
HAL Id: hal-01170322
https://hal.science/hal-01170322

Submitted on 1 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cyclic Oxidation Behavior of TBC Systems with a
Pt-Rich γ-Ni+γ’-Ni3Al Bond-Coating Made by SPS

Pauline Audigié, Serge Selezneff, Aurélie Rouaix-Vande Put, Claude
Estournès, Sarah Hamadi, Daniel Monceau

To cite this version:
Pauline Audigié, Serge Selezneff, Aurélie Rouaix-Vande Put, Claude Estournès, Sarah Hamadi, et
al.. Cyclic Oxidation Behavior of TBC Systems with a Pt-Rich γ-Ni+γ’-Ni3Al Bond-Coating Made
by SPS. Oxidation of Metals, 2014, vol. 81 (n° 1-2), pp. 33-45. �10.1007/s11085-013-9417-8�. �hal-
01170322�

https://hal.science/hal-01170322
https://hal.archives-ouvertes.fr


                 To link to this article: DOI:10.1007/s11085-013-9417-8 

                 URL: http://dx.doi.org/10.1007/s11085-013-9417-8

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 13632 

To cite this version: 

Audigié, Pauline and Selezneff, Serge and Rouaix-Vande Put, Aurélie and 

Estournès, Claude and Hamadi, Sarah and Monceau, Daniel Cyclic 

Oxidation Behavior of TBC Systems with a Pt-Rich !-Ni+!"-Ni3Al Bond-

Coating Made by SPS. (2014) Oxidation of Metals, vol. 81 (n° 1-2). pp. 

33-45. ISSN 0030-770X

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers

and makes it freely available over the web where possible.  

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes.diff.inp-toulouse.fr



Cyclic Oxidation Behavior of TBC Systems with

a Pt-Rich c-Ni+c0-Ni3Al Bond-Coating Made by SPS

Pauline Audigié • Serge Selezneff •

Aurélie Rouaix-Vande Put • Claude Estournès •

Sarah Hamadi • Daniel Monceau

Abstract To obtain long-lasting thermal barrier coating (TBC) systems, two types

of Pt-rich c-Ni?c0-Ni3Al bond-coatings (BC) were fabricated by spark plasma

sintering (SPS). The former had the highest possible Pt content (Ni-30Pt-25Al in

at.%) while the latter had the highest possible Al level (Ni-28Al-17Pt in at.%). Hf

was added as a reactive element. TBCs were fabricated on different superalloys

(AM1, René N5 and MCNG) with the aforementioned BCs and with zirconia sta-

bilized with yttria top coats made by SPS or electron beam physical vapor depo-

sition (EBPVD). The cyclic oxidation resistance of these systems was studied at

1,100 °C in air. Most TBCs with a Pt-rich c–c0 BC showed better thermal cycling

resistance when compared to the reference TBCs (b-(Ni,Pt)Al diffusion BC and

EBPVD ceramic top coat), with lifetimes up to 1,745 cycles instead of 700 for the
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reference, and despite the fabrication defects observed within the SPS BCs. Cu was

tested as an addition in the BCs and proved to have a slight negative effect on the

system lifetime. Moreover, the fourth generation MCNG substrate led to the best

cyclic oxidation behavior.

Keywords TBC systems � Pt-rich c-Ni?c0-Ni3Al � Bond-coatings �

Thermal cycling � Spallation

Introduction

Thermal barrier coating (TBC) systems have been developed in order to protect Ni-

base superalloys against excessive oxidation. They are commonly used for blades

and vanes in gas turbine engines. TBC systems are multi-layer coating systems

composed of a substrate (the superalloy), an Al-rich bond-coating (BC), a thermally

grown oxide (TGO) and a top coat made of yttria partially stabilized zirconia

(YPSZ). The insulating top coat (or TBC) allows lowering the temperature of the

underlying metal. It is usually deposited by electron beam physical vapor deposition

(EBPVD) or by atmospheric plasma spraying. The oxidation of the BC leads to the

formation and growth of a protective oxide scale, the TGO which is composed

mainly of a-alumina, this oxide being an excellent diffusion barrier for oxygen and

metal ions.

Recently, a new class of BCs with a c-Ni?c0-Ni3Al microstructure enriched in Pt

have been studied in order to improve the TBC system lifetime. These BCs have

some advantages over b-(Ni,Pt)Al coatings. In that, no topologically closed packed

(TCP) phases form in the interdiffusion zone between the coating and the substrate

[1]. The secondary reaction zone is also suppressed between the coating and the

substrate when the latter is a fourth-generation superalloy [2]. No detrimental phase

transformation takes place as the coating and the substrate have the same

crystallographic structure [3]. After thermal cycling, very little or no rumpling is

present [4, 5]. It is now well known that Pt-rich c–c0 BCs have a better oxidation

behavior compared with b-(Ni,Pt)Al coatings [6–8]. However, some issues related

to Pt-rich c–c0 BCs concern the limited Al reservoir which could prevent alumina

formation over long periods [5] and the sensitivity to substrate composition [7–10].

Initially developed to sinter metallic or ceramic powders, spark plasma sintering

(SPS) was recently used to fabricate complete TBC systems in a single step [11, 12].

Selezneff [13] had used fast processing with SPS to develop two compositions to get

long-lasting Pt-rich c-Ni?c0-Ni3Al BCs. The first and second compositions

contained respectively the highest possible level of Pt and Al in the c0 phase,

based on the Ni–Pt–Al phase diagram at 1,100 °C of Hayashi et al. [14]. This work

was continued by carrying out a thermal cycling test at 1,100 °C on TBC systems

with those previously developed BCs. The effects of the Pt-rich c-Ni?c0-Ni3Al

coating composition and of the superalloy composition were studied using TBC

systems fully fabricated by SPS. TBC systems containing a BC made by SPS and a

top coat deposited by EBPVD were also subjected to thermal cycling to compare the

new BCs with the standard system. Cu addition was studied in Selezneff’s work [13]



to evaluate its ability to increase the Al content in the c0 phase [15] to raise the Al

reservoir in the coating. It was shown that Cu addition was inefficient to increase Al

content in the c0 phase of a coating [13]. However, the Cu layer addition at the

surface of the superalloy appeared to favor the Ni and Pt interdiffusion during the

heat treatment in SPS processing leading to a homogeneous c–c0 microstructure [13,

16]. Therefore, Cu was added in some c–c0 coatings of this study. Spalling was

monitored and cross sections were prepared to identify the degradation mechanisms.

Experimental Procedures

TBC System Fabrication

The substrates were 24 mm diameter discs, cut from two cast rods of single crystal

first generation Ni-base superalloy AM1, with a low S content (\0.4 wt ppm). The

superalloy composition is given in Table 1. The concentration of trace elements was

determined by glow discharge mass spectroscopy analysis and is reported in

Table 2. A thin layer of the reactive element Hf, with or without an additional Cu

layer, was deposited on the substrate before BC manufacturing. The Hf and Cu films

were respectively 100 and 200 nm thick and were deposited by radio-frequency-

sputtering with a Leybold–Heraus sputtering machine, at ICMCB (Bordeaux,

France). The Cu content was estimated by comparing with similar TBC systems

containing initially a 900 nm thick Cu film which corresponded to 4 at.% as

measured by EPMA. Assuming an uniform Cu repartition in the BC, a 200 nm thick

film leads to a concentration of about 1 at.%. To limit their oxidation, samples were

kept in Ar before SPS.

Two objectives of BC chemical compositions were investigated: Ni-30Pt-25Al

and Ni-28Al-17Pt in at.%. The BCs were fabricated by SPS from a stack of Pt and

Al foils. With the SPS process, coating composition is well controlled by Pt and Al

foil thicknesses and by heat treatment [11]. The Ni-30Pt-25Al composition was

obtained by the addition of a 5 lm thick Pt foil and a 2 lm thick Al foil, hence

referred to as the 5/2 composition. The Ni-28Al-17Pt composition was obtained by a

stack of Pt and Al foils, 5 lm thick each, hence referred to as the 5/5 composition.

After SPS, in order to obtain the c–c0 BC microstructure, heat treatments were

conducted at 1,100 °C in air. For systems with top coats made by SPS, heat

treatments lasted 5 and 25 h, respectively for the 5/2 and 5/5 BCs. For EBPVD top

coat, samples were heat treated for 10 h at 1,100 °C and 80 h at 1,000 °C (due to an

Table 1 Superalloy composition (at.%)

Superalloy Cr Co Mo W Ta Re Ru Al Ti Hf Ni

AM1 first rod 8.7 6.7 1.3 1.9 2.7 – – 11.8 1.5 0.02 Bal.

AM1 second rod 9.1 6.7 1.3 1.9 2.6 – – 11.6 1.4 0.02

René N5 8.1 8.2 1.3 1.6 2.3 1.0 – 13.9 – 0.07

MCNG 4.7 – 0.6 1.7 1.7 1.3 2.4 13.6 0.6 0.03



experimental issue), corresponding in terms of equivalent Pt diffusion to *25 h at

1,100 °C.

The SPS apparatus used to fabricate the samples was a Dr Sinter 2080 (SPS

Sumitomo Coal Mining Co., Japan). This device enabled to heat the samples using a

high intensity current and a low voltage. The current was applied by pulses

following the standard 12/2 on/off 3.3 ms pulse pattern. Graphite punches and die

were used. A K-type thermocouple placed in a 3 mm-deep hole at the die surface

was used to monitor the temperature. This SPS procedure was detailed in [11].

The last layer of the TBCs was the top coat which consisted of an YPSZ

deposited either by SPS or EBPVD. In the first case, the BC and the thermal barrier

were fabricated in one step during the same SPS cycle. A powder from Tosoh

Corporation was used for the YPSZ coating which contained 3 mol% Y2O3 i.e.

(ZrO2)0.97(Y2O3)0.03. In the second case, after SPS BC manufacturing, a light grit-

blasting with a-Al2O3 particles was performed to clean the BC surface and then the

150 lm thick top coat was deposited by EBPVD at the Ceramic Coating Center at

Châtellerault (France).

For comparison purposes, conventional TBC systems composed of a low sulphur

AM1 superalloy, a b-(Ni,Pt)Al BC and an EBPVD top coat were also manufactured.

A 7 lm thick Pt layer was deposited on the superalloy by electroplating and then a

diffusion treatment under vacuum was carried out for 1 h at 1,100 °C. The Al

enrichment was done by a vapor phase aluminizing (APVS) process. These

reference samples were provided by Snecma (France).

To study the substrate effect, two TBC systems were based on René N5, a second

generation superalloy containing Re and no Ti, and on MCNG, a fourth generation

superalloy containing Re and Ru. Their nominal compositions are given in Table 1.

Hf and Cu layers were deposited on the superalloy surface followed by the 5/2 BC.

The 150 lm thick thermal barrier was made using SPS, according to the fabrication

process previously described.

Thermal Cycling and Characterization

All TBCs were tested under high temperature cyclic oxidation in air. A cycle was

composed of a 1 h dwell at 1,100 °C including a rapid heating followed by a

cooling period of 15 min to room temperature. A high cooling rate was obtained

using a high flow of air, free from oil and pollution. Pictures of all the samples were

taken at different durations during thermal cycling to follow spallation kinetics.

Image analyzes enable the assessment of the unspalled area fraction. Some TBCs

made by the one-step SPS process were not coated over the entire surface because of

defects present close to the sample sides. When this occurred, the actual TBC

Table 2 Trace elements in AM1Ò superalloy (ppma)

Superalloy Hf Zr S Si C N O

AM1 first rod 173 3 \0.8 121 *245 *2 *12

AM1 second rod 184 4 \0.8 137 *307 *3 *15



surface area at 0 cycle was taken as the reference for the calculation of the fraction

of unspalled area. Arbitrarily, the TBC system end of life was considered reached

when the TBC spalled surface represented more than 25 % of the entire surface of

the sample. Cycling was pursued until the TBC spalled area fraction attained at least

60 %.

In order to understand which mechanism led to the TBC delamination, cross-

sections of the samples were observed by scanning electron microscopy (SEM) and

analyzed by energy dispersive spectroscopy (EDS) using a LEO 435VP SEM

equipped with an IMIX EDS system. The quantification of EDS analyzes was

obtained from real standards. Samples denomination of all TBC systems are

summed up in Table 3.

Results and Discussion

SPS Systems After Fabrication

SEM observations were performed on all samples after SPS processing and heat

treatment at 1,100 °C. Figure 1 shows ‘‘one-step’’ SPS TBC systems with AM1

superalloy exhibiting a microstructure typical of Pt-rich c–c0 BCs. In backscattering

mode, the brighter phase represents c0-Ni3Al because of Pt enrichment and the

darker phase represents c-Ni. The 5/2 coatings were single-phase c0-Ni3Al below

the oxide scale while the 5/5 coatings were c0-Ni3Al with a small volume fraction of

L10 martensitic b phase because of the higher Al content in 5/5 BC. The thickness

of the coatings, defined as the lower limit of the large inward growing Pt-rich c0-

Ni3Al grains, was about 28 and 40 lm for 5/2 and 5/5 compositions respectively.

From the TGO to the substrate, the microstructure of both c–c0 BCs evolved from

Pt-rich single-phase c0 to Pt-rich c–c0. After heat treatment, the average composition

Table 3 Tested TBC systems

SX RE layer BC Cu Name

Complete SPS TBC systems

AM1 Hf 5/5 No SPS AM1-5

Yes SPS AM1-5?Cu

5/2 No SPS AM1-2

Yes SPS AM1-2?Cu

N5 Yes SPS N5-2?Cu

MCNG SPS MCNG-2?Cu

TBC systems with an EBPVD thermal barrier

AM1 Hf 5/5 No EBPVD AM1-5

5/2 EBPVD AM1-2

No b-(Ni,Pt)Al Reference

SX single-crystal superalloy, RE reactive element, BC bond-coating



of the c0 layer under the TGO for all 5/2 BCs was typically 42Ni-21Al-22Pt-7Cr-

3.5Co-1.2Ti-1.3Ta-1.5Mo-0.5W in at.%. For 5/5 BCs, EDS gave a typical

composition, below the oxide scale, of 52Ni-21Al-13Pt-6Cr-4Co-1.4Ti-1.1Ta-

1.0Mo-0.5W in at.%. Just below the TGO, the 5/5 BCs were even richer in Al, c0-

Ni3Al being in equilibrium with a few precipitates of the martensitic b phase. These

chemical analyzes confirmed the achievement of one Pt-rich and Al-rich BCs, but

with slightly lower Pt than expected because of its diffusion toward the superalloy

and lower Al due to its partial substitution by Ti and Ta. Nevertheless, the 5/5 BC

presented a higher Al reservoir since it was thicker than the 5/2. The mean grain size

of SPS AM1-2 BC was 6.3 ± 0.7 lm while that of the SPS AM1-5 BC was

10 ± 1.0 lm. After fabrication and heat treatment, it was checked by SEM and

EPMA on similar systems that Cu was in solid solution in the phases of the BC. Cu

doping did not affect the chemical compositions of major elements. For the samples

used in this study, the detection limit of the EDS system did not allow Cu detection.

By EDS, only Al2O3 could be detected within the oxide layer for all SPS systems.

Previous work has shown that the alumina scale formed during the SPS process of

TBC systems was a-Al2O3 [17]. The thickness of the TGO scale varied with BC

composition. It was *1.7 ± 0.3 lm for SPS AM1-2 systems and 3.0 ± 0.5 lm for

SPS AM1-5 systems because of the longer heat treatment of 5/5 BCs. No pegs were

observed in any systems. However, small cavities in the outer zone of the coating at

around 10 lm from the BC surface were observed for all systems, as illustrated in

Fig. 1a by a black arrow for the SPS AM1-2 system. These cavities arose from the

foils stacking in the SPS process. Figure 1b shows also small white precipitates for

the SPS AM1-5 system. Analyzed by EDS, these particles were rich in W and Mo,

hence referred to as TCP phases. They are indicated on the picture by black arrows.

These TCP phases were only present in SPS TBC systems with a 5/5 BC after

manufacturing. They were not observed after thermal cycling. It was probably due

to the initial formation of a b-NiAl phase during the 5/5 processing, W and Mo

tending to partition more in c0 than in b.

(a)

TGO

BC

Superalloy

TBC

(b)

TBC

BC

TGO

Fig. 1 SEM-BSE micrographs of two SPS systems after heat treatment: a AM1-2. The black arrow

shows small cavities formed because of foil stacking. b AM1-5. The two black arrows exhibit few TCP

phases. (TBC thermal barrier coating, TGO thermally grown oxide, BC bond-coating)



Thermal Cycling

Life Span

Figure 2 shows the spallation kinetics for SPS TBCs during thermal cycling. The

dashed line corresponds to the lifetime limit defined as 25 % of spalled area.

Reference systems had a mean lifetime estimated at about 700 cycles. The SPS

AM1-2 system reached the lifetime criteria after 766 cycles at 1,100 °C while the

SPS AM1-5 system reached it after 461 cycles. Figure 2 shows also that Cu addition

decreased the lifetime of 5/2 and 5/5 systems of by 100 and 200 cycles, respectively.

It was shown before that the Cu thin layer addition on the superalloy increased the

initial interdiffusion kinetics between Pt and Ni during the heat treatment in SPS

and then improved the homogeneity of the coating and decreased the fabrication

time by SPS [13]. The present results show that the Cu doping level (thickness of

the initial Cu film) needs to be optimized to keep its positive effect on fabrication

without affecting the durability of the system.

Nevertheless, when comparing Pt-rich c–c0 and b-(Ni,Pt)Al, it should be noted

that these BCs were not covered with the same ceramic top coat which led to

different failure modes. For complete SPS TBC systems, spallation occurred mainly

on the sample sides and then propagated towards the disc center, as shown in Fig. 3,

whereas spalling could happen in any region of the EBPVD samples. This slow

propagation of cracks initiated at the sample sides in SPS systems has already been

described [11, 18]. It was attributed to crack initiation at cavities resulting from foil

stacking or trapping of small YPSZ grains between Al and Pt foils or between foils

and the substrate [12]. Then, the lifetime of systems with a Pt-rich c–c0 BC was

artificially decreased relative to systems with a b-(Ni,Pt)Al BC. In order to solve

this problem, the next set of samples was prepared with only EBPVD top coat for

both SPS Pt-rich c–c0 and for APVS b-(Ni,Pt)Al BCs.
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Fig. 2 Spalling kinetics during thermal cycling at 1,100 °C in air for SPS TBC systems. The dashed line

represents the lifetime criteria. In brackets (lifetime/total number of cycles)



Figure 4 shows the spallation kinetics for systems with SPS Pt-rich c–c0 BCs and

EBPVD top coats. All these systems showed a better thermal cycling resistance than

the reference systems with an APVS b-(Ni,Pt)Al coating. The longest life span was

obtained for EBPVD AM1-5 systems. Two samples were tested and both lasted

1,745 cycles. One did not exhibit any spallation before 1,200 cycles whereas the

other started to spall after 1,000 cycles, mainly close to the edges. After 2,070

cycles, this same sample did not have any thermal barrier left because spallation had

progressed from the edges towards the sample center. Concerning EBPVD AM1-2

systems, their life spans were 875 and 1,310 cycles. Although these results were not

as good as those of the EBPVD AM1-5 systems, they were still better than the

reference systems. It should be noted that this data revealed a longer lifetime for the

5/5 BC in the case of EBPVD top coats while longer lifetimes were obtained with

the 5/2 BC for SPS TBC systems.

Microstructure After Thermal Cycling

SPS Systems SEM observations of cross sections were performed on all SPS TBC

systems. Micrographs of an AM1-5 and AM1-2?Cu systems after 600 and 1,000

cycles, respectively at 1,100 °C are given in Fig. 5a, b. All the coatings underneath

the TGO were fully Pt-rich c–c0 except the SPS AM1-5?Cu which was still single-

phase Pt-rich c0 after 400 cycles. The L10 martensitic b phase which had been

observed after SPS for the AM1-5 systems disappeared. After 1,000 cycles, the BC

0 400 800 1250 1480 1610 1700

Fig. 3 Pictures of the SPS MCNG-2?Cu system versus the number of cycles at 1,100 °C

References (540-580-850 / 1000)

AM1-2 (1310 / 1800) 

AM1-2 (875 / 1000) 

AM1-5 (1745 / 2070) 

AM1-5 (1745 / 2070) 

Lifetime criteria 

Fig. 4 Spallation kinetics during thermal cycling at 1,100 °C in air for EBPVD top coat systems. The

dashed line represents the lifetime criteria. In brackets (lifetime/total number of cycles)



average thickness of the AM1-2 system was 50 lm and Pt had diffused up to

200 lm from the BC surface. The BC average thickness for the SPS AM1-5 system

was similar to that of the SPS AM1-2 system (45 lm). In order to evaluate the

possible remaining life span of the systems, the BC composition was analyzed by

EDS underneath the TGO [5]. After 1,000 cycles at 1,100 °C, a BC composition of

60.5Ni-16Al-6.8Pt-4Cr-4Co-2.8Ti-3.7Ta-0.8Mo-1.4W in at.% was found for the

SPS AM1-2 system. Similar concentrations were obtained for the SPS AM1-2?Cu

system after 1,000 cycles. After 400 and 600 cycles, the average BC composition

below the oxide scale of the SPS AM1-5 system was 58Ni-17.2Al-8Pt-5Cr-4.5Co-

2.2Ti-2.9Ta-1.0Mo-1.2W in at.%. Cu was not detected by EDS after cycling but

these analyzes indicate that Cu has no effect on long-term interdiffusion. They show

also that Ti and Ta concentrations below the TGO were greater than those of the

AM1 superalloy (Table 1). Such Ti and Ta enrichment had already been seen by

Tawancy et al. [9, 19] in Pt-rich c–c0 BCs and by Rouaix-Vande Put et al. [20] in Pt-

modified NiCoCrAlYTa overlay coatings and could be due to a decrease of Ti and

Ta activities in presence of Pt, as suggested in [21]. Similar effect has already been

observed with Pt and Al [6].

TBCs failure occurred mainly at the BC/TGO interface. The same failure mode

was observed by Pint et al. [10] for Pt-rich c–c0 BCs fabricated by Pt electroplating

and CVD process on second and third generation superalloys, after cycling at

1,150 °C. Rumpling and TCP phases were not observed in our samples. The TGO

scale thickness did not vary much with the BC composition. It was about

4.1 ± 1.1 lm for all the SPS AM1 systems after 1,000 cycles at 1,100 °C. Only

Al2O3 could be detected in the TGO for the SPS AM1-5 systems while Hf-rich

oxides (white particles) were observed in the Al2O3 scale of the SPS AM1-2 and

AM1-2?Cu systems. In this study, two rods of AM1 superalloy were used

containing similar Hf, S and C levels. The thickness of the Hf layer deposited before

BC manufacturing was kept constant between the systems. The presence of Hf-rich

oxides in 5/2 systems can be due to the fact that initially a 5/2 BC was thinner than a

5/5 BC, hence the Hf concentration was higher in the AM1-2 system than in the

AM1-5 system.

After processing, some SPS TBCs showed cracks at the depth where cavities

resulting from the foil stacking were formed: one crack about 30 lm long was

observed for the AM1-2 system. For the AM1-5 system, longer cracks up to 290 lm

long were formed at the initial superalloy surface. The local poor foil adhesion after

TBC

BC

TGO

(c)(a)

TBC

BC

TGO TBC

BC

TGO

(b)

Fig. 5 SEM-BSE images of the cross-sections of SPS systems thermally cycled at 1,100 °C a AM1-5

system after 600 cycles b AM1-2?Cu system after 1,000 cycles c N5-2?Cu system after 1,000 cycles

(TBC thermal barrier coating, TGO thermally grown oxide, BC bond-coating)



cycling was a common damaging event for these SPS systems which led to void and

crack formation during cycling and therefore to early failure.

Systems with EBPVD Top Coats Two AM1-5 systems and two AM1-2 systems

with an EBPVD top coat were characterized by SEM. One of each system was

observed after 230 cycles (Fig. 6a, b). The other systems were characterized after

2,070 cycles for EBPVD AM1-5 system and after 1,800 cycles for EBPVD AM1-2

system (Fig. 6c, d). After 230 cycles at 1,100 °C, both systems exhibited a BC with

a Pt-rich c–c0 microstructure. The BC thickness was around 50 lm for the AM1-5

system and 60 lm for the AM1-2 system (Fig. 6a, b). BC composition for both

systems was measured by EDS underneath the surface. After 230 cycles, similar

compositions were obtained for both systems and were on average 58Ni-15.1Al-

8.1Pt-6.2Cr-4.9Co-2.0Ti-3.0Ta-1.2Mo-1.5W in at.%. Al and Pt concentrations

obtained for the EBPVD systems after 230 cycles were close to those obtained for

the SPS AM1-2 system but after 1,000 cycles (16Al-7Pt in at.%). The fact that the

Pt level underneath the TGO seems to decrease faster for the system with the

EBPVD top coat than with the SPS top coat may be due to the difference in the

fabrication process. Indeed, in the EBPVD process, there is an additional alumina

grit-blasting step after the SPS processing of the BC. This grit-blasting step may

introduce dislocations in the coating, acting as a diffusion short circuit. Alterna-

tively, the grit-blasting may remove brittle parts of the coating before EBPVD,

therefore decreasing the Pt quantity.

TBC

BC

TGO

Superalloy
(a)

TBC

BC

TGO

Superalloy(b)

TBC

BC

TGO

BC parts broken by polishing

(c)

BC

(d)

Fig. 6 Cross-section images of TBC systems with an EBPVD top coat after thermal cycling at 1,100 °C

a AM1-5 after 230 cycles b AM1-2 after 230 cycles c AM1-5 after 2,070 cycles d AM1-2 after 1,800

cycles. (TBC thermal barrier coating, TGO thermally grown oxide, BC bond-coating)



In addition, in both cases, the oxide scale was damaged and the failure occurred

at the BC/TGO interface (Fig. 6b). No rumpling appeared after 230 cycles but the

presence of many pegs for the EBPVD AM1-2 system generated a non linear BC

surface. The selective Al oxidation led to the formation of a thin continuous c layer

after only 230 cycles, Fig. 6b. No TCP phases formed during the thermal cycling.

The Pt-rich c–c0 microstructure was still observed for both systems after a longer

thermal cycling, that was 2,070 cycles for EBPVD AM1-5 system and 1,800 cycles

for EBPVD AM1-2 system (Fig. 6c, d). The BC thickness was around 60 lm for

EBPVD AM1-5 and 70 lm for EBPVD AM1-2. The c layer already formed

underneath the TGO after 230 cycles was now thicker. Its average composition was

60.1Ni-5.8Al-3.3Pt-15.4Cr-7.9Co-1.2Ti-1.9Ta-2.4W-2.0Mo in at.%.

Although the oxide scale in TBC systems with an EBPVD top coat was damaged

after only 230 cycles (Fig. 6b) those systems showed a better thermal cycling

resistance than full-SPS systems. The TGO damage could be due to metallographic

preparation issues since these systems seemed to be brittle, as seen on the BC parts

broken by the polishing (Fig. 6c). The life span results obtained for EBPVD systems

must be moderated compared with SPS system lifetimes. Indeed, when using SPS to

produce TBC systems, some fabrication issues appeared mainly on the sample sides.

If the disc edges were perfectly covered like for EBPVD samples, the spallation

may not have occurred promptly and progressed so rapidly.

All TBC systems tested in this study were fabricated with 5 lm of Pt. Despite the

fabrication defects observed within the SPS BCs, most systems have shown better

thermal cycling resistance than reference TBC systems which were fabricated with a

thicker Pt layer. This shows the intrinsic superiority of Pt-rich c–c0 BC doped in Hf

over b BC even with a lower Pt addition.

Substrate Effect

Two SPS TBC systems with a 5/2?Cu BC composition on different superalloys (N5

and MCNG) were also thermally cycled at 1,100 °C to evaluate the substrate effect

on the TBC lifetime (Fig. 2). The SPS MCNG-2?Cu system showed a much better

cyclic oxidation resistance than AM1-2?Cu and N5-2?Cu systems. The MCNG

system lifetime was estimated at 1,430 cycles and was further doubled when

compared to the other SPS systems. Figure 5c shows that the SPS N5-2?Cu system

still exhibited a two phase Pt-rich c–c0 BC after 1,000 cycles. Its BC thickness was

nearly the same as that of the AM1-base system (*50 lm) but the extent of Pt

diffusion was smaller. The BC composition below the oxide scale for the SPS N5-

2?Cu system was still Al-rich (18 at.%) but depleted in Pt (5 at.%) after 1,000

cycles. Concerning the TGO, it was composed of Al2O3 and many Hf-rich oxide

precipitates. These pegs were also seen for the AM1 and MCNG systems, but in

lower quantities. Voids created during SPS processing were still present at the same

depth (7–8 lm thick) as originally but they extended.

The higher oxidation resistance, under thermal cycling conditions at 1,100 °C, of

MCNG-base systems when compared to AM1-base system had already been

observed with a b-(Ni,Pt)Al BC [22] and also when compared to AM3-based system

with a Pt-modified MCrAlY overlay coating [20]. This better resistance can be



interpreted by the positive effect of Hf present in the superalloy. This beneficial

effect has already been observed in the cyclic oxidation of aluminide BCs [23]. The

Co level can also explain this better resistance. Indeed, Wu et al. [10, 24] recently

demonstrated that a higher Co content in the superalloy may be detrimental to Pt

diffusion coating performance. As MCNG is a Co-free superalloy, the large

endurance of the MCNG-2?Cu system could be attributed to the absence of Co. In

addition, it appeared that the N5-2?Cu system lasted as long as the AM1-2?Cu

one, around 700 cycles. Knowing that Ti has a detrimental effect on the thermal

cycling resistance [9, 25] and that René N5 is a Ti-free superalloy, this result is

surprising. However, it should be noted that René N5 superalloy contained higher

Co and Hf contents than AM1. As many Hf-rich oxides formed in this system, the

BC might be overdoped in Hf, decreasing its lifetime. Also, as only one sample of

N5-base system was cycled, this result needs to be confirmed by testing more

samples.

Conclusions

With a view to develop new BC compositions for advanced TBC systems, various

TBC systems with Pt-rich c–c0 BCs were tested via cyclic oxidation at 1,100 °C.

Two main BC compositions were fabricated by SPS, one was Pt-rich and the other

was Al-rich, in order to compare their thermal cycling resistance to that of the

standard b-(Ni,Pt)Al diffusion BC. The addition of Cu and Hf was also studied.

The following conclusions can be drawn from this work. Most TBC systems

comprising Pt-rich c–c0 BC showed a better thermal cycling resistance than the

reference TBC systems [b-(Ni,Pt)Al APVS?YPSZ EBPVD] despite the fabrica-

tion defects observed within the SPS BCs. This confirms the intrinsic superiority

of Pt-rich c–c0 BCs doped in Hf over b-(Ni,Pt)Al BCs even with a smaller Pt

addition. For TBC systems with a SPS-processed BC and top coat, 5/2 systems

(Pt-rich) were more resistant to spallation than 5/5 systems with a lifetime

estimated at more than 750 cycles. For TBC systems with a SPS-processed BC

and an EBPVD top coat, a better oxidation behavior was obtained for the 5/5

systems (Al-rich) which can resist large spallation up to 1,700 cycles. For both

systems (SPS and EBPVD), the failure occurred at the BC/TGO interface. A

continuous c layer had formed during thermal cycling beneath the TGO because of

Al depletion. This layer was enriched in Cr and Co and depleted in Al and Pt. This

likely explains the loss of scale adherence of these systems. Further chemical

investigations are needed to link TGO adherence with the precise chemical

composition of the c layer. Although Cu played a positive role in the SPS

processing, this element had a negative effect on the system life span. Therefore,

the Cu level needs to be optimized. The comparison of oxidation performance

between 5/2?Cu SPS TBC systems deposited on three different superalloys

revealed that the MCNG-base system had the best cyclic oxidation behavior since

it lasted 1,430 cycles whereas AM1 and René N5-base systems exhibited 25 % of

spalled area after 680 cycles.
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