φ(f) dxdv, (11)

where φ(f) is any function of f . This family of Casimir
invariants arises from particle relabeling symmetry and
includes, e.g., the cases of conservation of the total mass
and the usual entropy.

The water-bag model is a particular solution of Eqs. (5)
and (6) with a piecewise constant initial condition for the
distribution function f(x, v, t),

fN(x, v, t) =
N+1∑

i=1

ai Θ[v − vi(x, t)], (12)

which can be done for any N ∈ N. In water-bag theory
one is interested in approximating a smooth initial con-
dition by a water-bag approximation, such as that shown
in Fig. 1. In order for this distribution function to have
compact support, we further require the following con-
straint:

N+1∑

i=1

ai = 0.

Figure 1. Sketch of a distribution function (in light red) and
its water-bag approximation (in dark blue).

Moreover, the velocities vi(x, t) are supposed to be or-
dered such that for all (x, t) ∈ [0; 1[×R+ we have
v1(x, t) < v2(x, t) < · · · < vN+1(x, t). In what follows,
we will refer to this distribution function as an N -water-
bag distribution function. A distribution function of the
form of Eq. (12) is solution of Eqs. (5) and (6), and hence
its form is preserved by the dynamics, if and only if the
contour velocities vi(x, t) satisfy6–12,18

∂tvi = −vi∂xvi − Ẽ, (13)

for all 1 ≤ i ≤ N + 1 and

∂tE = −1

2

N+1∑

i=1

aiṽ2
i . (14)

As a consequence, solving the Vlasov equation for a
water-bag distribution function fN (x, v, t) is equivalent
to solving the N + 1 contour equations given by Eq. (13)
for the contour velocities vi(x, t). Coupling between the
different contours is then provided by Eq. (14)19.

The water-bag model possesses a Hamiltonian
structure14,20,21 inherited from the original Vlasov-
Ampère equations. This means that there exist a bracket
{, }W B and a Hamiltonian H such that Eqs. (13)-(14) are
obtained by ∂tvi = {vi, H}W B for all 1 ≤ i ≤ N + 1 and
∂tE = {E, H}W B, respectively. For the water-bag dis-
tribution function of Eq. (12), the dynamical variables
are the contour velocities vi(x, t) and the electric field
E(x, t). Using the chain rule, the functional derivative of
F with respect to vi, denoted Fi, is

Fi = −aiFf

∣∣
v=vi

, (15)

for all 1 ≤ i ≤ N + 1. Along with Eqs. (12) and Eq. (15)
this leads to the water-bag bracket20,21

{F, G}W B =

N+1∑

i=1

∫ [
1

ai

Fi∂xGi + GiF̃E − FiG̃E

]
dx.

(16)
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One can show that Bracket (16) is a Poisson bracket,
which is a property inherited from the Vlasov-Ampère
equations. The Hamiltonian of the system is

H[v1, . . . , vN+1, E] =
1

2

∫ [
−1

3

N+1∑

i=1

aiv
3
i + E2

]
dx ,

(17)
which is obtained from Eq. (8) by using Eq. (12).

An important feature of Bracket (16) is that it is
closed. Thus, for any number of bags N ∈ N, the set
of the water-bag distribution functions fN of N bags is a
sub-Poisson algebra of the Vlasov-Ampère model. This
means that the Vlasov-Ampère dynamics preserves the
number of bags. In particular, the water-bag model is
Hamiltonian for any number of bags. This is particularly
interesting from a numerical point of view, e.g., as there
is no nonphysical dissipation introduced by the water-bag
approximation even for a low order approximation with
a small number of bags.

Bracket (16) possesses several Casimir invariants. By
using Eq. (12), Eq. (9) becomes

Cloc = ∂xE −
N+1∑

i=1

aivi.

The global invariant given by Eq. (10) is preserved by
Eq. (7). The family of Casimir invariants given by
Eq. (11) is projected to

C1 =

N∑

i=1

φ (Ai) (v̄i+1 − v̄i),

where Ai =
i∑

k=1

ak and

v̄i =

∫
vi(x, t) dx,

for all 1 ≤ i ≤ N + 1. As C1 is a Casimir invariant
for any function φ, this shows that the projection of the
invariant given by Eq. (11) leads to the generation of N
invariants, namely

C1,i = v̄i+1 − v̄i,

for all 1 ≤ i ≤ N . However, C1 is computed such that
[f, δC1/δf ] = 0 for any distribution function f , where
[g, h] = ∂xg∂vh − ∂xh∂vg. If we now look only at water-
bag distribution functions, the requirement for C1 be-
comes [f, δC1/δf ] = 0 for all f given by Eq. (12), and
hence is less restrictive. This leads to the creation of
an additional invariant, e.g., v̄1. Thus, there are N + 1
Casimir invariants given by v̄i for all 1 ≤ i ≤ N + 1, i.e.,
as many Casimir invariants as the number of fields.22

III. LINK BETWEEN THE WATER-BAG MODEL AND
THE FLUID MOMENTS OF THE DISTRIBUTION
FUNCTION

The contour velocities vi(x, t) provide immediate ki-
netic theory information: they define the partitioning
of the distribution function in the velocity space, sort-
ing particles into water-bags according to their velocities.
However, their interpretation on the fluid level in terms
of moments Pi(x, t), given by

Pi(x, t) =

∫
vif(x, v, t) dv (18)

for all i ∈ N, is not so clear. This relationship is given
explicitly by inserting Eq. (12) into Eq. (18), yielding

Pi(x, t) =
−1

i + 1

N+1∑

k=1

akvi+1
k (x, t), (19)

for all i ∈ N. Our strategy is to use the information
provided by the water-bag model to build Hamiltonian
models for the fluid moments Pi(x, t). Indeed, as stated
in Sec. II, the water-bag model possesses a Hamiltonian
structure. As a consequence, by expressing the contour
velocities with respect to the fluid moments we can ob-
tain particular fluid models with an arbitrary number
of moments. We believe that this is a useful strategy
because constructing general fluid models can be tech-
nically very challenging5. The closures provided by the
water-bag models provide insight for building more gen-
eral fluid models.

A. The single water-bag model

First consider the case of a single water-bag in order to
illustrate our approach, which will be generalized to an
arbitrary number of water-bags corresponding to an arbi-
trary number of fluid moments. This simple model con-
stitutes a good illustration of our strategy. If we consider
a single water-bag, or equivalently two contour velocities,
the distribution function simply reads

f1(x, v, t) = Θ[v − v1(x, t)] − Θ[v − v2(x, t)].

where we have set a1 = 1 defining unit height to the
water-bag. Using Eq. (19), the first two moments of the
distribution function are

P0 = v2 − v1 and P1 =
v2

2 − v2
1

2
.

which upon inversion yield

v1 =
P1

P0

− P0

2
and v2 =

P1

P0

+
P0

2
.

Defining the density ρ = P0 and the fluid velocity u =
P1/P0, we obtain the fluid variables

v1 = u − ρ

2
and v2 = u +

ρ

2
.
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As a consequence, we are able to express the contour
velocities with respect to the usual fluid moments. In
terms of these fluid variables, the water-bag bracket given
by Eq. (16) is

{F, G}1 =

∫ [
Gu∂xFρ − Fu∂xGρ + GuF̃E − FuG̃E

]
dx,

where now Fρ and Fu denote the functional derivative
of F with respect to ρ and u, respectively. This bracket,
which corresponds to the cold-plasma bracket17, is closed,
a property inherited from the original water-bag bracket
given by Eq. (16). In terms of the variables ρ, u and E,
Hamiltonian (17) becomes

H[ρ, u, E] =

∫ (
1

2
ρu2 + ρU(ρ) +

E2

2

)
dx,

where U(ρ) = ρ2/24 is the specific internal energy of the
system. The pressure is defined by the usual thermody-
namic relation P (ρ) = ρ2∂U/∂ρ = ρ3/12. The reduced
moments, defined by

Si(x, t) =
1

ρi+1

∫
(v − u)if(x, v, t) dv, (20)

for all i ≥ 2, appear to be suitable variables to describe
the Poisson structure of the fluid equations resulting from
the Vlasov-Ampère model5. With this definition, the
second order reduced moment reads S2 = P/ρ3, which
eventually leads to S2 = 1/12, i.e., S2 is constant. (Note,
throughout we will express the Si in 1/ai

1 units for all
i ≥ 2.)

In term of the reduced moments, the Hamiltonian of
the system reads

H[ρ, u, E] =
1

2

∫ (
ρu2 + ρ3S2 + E2

)
dx ,

and the equations of motion are

∂tρ = {ρ, H}1 = −∂x(ρu), (21)

∂tu = {u, H}1 = −u∂xu − 1

ρ
∂x(ρ3S2) − Ẽ, (22)

∂tE = {E, H}1 = ρ̃u. (23)

These are the equations for a barotropic fluid undergo-
ing an adiabatic process. Indeed, the relationship be-
tween the pressure P and the density ρ is such that
P/ρ3 = S2 = 1/12 is a constant. This is the charac-
teristic isentropic equation of state of an ideal gas with
one degree of freedom. The local Casimir invariant given
by Eq. (9) is preserved and is

Cloc = ∂xE + ρ. (24)

In addition, the system have three global invariants: the
mean value of the electric field given by Eq. (10) and

ρ̄ =

∫
ρ dx, (25)

ū =

∫
u dx. (26)

The first invariant is conservation of total mass, which
results from the fact that the system is isolated. This
Casimir invariant results from the projection of Eq. (11).
As for the electric field, the last Casimir invariant, corre-
sponds to conservation of the mean value of the velocity.
As noted, this additional invariant arises from the closure
procedure.

B. Two water-bag model: introduction of the
thermodynamical variables

Now consider the case of two water-bags, in order to
characterize more precisely the closure provided by the
water-bag model and its relation to the fluid moments.
Indeed, there exists an infinite number of Hamiltonian
fluid models with three moments4. By using the reduced
moments defined by Eq. (20), Hamiltonian models for
the variables ρ, u and S2 are such that S3 is an arbitrary
function of S2. Two water-bags means we have three
contour velocities or, equivalently, three fluid moments,
which provides a particular example of the more general
closure S3 = S3(S2). Such a distribution function, whose
expression is given by Eq. (12) with N = 2, is represented
in Fig. 2. By using Eq. (19), the first three moments of
the distribution function are

P0 = v3 − v1 + a2(v3 − v2),

P1 =
v2

3 − v2
1

2
+ a2

v2
3 − v2

2

2
,

P2 =
v3

3 − v3
1

3
+ a2

v3
3 − v3

2

3
.

Unlike the single water-bag case, expressing the contour
velocities with respect to the fluid moments with two
water-bags is more complicated. This is partially due
to the fact that P2 involves cubic terms in the contour
velocities vi. This issue becomes more acute as the num-
ber of water-bags increases. A first step toward the fluid
representation can be easily done by using the following
variable:

n1 =
v2 − v1

v3 − v1 + a2(v3 − v2)
,

along with the density ρ, the fluid velocity u, and the
electric field E as used in the single water-bag model. In
this case, ρn1 simply corresponds to the density of the
particles contained in the first bag of unit height. We see
that

∫
ρn1 dx, i.e., the total number of particles in the

first bag, is a Casimir invariant of Eq. (16), hence is a con-
stant of motion. The contour velocities can be expressed
explicitly with respect to these variables as follows:

v1 = u +
ρ

2

a2n1(n1 − 2) − 1

1 + a2

,

v2 = u +
ρ

2

n1(a2n1 + 2) − 1

1 + a2

,

v3 = u +
ρ

2

a2n2
1 + 1

1 + a2

.
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Expressed in terms of the variables (ρ, u, n1, E), (16)
takes the particularly simple form

{F, G}2 =

∫ [
Gu∂xFρ − Fu∂xGρ + GuF̃E − FuG̃E

− 1

ρ
(F1Gu − G1Fu)∂xn1 +

1 + a2

a2

F1

ρ
∂x

(
G1

ρ

)]
dx,

(27)

where F1 denotes the functional derivative of F with re-
spect to n1. Bracket (27) is closed which is, as in the
single water-bag model, a property inherited from the
original water-bag bracket given by Eq. (16). In terms of
the variables ρ, u, n1 and E, Hamiltonian (17) becomes

H[ρ, u, n1, E] =
1

2

∫ [
ρu2 + ρ3S2(n1) + E2

]
dx, (28)

where

S2(n1) =
1 + 6a2n2

1 + 4a2(a2 − 1)n3
1 − 3a2

2n4
1

12(1 + a2)2
. (29)

This shows that S2 is a function of n1 only. The spe-
cific internal energy now becomes U(ρ, n1) = ρ2S2(n1)/2.
As a consequence, in addition of the pressure defined
as the thermodynamic conjugate variable of the density
through the relation P = ρ2∂U/∂ρ, we can define some
potential µ1 as the conjugate variable of n1, such that
µ1 = ρ2S′

2(n1)/2. This shows that more accurate fluid
models are obtained by introducing more information on
the thermodynamic properties of the system through in-
ternal degrees of freedom. Bracket (27) and Hamilto-
nian (28) lead to Eqs. (21)-(23) and the following addi-
tional equation:

∂tn1 = {n1, H}2 = −u∂xn1 +
1 + a2

a2 ρ
∂x

[
ρ2

2
S′

2(n1)

]
.

The first term of this equation is an advection term, while
the second is a flow term resulting from the potential
µ1 = ρ2S′

2(n1)/2. Indeed, analogously to the pressure P
that drives a force −∂xP in Eq. (22), here µ1 drives a
flow ∂xµ1.

Along with the Casimir invariants given by Eqs. (24),
(10), and (25), the two water-bag model has the following
global invariants:

ρn1 =

∫
ρn1 dx, (30)

C2 =

∫ (
u +

a2

2(1 + a2)
ρn2

1

)
dx. (31)

The Casimir invariant given by Eq. (30) is inherited
from the original Vlasov-Ampère model and amounts to
conservation of the total entropy. Indeed, in statistical
physics, the entropy of a system is related to its num-
ber of microstates. Here the microstates are given by the
amount of particles in each bags. The invariant given by

Eq. (31) is a new conserved quantity and is generated by
the reduction procedure. Noting that Eq. (29) defines a
bijection g : n1 ∈ [0; 1] 7→ S2 = g(n1) ∈ R+ such that
we can write n1 = κ(S2) where κ = g−1, the previous
invariants become

ρκ(S2) =

∫
ρκ(S2) dx,

C2 =

∫
u +

a2

2(1 + a2)
ρκ2(S2) dx.

Therefore, we see that the two water-bag model is a
particular case of the more general three moments fluid
model4.

As stated previously, the two water-bag model is
closed. Thus, we expect the associated fluid model to
be closed too, and the fourth reduced moment S3 to be
a function of S2 only. In what follows, we choose a2 ≥ 0.
This corresponds to a configuration in which the second
bag is taller than the first, as depicted in Fig. 2. The case
a2 < 0 is equivalent through the symmetry v → −v and
n1 → 1 − n1. By using the definition of the third order
reduced moment given by Eq. (20) with i = 3, we find

S3 = −a2(n1 − 1)2n2
1(1 + a2n1)2

4(1 + a2)3
.

Since S3 is a function of n1 only and n1 = κ(S2), we see
that S3 is a function of S2 only, i.e., S3 = S3(S2) as ex-
pected. This relation was expected because it was shown
in Ref. [4] that it is the case for general Hamiltonian clo-
sures with three fluid moments obtained from the Vlasov
equation. The fraction of particles in the first water-bag
parametrizes the curve n1 7→ [S2(n1), S3(n1)]. This re-
sult corresponds to a closure for the heat flux q = ρ4S3/2
as a function of the density ρ and the pressure P = ρ3S2.
We do not give the explicit relationship between S2 and
S3 here because it does not provide much information.
However, the dependence of S3 on S2 is plotted in Fig. 2
for different values of a2. We observe that as a2 → 0, we
have S2 → 1/12 and S3 → 0. This is consistent with the
results of Sec. III A. Indeed, for a2 = 0 the two water-
bags have the same heights and, as a consequence, merge
into one such that we recover the values of the fluid mo-
ments corresponding to a single water-bag model. More-
over, as a2 increases, the solution tends rapidly toward
an equilibrium obtained with a2 → +∞.

In summary, the two water-bag model can be conve-
niently described by using appropriate fluid variables:
the density ρ and the fluid velocity u are natural fluid
quantities that take into account, in particular through
the definition of the kinetic energy K =

∫
ρu2/2 dx, the

macroscopic energy of the system. The internal effects
are described by the internal energy. Using the parti-
tioning of the number of particles into two bags as the
internal degree of freedom of the system, we can define
the specific internal energy as U(ρ, n1) = ρ2S2(n1)/2.
The two water-bag model corresponds to a system with
one internal degree of freedom described by n1.
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Figure 2. Upper panel: sketch of a double water-bag distri-
bution function. Lower panel: plot of S3 as a function of S2

for a double water-bag distribution function corresponding to
the upper panel and for different values of a2 (given by the
colorbar).

C. Three water-bag model

In this section, we demonstrate the usefulness of the
new thermodynamical variables for linking the water-bag
and fluid models by considering the three water-bag dis-
tribution function, whose expression is given by Eq. (12)
for N = 3. A three water-bag model is equivalent to a
Hamiltonian fluid model with four fluid moments. Even
though a particular closure based on dimensional anal-
ysis has been previously found for such fluid models5,
there is currently no general Hamiltonian closure for fluid
models with four moments. Finding all the closures
is difficult because it requires solving non-linear PDEs
obtained from the Jacobi identity. We show here, by
using the thermodynamic variables, that the water-bag
distribution function with three water-bags is another,
parameter-dependent closure for fluid models with four
moments. This solution is simpler to compute than the
general closure, and gives us some useful information.
Different three water-bag distribution functions are de-
picted in Figs. 3, 4 and 5.

Following the procedure of Sec. III B, we introduce the
thermodynamic variable

n2 =
(1 + a2)(v3 − v2)

v4 − v1 + a2(v4 − v2) + a3(v4 − v3)
,

in addition to ρ, u, n1, and E used in the two water-
bag model. Here ρn2 corresponds to the density of the
particles contained in the second bag. The expressions of
the contour velocities in terms of these variables are given
by Eq. (34) and will not be detailed here. Expressed in
terms of the variables (ρ, u, n1, n2, E), Bracket (16) takes

the particularly simple form

{F, G}3 =

∫ [
Gu∂xFρ − Fu∂xGρ + GuF̃E − FuG̃E

− 1

ρ
(FiGu − GiFu)∂xni + βik

Fi

ρ
∂x

(
Gk

ρ

)]
dx, (32)

where Fi denotes the functional derivative with respect to
ni for i ∈ {1, 2} and where the summation over repeated
indices from 1 to 2 is assumed. Here β is a constant 2×2
symmetric matrix given by

β =
(1 + a2)

a2a3

(
a3 −a3

−a3 (1 + a2)(a2 + a3)

)
.

In terms of the variables ρ, u, n1, n2, and E, Hamilto-
nian (17) becomes

H[ρ, u, n1, n2, E] =
1

2

∫ [
ρu2 + ρ3S2(n1, n2) + E2

]
dx,

(33)
where S2(n1, n2) is given by Eq. (37). As in the two
water-bag model, we can define the thermodynamic po-
tential µ = ∂U/∂n = ρ2(∂S2/∂n)/2. Analogously to
multi-components systems, the variables ni act as in-
ternal degrees of freedom that characterize the model
through a partitioning of the particles with respect to
their energy or, equivalently, their temperature. In-
deed, it is expected that a system like the collisionless
Vlasov-Ampère system should not thermalize and as a
consequence is described by more than one temperature.
Bracket (32) and Hamiltonian (33) lead to Eqs. (21) -
(23), and in addition the following equations:

∂tni = {ni, H}3 = −u∂xni +
1

ρ
βik∂x

(
ρ2

2

∂S2

∂nk

)
,

for i ∈ {1, 2}, where summation over repeated indices
form 1 to 2 is assumed. These equations exhibit an ad-
vection term and a driving term through the existence of
a potential µ = ρ2(∂S2/∂n)/2.

Along with the Casimir invariants given by Eqs. (24),
(10), (25), and (30), Bracket (32) has the following global
invariants:

ρn2 =

∫
ρn2 dx,

C2 =

∫ {
u +

ρ

2

[
a2n2

1

(1 + a2)
+

a3(n1 + n2)2

(1 + a2)(1 + a2 + a3)

]}
dx .

Thus, as for the other models, we have as many global
Casimir invariants as dynamical variables. Moreover,
there is some generalized velocity which is a common
feature of all fluid models derived from Vlasov-Ampère
equations.

By using Eq. (37), we can express S2, S3 and S4

as functions of n1 and n2. For any (a2, a3), these
functions define a unique two-dimensional manifold
[S2(n1, n2), S3(n1, n2), S4(n1, n2)].
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Figure 3. Upper panel: sketch of a three water-bags distri-
bution function whose typology exhibits a bell-shape. Lower
panel: colormap of S4 as a function of S2 and S3 for (a2, a3) =
(2, −1.75) corresponding to a distribution function given by
the upper panel.

There are mainly three configurations of interest for
the distribution function, with other typologies obtained
by using different symmetries. The first configuration has
0 < −a3 < a2. This bell-shaped configuration is shown
in Fig. 3. The second configuration has 0 < −a2 < a3

and corresponds to a case in which the second bag is
the smallest. Such a typology exhibits a “hole" in the
distribution function shown in Fig. 4. The last typology
has a2 > 0 and a3 > 0 and corresponds to a configuration
with the third bag taller than the second, which is taller
than the first. Such a typology is shown in Fig. 5. In
Figs. 3, 4, and 5 we plot S4 as a function of S2 and S3

for the three configurations.

Observe, despite the change in distribution function
typology, which result in a change in the typology of the
manifolds defined by the closure, S4 always increases as
S2 increases. Moreover, for a configuration as depicted
in Fig. 5, the sign of S3 is fixed, whereas it may vary
for the other configurations depending on the respective
widths of the water-bags. The same computation can
be performed for higher order moments. In particular, a
Hamiltonian fluid model for four moments requires clo-
sures on the fourth and fifth order moments respectively,
namely S4 and S5

5.

D. N water-bag model

The method presented in the previous subsections can
be extended to an arbitrary number of water-bags with a

Figure 4. Upper panel: sketch of a three water-bags distri-
bution function whose typology exhibits a hole. Lower panel:
colormap of S4 as a function of S2 and S3 for (a2, a3) =
(−0.15, 0.9) corresponding to a distribution function given by
the upper panel.

corresponding arbitrary number of fluid moments. This
is important because by increasing the number of water-
bags we increase the accuracy of the description, allow-
ing for more refined kinetic effects. This is consistent
with the fact that the water-bag models come from a dis-
cretization of the distribution function in velocity space.
An analogy can be made with vibrations of structures23.
In these systems, the frequency spectrum is continuous.
However, these models can be accurately described by a
finite number of coupled springs with a discrete spectrum
as long as the number of springs is sufficiently high. Thus
by increasing the number of water-bags, yet keeping it fi-
nite, we can recover kinetic information about the system
within the framework of a fluid description. Considering
N bags, we define the following variables:

ρ = −
N+1∑

i=1

aivi,

u =

N+1∑
i=1

aiv
2
i

2
N+1∑
k=1

akvk

,

nl = −
(vl+1 − vl)

l∑
i=1

ai

N+1∑
k=1

akvk

,

for all 1 ≤ l ≤ N − 1. In this case, ρni corresponds to
the density of the particles contained in the i-th bag for
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Figure 5. Upper panel: sketch of a three water-bags distribu-
tion function whose typology exhibits a monotonic increase.
Lower panel: colormap of S4 as a function of S2 and S3 for
(a2, a3) = (0.25, 2) corresponding to a distribution function
given by the upper panel.

1 ≤ i ≤ N − 1. We see that
∫

ρni dx, i.e., the num-
ber of particles in the i-th bag, is a Casimir invariant of
Eq. (16). The contour velocities can be expressed explic-
itly with respect to these variables such that

vi = u + ρΨi (34)

for all 1 ≤ i ≤ N + 1 and where

ΨN+1 =
1

2

N∑

i=1

ai

a2
N+1

[
1 −

N−1∑

k=1

nk − aN+1

N−1∑

k=i

nk

Ak

]2

,

and

Ψm = ΨN+1 +
1

aN+1

[
1 −

N−1∑

k=1

nk − aN+1

N−1∑

k=m

nk

Ak

]
,

for all 1 ≤ m ≤ N . Expressed in terms of the variables
(ρ, u, n1, . . . , nN−1, E), Bracket (16) takes the particu-
larly simple form given by

{F, G}N =

∫ [
Gu∂xFρ − Fu∂xGρ + GuF̃E − FuG̃E

− 1

ρ
(FiGu − GiFu)∂xni + βik

Fi

ρ
∂x

(
Gk

ρ

)]
dx, (35)

where Fi denotes the functional derivative with respect
to ni for 1 ≤ i ≤ N − 1 and where the summation over
repeated indices from 1 to N − 1 is again assumed. Here

β is a constant tridiagonal (N − 1) × (N − 1) symmetric
matrix given by

β =




λ1 −λ1 0 . . . 0
−λ1 λ1 + λ2 −λ2 . . . 0

0 −λ2 λ2 + λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λN−1




,

where

λi =

i∑
k=1

ak

i+1∑
l=1

al

ai+1

.

Bracket (35) can be further simplified. Indeed, noting
that β is symmetric, hence diagonalizable, we introduce
the variables

νi =

i∑

k=1

nk,

for 1 ≤ i ≤ N − 1. The quantity
∫

ρνi dx corresponds
to the cumulative number of particles in the i first bags.
Eventually, Eq. (35) takes the even simpler form

{F, G}N =

∫ [
Gu∂xFρ − Fu∂xGρ + GuF̃E − FuG̃E

− 1

ρ
(FiGu − GiFu)∂xνi + λi

Fi

ρ
∂x

(
Gi

ρ

)]
dx, (36)

where Fi denotes the functional derivative of F with re-
spect to νi for 1 ≤ i ≤ N − 1 and where summation
over repeated indices from 1 to N − 1 is assumed. The
Hamiltonian associated with this model is given by

H[ρ, u, ν1, . . . , νN−1, E]

=
1

2

∫ [
ρu2 + ρ3S2(ν1, . . . , νN−1) + E2

]
dx,

where the reduced moments can be computed from
Eq. (20) and are given by

Si(x, t) = − 1

(i + 1)ρi+1

N+1∑

k=1

ak[vk(x, t) − u(x, t)]i+1,

for all i ≥ 2. By using Eq. (34), this eventually becomes

Si =
−1

(i + 1)

N+1∑

k=1

akξi+1
k (ν1, . . . , νN−1), (37)

where

ξN+1 =
1

2

N∑

i=1

ai

a2
N+1

[
1 − νN−1 − aN+1

N−1∑

k=i

νk − νk−1

Ak

]2

,

ξm = ξN+1 +
1

aN+1

[
1 − νN−1 − aN+1

N−1∑

k=m

νk − νk−1

Ak

]
,
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Figure 6. Closures of the two water-bags model that define
the projection of the edges of the closure of the three water-
bags model.

for all m such that 2 ≤ m ≤ N − 1. This shows that the
reduced moments Si are functions of the thermodynamic
variables νi only. The equations of motion of the system
are given by Eqs. (21)-(23) and

∂tνi = {νi, H}N = −u∂xνi +
λi

ρ
∂x

(
ρ2

2

∂S2

∂νi

)
,

for all 1 ≤ i ≤ N − 1. Along with the Casimir invariants
given by Eqs. (24), (10), and (25), the N water-bag model
has the following global invariants:

ρνi =

∫
ρνi dx,

C2 =

∫ (
u +

ρ

2

N∑

k=1

ak

a2
N+1

[
νN−1

+ aN+1

N−1∑

l=k

νl − νl−1

Al

]2
)

dx.

for all 1 ≤ i ≤ N − 1.
The closure provided by the N water-bag model is not

straightforward. Indeed, the closure is such that SN+1 =
SN+1(S2, . . . , SN ), which defines an N − 1-dimensional
manifold in R

N parametrized by (ν1, . . . , νN−1). How-
ever, one can apply the tools developed throughout the
previous sections to visualize such a manifold. Indeed,
consider, e.g., a three water-bag distribution function as
shown in Fig. 5 and consider all the distribution func-
tions (three in this example) obtained by combining two
of these bags. These are shown in Fig. 6. We see that
the edges of the manifold defined by the four fluid mo-
ment closure S4 = S4(S2, S3) correspond to the closures
of the three fluid moments models associated with every
combination of two water-bags of the initial three water-
bags distribution function. Analogously, the projections

Figure 7. Upper panel: sketch of a bell-shaped water-bag
distribution function with twenty-seven bags. Lower panel:
projection of the edges of the manifold defining the closure
for the distribution function given by the upper panel.

on the (S2, S3, S4) space of the edges of the manifold
defined by the closure SN+1 = SN+1(S2, . . . , SN ) in the
(S2, S3, . . . , SN+1) space correspond to the closure of the
three fluid moment models associated with every com-
bination of two water-bags of the initial N water-bag
distribution function.

We illustrate the above edge description with the fol-
lowing example. Consider a Maxwellian distribution ap-
proximated with a twenty-seven water-bag distribution
function as shown in Fig. 7. The corresponding fluid
closure is such that S28 = S28(S2, . . . , S27)5. The projec-
tion of this high dimensional manifold on the (S2, S3, S4)
space is depicted in Fig. 7. Consequently, we see that
the information about the whole system is given by all
the possible couplings between two different water-bags.
This makes the study of systems with a high number of
fields easier as it eventually reduces to the study of cou-
pled subsystems with three fields.

Inserting arbitrary functions in front of the terms
(Fi/ρ)∂x(Gi/ρ) in (36) may allow us to extend this
bracket to more general Poisson brackets of the form

{F, G} =

∫ {
Gu∂xFρ − Fu∂xCρ + GuF̃E

− FuG̃E − 1

ρ
(FiGu − GiFu)∂xνi

+ σi(νi)

[
Fi

ρ
∂x

(
Gi

ρ

)
− Gi

ρ
∂x

(
Fi

ρ

)]}
dx, (38)

where the σi are arbitrary functions. In addition, we
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consider Hamiltonians of the general form

H =
1

2

∫ [
ρu2 + ρ3S2(ν1, . . . , νN−1) + E2

]
dx,

where now the dependence of S2 on νi is arbitrary. The
choice of the unknown functions σi and the reduced mo-
ment S2(ν1, . . . , νN−1) should be based on physical ar-
guments. As an example, we expect homogeneous ini-
tial conditions (i.e., ρ = ρ0, u = 0 and νi = νi0) to
be linearly stable. This leads to constraints on σi and
S2(ν1, . . . , νN−1). It is possible show, e.g., that the two
water-bag closure is always stable with respect to a ho-
mogeneous equilibrium. Along with the ones given by
Eqs. (25) and (10), the global Casimir invariants of the
extended water-bag bracket given by Eq. (38) are

ρκl =

∫
ρκl dx,

C2 =

∫ (
u +

ρ

4

N−1∑

l=1

κ2
l

)
dx,

where κ′
l = 1/

√
σl for all 1 ≤ l ≤ N − 1.24 We also

notice that Brackets (38) for N = 2 are the most general
Poisson brackets with three moments4. Whether or not
this is the case for any N is an open question.

IV. SUMMARY

In summary, we exhibited a method for constructing
Hamiltonian fluid models with an arbitrary number of
fluid moments from the Vlasov-Ampère system. This
construction relies on the Hamiltonian structure of the
water-bag representation of a distribution function. We
introduced suitable fluid variables, based on thermody-
namic considerations, to replace the less meaningful con-
tour velocities. The density and the fluid velocity were
used to describe macroscopic phenomena, while the par-
titioning of the particles into the different bags was used
to define internal degrees of freedom in the system, ac-
counting for microscopic effects. By using these variables,
we were able to link the water-bag and fluid models and
to make explicit the corresponding closures. We showed
that, for an arbitrary number of water-bags, the general
associated closure can be constructed from knowledge of
the couplings between all the other water-bags. Based on
these results, we proposed a general N field fluid model to
describe plasmas with N − 2 internal degrees of freedom.
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