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ICE SLIDING GAMES

PAUL DORBEC, ÉRIC DUCHÊNE, ANDRÉ FABBRI, JULIEN MONCEL,

ALINE PARREAU, AND ÉRIC SOPENA

Abstract. This paper deals with sliding games, which are a variant of the
better known pushpush game. On a given structure (grid, torus...), a robot can

move in a specific set of directions, and stops when it hits a block or boundary

of the structure. The objective is to place the minimum number of blocks such
that the robot can visit all the possible positions of the structure. In particular,

we give the exact value of this number when playing on a rectangular grid and

a torus. Other variants of this game are also considered, by constraining the
robot to stop on each case, or by replacing blocks by walls.

Keywords: Combinatorial game theory; Graph theory; Sliding games

1. Background and definitions

Sliding/pushing puzzles are classical problems used for entertainment. In a slid-
ing puzzle, entities (often described as robots) are moving around on a grid, and
trying to reach a final position. Everytime a robot starts a move in a direction, it
slides and cannot stop until it hits another element on the grid (a wall, a block or
another robot). In a pushing puzzle, the entities often may stop a move without
hitting a wall, but mostly they are also allowed to move some inert blocks by push-
ing them. Pushing games are known for example as Sokoban, but can also appear
as enigmas in video games such as the Zelda sequel. They have been thoroughly
studied before, and we refer the reader to the pleasant survey of Demaine [4] which
also provides a classification of these games. He in particular gives a very detailed
overview of known complexity results about such games. Without any surprise, a
large majority of these are proved to be NP- or PSPACE-complete. A difference
is also made between push and pushpush-games: in the first game the blocks are
pushed one square at a time, while in the second they slide until they meet an
obstacle whenever they are pushed.

Sliding games are still less studied, though there are many commercial games
using this principle. Rasende roboter, lunar lockout (marketed in 1999 by
Binary Arts) or its predecessor UFO are such examples. Before describing these
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games, we propose a general definition. An ice slide game is a puzzle where one
or more robots are on a grid, trying to reach a flag (the name was initially given
in [11]). Each move of a robot consists in sliding in one direction until it meets
an obstacle, which stops him. Obstacles include static obstacles, such as walls or
blocks, but also other robots. In such a setting, the natural question is whether
there is a sequence of moves for one robot to reach the flag (see Figure 1 for an
example of this game).
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Figure 1 – Robot sliding game: a solution with six moves

This question, where obstacles are predefined, and a single robot is trying to
reach a final position was posed recently by K. Burke, on his excellent blog devoted
to combinatorial game theory [2]. K. Burke also asked for the minimum number of
moves for the robot to reach the goal. Actually, the resolution of this problem is
not very hard, as explained in [11]. Indeed, it reduces to the search for a shortest
path between the starting and final squares in an underlying subgraph of the grid.
By way of consequence, a simple application of Djikstra’s algorithm yields to a
polynomial computation of the minimum number of moves of a solution (provided
the game representation is not sublinear in the number of squares).

Yet, another natural question arises when dealing with this problem: what if the
player can choose the positions of the obstacles on the board? Of course, if the
initial and final squares are fixed, at most one block is necessary, yielding to a solu-
tion with at most two moves. But if we ask the player to be able to move the robot
to any position of the grid, the problem becomes considerably more challenging.
More precisely, given an initial square P of the grid, we ask what is the minimum
number of blocks needed (and also how they must be placed) to move the robot
from P to any other square. (In that context, the question of the minimum number
of moves becomes secondary.)

In correlation with this problem, we have identified two research parameters that
slightly change the rules detailed above but raise new reflexion on the topic:

• Blocks can be substituted by walls in the problem. In other words, the
robot bounces when hitting an edge of the grid (instead of a square).
• One can suppose the final square not to be a flag to go through, and that

the robot must stop on it. Note that it forces any square of the grid to be
adjacent to a block (or a wall).

In the following, we differentiate four situations of the game, depending on the pre-

cise question and the nature of the obstacles. We denote the game ice slide
P/S
B/W -K



ICE SLIDING GAMES 3

using a superscript P or S depending whether we require that the robot simply
Passes or need to Stop on the flagged position, a subscript B or W depending
whether the obstacles are Blocks or Walls, and K for the number of robots that
we are allowed to move.

As a first example, the marketed game Rasende roboter is related to the game
ice slideS

W -4 with a particular setting of the obstacles. In Rasende roboter,
the objective is to find the minimum number of moves of a solution where the initial
and final positions are fixed. Its originality is that three additional robots can also
be moved and be used as blocks on which bouncing could help the player. Rasende
roboter had a good marketing success and also raised the curiosity of researchers
in algorithmic game theory. Because of the presence of other robots and the size
of the grid (16× 16), simple shortest path algorithms are no more efficient. To the
best of our knowledge, only AI algorithms based on multi-agent systems have been
proposed to solve the game [3].

Another popular game called lunar lockout (marketed in 1999 by Binary
Arts) is very close to ice slideS

B-K, with the of a board with no bounding walls.
As in Rasende roboter, other robots can be used as movable blocks. Before
its marketing, this puzzle was first introduced in 1998 by Yoshigahara and called
UFO. It was studied in the literature under this original name. Hock proved in [8]
that deciding the existence of a solution in UFO is NP-complete. In [7], a variant
of UFO is proposed, called GLLV, where fixed robots are allowed and played on
a general rectangular grid. This version clearly meets ice slideS

B-K. Whereas the
PSPACE-completeness of UFO is open, it is proved in [7] that the variant which
includes fixed blocks is PSPACE-complete.

Note that the two games ice slideP
B/W -2 played on a rectangular grid are triv-

ial, in the sense that no block is needed. Engels and Kamphans [5] proved that the
two games ice slideS

B/W -3 are also trivial in any rectangular grid. Hence the most

interesting instances, at least on rectangular grids, seem to be ice slide-1 and ice
slideS

B/W -2. In this paper, we will focus in this paper on the games ice slide-1,

using a single robot, and denote it simply by ice slide. We use the following
definition.

Definition 1. Let Gn,m be a rectangular grid with n rows and m columns. Each
square of the grid is denoted by a pair (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The parameter ισ
P/S
B/W (Gn,m) is the minimum number of Blocks (resp. Walls) that

needs to be placed on the grid so that, from the starting position (1, 1) and for every
position (i, j) of Gn,m which does not contain a block, there exists a sequence of
moves making the robot Pass over (resp. Stop on) (i, j).

Remark 2. In what follows, we shall see that starting from the position (1, 1) is not
very restrictive. Indeed, our constructions often guarantee that from any starting
position, it is possible to move the robot and stop on (1, 1).

Remark 3. In the definition, one can replace the rectangular grid by any kind of
grids for which the moves of the robot is clear. We will for example consider in
Section 3 king grids and tori.

We proceed with the resolution of these problem for several instances, which
should also stress how this game is related to some well-known problems in graph
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Figure 2 – ισP
B(G4,4) ≤ 2. Figure 3 – ισS

W (G4,4) ≤ 9.

theory. We first give in Section 2 the definitions and results of related graph prob-
lems. In Section 3, we study ισP

B on different kinds of grids, such as rectangular
grids, king grids or tori. In Section 4, the three other variants of the game are
explored.

2. Graph parameters related to ice slide

The current section presents two optimization problems in graph theory which
are in direct correlation with our game.

Domination in graphs
Given a graph G, a set D ⊆ V (G) is said to be a dominating set (resp. a total
dominating set) of G if every vertex of V (G) \ D (resp. V (G)) is adjacent to a
vertex of D.

Definition 4. Let G be a graph. The value γ(G) (resp. γt(G)), called domina-
tion number (resp. total domination number) of G, corresponds to the minimum
cardinality of a dominating set (resp. total dominating set) in G.

In the next section, we observe that the dominating set problem is directly re-
lated to ice slideS

B . Indeed, the ability to stop the robot anywhere means that a
block must be adjacent to any square of the grid. In other words, the set of blocks
needs to be a dominating set of the grid. Total dominating sets appear in the study
of the game ice slideP

B , as explained further in Subsection 3.1.

Given any graph G, the computation of γ(G) and γt(G) are known to be NP-
hard problems. However, their values are known for simple classes of graphs, such
as grids or paths. As needed later, we give below the total domination number of
paths.

Proposition 5 (Klobucar [9]). Let Pn denote the path with n vertices. We have

γt(Pn) =

{
2bn4 c+ 1 if n ≡ 1 (mod 4)

2bn4 c otherwise

Edge cover in graphs
Given a graph G, a set S ⊆ E(G) is said to be an edge cover of G if every vertex
of G is incident to at least one edge of S.

Definition 6. Let G be a graph. The value ρ(G), called the edge covering number
of G, corresponds to the size of a minimum edge cover of G.
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Unlike the domination number, the value ρ(G) can be computed in polynomial
time for any graph G. In Subsections 4.2 and 4.3, we observe how edge covers
interact with the game ice slide played with walls. For example, we use the value
ρ(Pn), which is straightforwardly equal to dn/2e.

3. ice slideP
B played on various grids

In all the paper, we consider grids with n rows and m columns. We denote by Ri

(resp. Cj) the ith row (resp. jth column) of G. Position (i, j) is at the intersection
of Ri and Cj and in the figures, unless something else is mentionned, (1, 1) is the
top-left square.

3.1. Rectangular grids. In this part, we consider the game ice slideP
B on a

rectangular grid G = Gn,m: we place blocks on G and the robot must be able to
pass everywhere from the square (1, 1).

Definition 7. Let B be a set of blocks. The row Ri, 2 ≤ i ≤ n− 1 (resp. column
Cj, 2 ≤ j ≤ m−1) is said to be totally dominated by B if there is at least one block
of B in row Ri−1 or Ri+1 (resp. in column Ci−1 or Ci+1).

If B is a set of blocks in Gn,m which totally dominates every column Cj , 2 ≤
j ≤ m − 2, then, by moving blocks from columns C1 and Cm to columns C3 and
Cm−2 respectively, every column is still totally dominated by B. Hence we get the
following:

Observation 8. If B is a set of blocks in Gn,m which totally dominates every
column Cj, 2 ≤ j ≤ m− 2, then |B| ≥ γt(Pm−2).

Proposition 9. For each n ≥ m, we have ισP
B(Gn,m) ≥ γt(Pm−2).

Proof. Consider an optimal solution B of ice slideP
B for Gn,m. If every column

Cj , 2 ≤ j ≤ m − 2, is totally dominated by B then, by Observation 8, we get
ισP

B(Gn,m) ≥ γt(Pm−2).
Assume now that there exists a column Cj , 2 ≤ j ≤ m− 2, which is not totally

dominated by B. Let Ij = {i : (i, j) ∈ B} be the line indices of the blocks of
Cj . The robot can not initiate a vertical move in Cj since to stop in Cj it needs
a block in column Cj−1 or Cj+1. Hence it has to go horizontally trough every row
Ri, i ∈ [2, n − 1] \ Ij . Therefore, each such row must be totally dominated by
B′ = B \ {(i, j) : i ∈ Ij}. We define the set of blocks B∗ as follows:

B∗ = B′ ∪ {(i− 1, j) : i ∈ Ij , i > 1}.
We claim that each row Ri, 2 ≤ i ≤ n − 1, is totally dominated by the set B∗.
Indeed, if i /∈ Ij , then Ri is totally dominated by B′ as observed above. Otherwise
there is a block in row Ri−1. We finally get

|B| ≥ |B∗| ≥ γt(Pn−2) ≥ γt(Pm−2)

by Observation 8 and the result follows. �

Lemma 10. Assume that the pattern Pn of size n× 8 depicted on Figure 4 (a) is
in position (1, j) ((1, j) being the top-left square of the pattern). Then, if a robot
is able to enter horizontally in each of the four positions (1, j), (n, j), (2, j + 7),
and (n − 1, j + 7), it can pass vertically through all the columns Cj to Cj+7. In
addition, if a robot enters horizontally the pattern Pn in position (1, j), it can leave
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(a) Moving inside Pn (b) Leaving Pn

Figure 4 – Pattern of size n× 8 for ice slideP
B on grid and its representation.

it horizontally on rows R2 and Rn−1 by going left and on rows R1 and Rn by going
right (see Figure 4b).

Proof. The routes followed by the robot to satisfy the above lemma are shown on
Figure 4. �

Theorem 11. For any n ≥ m, m 6= 10, we have ισB
P (Gn,m) = γt(Pm−2).

For any n ≥ 10, we have ισB
P (Gn,10) = 5.

Proof. Let n ≥ m > 10. We consider the following cases:

• m−2 ≡ 3, 4, 5, 6 or 7 (mod 8). The solution is build by gluing bm−28 c copies
of Pn starting from column C2 (leaving column C1 empty), the remaining
columns being filled by the patterns of Figure 5. From Lemma 10, all the
columns of all the copies of Pn but the last one are visited. Figure 5 shows
that all the remaining rightmost columns can be visited by entering from
the left on rows R1 and Rn. The robot is also able to leave these columns
from rows R2 and Rn−2, so that the columns of the last copy of Pn can be
visited.
• m− 2 ≡ 1 or 2 (mod 8). Using bm−108 c copies of Pn, the proof is similar to

the previous case using the patterns depicted in Figure 6.
• m − 2 ≡ 0 (mod 8). The proof is again similar using bm−188 c copies of Pn

(recall that m 6= 10) and the pattern depicted in Figure 7.

We now consider the case m < 10, n ≥ m. If m = 1, 2, clearly no block is needed.
For m = 3, put a block in position (n, 3). For m = 4, put two blocks in positions
(n, 3) and (1, 4). For 5 ≤ m ≤ 9, leave column C1 empty glued to the pattern of
width (m− 1) given in Figure 5.

In each case, the number of blocks used in our solutions is exactly γt(Pm−2).
In the case m = 10, one can easily show that five blocks are enough by using

the pattern of Figure 6 (a) without the first column. It now remains to prove that
γt(P8) = 4 blocks are not sufficient. Suppose on the contrary that ισP

B(Gn,10) =
γt(P8) = 4 for n ≥ 10, and consider an optimal solution B. According to the
proof of Proposition 9, one can assume that every column Cj , 2 ≤ j ≤ m − 2 is
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(a) m −
2 ≡ 3
(mod 8)

(b) m−2 ≡ 4

(mod 8)

(c) m− 2 ≡ 5 (mod 8) (d) m− 2 ≡ 6 (mod 8)

(e) m− 10 ≡ 7 (mod 8)

Figure 5 – Visiting the remaining columns when m− 2 ≡ 3, 4, 5, 6, 7 (mod 8)



8 P. DORBEC, E. DUCHENE, A. FABBRI, J. MONCEL, A. PARREAU, AND E. SOPENA

(a) m− 10 ≡ 1 (mod 8) (b) m− 10 ≡ 2 (mod 8)

Figure 6 – Visiting the remaining columns when m− 10 ≡ 1, 2 (mod 8)

Figure 7 – Visiting the remaining columns when m− 18 ≡ 0 (mod 8)

totally dominated by B. There exists a unique minimum total dominating set in
P8, depicted in Figure 8. Consequently, the four blocks of B are located in columns
C3, C4, C7 and C8.

X X X X

Figure 8 – Minimum total dominating set in P8

Now, since column C2 is totally dominated by column C3, the block in C3 is
necessarily located on the first or last row. Otherwise, it would not be possible to
make the robot stop in column C2 since there is no block in C1. By symmetry, the
block in C8 is also located on the first or last row. Now, with the same argument,
since C3 is totally dominated by C4 and there are no blocks in C1 and C2, the only
way to make the robot stop on column C3 is to place the block of C4 in the first
or last row, and not adjacent to the block in C3. Ditto for the block in C7. There
are thus only 4 possible sets for B, but for each of them, the position (1, 5) is not
reachable. �
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Remark 12. Note that our constructions preserves the accessibility of the robot to
every square of the grid if the starting position is different from (1, 1). Indeed, one
can verify that from any position in Pn or in the ending patterns, there exists a
sequence of moves landing in (1, 1).

3.2. Tori. We now consider the torus grid Tn,m and compute the value ισP
B(Tn,m)

for any values of n and m. Indices are taken modulo m for columns and modulo n
for rows.

We first give a lower bound, similar to Proposition 9.

Proposition 13. For any n ≥ m, ισP
B(Tn,m) ≥ m−1

2 .

Proof. Consider an optimal solution B of ice slideP
B for Tn,m. If for every column

Cj which is not the starting column of the robot, there is a block in column Cj−1
or Cj+1, then there are at least m−1

2 blocks in the solution.
Hence we assume that there exists a column Cj , not the starting column of

the robot, such that there is no block in columns Cj−1 and Cj+1. Let nj be the
number of blocks in column Cj . The robot can not go vertically in column Cj since
to stop in column Cj it needs a block in column Cj−1 or Cj+1. Hence it has to go
horizontally trough the n−nj free squares of the column. But to go horizontally on
row Ri, either the robot starts on this row, or there is a block in row Ri−1 or Ri+1.

Thus, to go through the n− nj free squares of Cj , the robot needs at least
n−nj−1

2
blocks. Note that these blocks are not on column Cj . At the end, the solution has

at least
n−nj−1

2 + nj ≥ m−1
2 blocks. �

We will prove that this lower bound is reached for m ≥ 6. For that, we will
prove by induction the following stronger statement:

Proposition 14. For any m ≥ 6, there exists a solution of ice slideB
P on Tm,m

with m−1
2 blocks, such that:

(1) if im is the maximum index of a row with a block, the robot can pass hori-
zontally on the row Rim+1,

(2) the robot can pass vertically on all the columns.

Proof. We will use for the induction the pattern of size 4×8 of Figure 9. The figure
gives a proof of the following lemma:

Lemma 15. Assume that the pattern of Figure 9 is in position (i, j) ((i, j) is the
top-left square of the pattern) and that there is no block in any column and row
intersecting the pattern (i.e. rows Ri to Ri+3 and columns Cj to Cj+7). Then, if
a robot enters in position (i, j) horizontally in the pattern of Figure 9, it can pass
vertically on all the columns Cj to Cj+7 and can go out of the pattern horizontally
on rows Ri−1 and Ri+4, in any direction.

Using this pattern, if we know a solution for Tm,m of size m−1
2 satisfying Con-

ditions (1) and (2) of the proposition, we can get a solution for Tm+8,m+8 of size
m−1
2 + 4 still satifsfying the conditions. Indeed, one can copy the solution of Tm,m

and if im (resp. jm) denotes the largest index of a row (resp. a column) containing
a block, add the pattern in position (im + 1, jm + 1) (see Figure 10).
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⇒ P

Figure 9 – Pattern for ice slideP
B on torus and its representation.

Tn,n

P

Figure 10 – Construction of a solution for Tm+8,m+8 from a solution
of Tm,m. The conditions 1 and 2 of Proposition 14 remain satisfied.

Hence we just have to prove the proposition for m = 6 to m = 13. This is proved
by Figure 11. On this figure, we show the solutions for odd m. We get the solutions
for even m by removing the row and the column in gray.

�

Since all the columns are passed vertically, we can add as many rows as we want
to the torus and we get optimal solutions for Tn,m with n ≥ m ≥ 6:

Corollary 16. For n ≥ m ≥ 6, ισB
P (Tn,m) = m−1

2

We now complete the study with the small values of m:

Proposition 17. We have:

• ισB
P (Tn,1) = 0

• ισB
P (Tn,2) = n− 2

• ισB
P (Tn,3) = 3

• ισB
P (Tn,4) = 3

• ισB
P (Tn,5) = 3

Proof. The case m = 1 is trivial.
If m = 2, assume that the robot starts at position (1, 1). Then it can only go

vertically on column 1, horizontally on row 1 and eventually horizontally on two
more rows i− 1 and i+ 1 if there is a block in position (i, 1). Hence n− 3 squares
are not reachable and we need to add blocks on these squares.
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(a) m = 6, 7

P

(b) m = 8, 9

P

(c) m = 10, 11

P

(d) m = 12, 13

Figure 11 – Small cases for induction for ice slideB
P on torus. Since

all columns are passed vertically, we did not represent all the horizontal
rows but just the significant ones. To get the even grids, remove the gray
row and column.

For m ∈ {3, 4, 5}, assume there is a solution with starting position (1, 1) and two
blocks in positions (i1, j1) and (i2, j2). We must have 1 ∈ {i1, j1, i2, j2}. Assume
that i1 = 1 (other cases are similar). We have j1 6= 1, j1 6= j2 and i2 6= 1
(otherwise the robot can not go everywhere). Then one can check that the robot
can not go in position (i2, i1), which leads to a contradiction. Blocks in positions
{(1, 3), (2, 4), (3, 2)} is a solution with three blocks. �

Remark 18. In the torus, all the positions are equivalent. Also, if we knows the
starting position before placing the blocks, we can always use our constructions.
However, if the solution must work for any starting position, then one need at least
min(n,m) blocks. Indeed, if there exists a row Ri and a column Cj without any
block, a robot starting in (i, j) will never be able to leave the squares of Ri ∪ Cj.

3.3. King grids. We now consider the game ice slideP
B played on the King grid

n×m, denoted Kn,m, also known as the strong product of two paths Pn � Pm. In
the King grid, the robot is also allowed to initiate moves diagonally.

Theorem 19. Let m ≥ n be positive integers.
If gcd(n,m) ≤ 3, then ισP

B(Kn+1,m+1) = 0.
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(a) On Kn+1,m+1 when

gcd(n,m) = 3, the robot can
stop on grey squares.

(b) How we use blocks

Figure 12 – Block pass in the king grid.

Proof. Let m ≥ n be positive integers such that gcd(n,m) ≤ 3, and consider the
game on the King grid Kn+1,m+1. We first observe that the robot can stop on all
positions (1, 1 + αn− βm) where 0 ≤ αn− βm ≤ m (see Figure 12a). From (1, 1),
the robot can go diagonally to (1 + n, 1 + n) then up to (1, n + 1). Iterating the
process, it reaches (1, 1 + αn) for all 0 ≤ α ≤ m

n . Eventually, the robot reaches the
position (1, 1 + bmn cn). Then, going diagonally, it reaches (1 +m− bmn cn,m+ 1),
then can slide to (1 +m− bmn cn, 1), and can continue diagonally its movement to
(1 + n, 1 + (bmn c + 1)n −m) from which it can go up to (1, 1 + (bmn c + 1)n −m).
Iterating the same process, we get that it reaches all positions (1, 1 + αn − βm)
where 0 ≤ αn − βm ≤ m. Then, thanks to Bézout’s identity, we deduce that the
robot reaches all positions (1, 1 + α gcd(m,n)) where 0 ≤ α ≤ m

gcd(m,n) .

Now, if gcd(m,n) = 1, from these positions, the robot can pass vertically any
position. If gcd(m,n) = 2, then the robot passes vertically all positions (x, 1 + 2y).
From (1, 1 + 2y), it can also reach by a diagonal (1 + 2y, 1), and thus can pass
horizontally all (1 + 2x, y). Positions (2x, 2y) can be reached from either (1 + 2(x−
y), 1) (if x ≥ y) or from (1, 1 + 2(y − x)) (otherwise). So the robot can pass all
positions. Finally, if gcd(m,n) = 3, the robot can pass vertically all (x, 1 + 3y)
and horizontally all (1 + 3x, y). The positions (2 + 3x, 2 + 3y) and (3x, 3y) can be
reached diagonally from (1 + 3(x − y), 1) or from (1, 1 + 3(y − x)). The positions
(3x, 2+3y) and (3x−1, 3y) can be reached diagonally from (n+1, 3(y+x)−n+1)
or from (3(y + x) + 1, 1). �

Theorem 20. For m ≥ n positive integers, we have

ισP
B(Kn+1,m+1) ≤

⌈
gcd(n,m)− 3

8

⌉
.

Proof. Let k =
⌈
gcd(n,m)−3

8

⌉
, we prove now that using k blocks, the robot may

pass on every unoccupied position. For 0 ≤ i < k, we place a block Bi on position
(n+ 1, n+ 1− 2i) when i is even, and (1, n+ 1− 2i) when i is odd (see Figure 13).
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We first prove by induction that the robot can reach position (1, n + 1 − j)
or position (n + 1, n + 1 − j) for all 0 ≤ j ≤ 2k, and thus, with two diagonal
moves and possibly one vertical move, the robot also reaches positions (1, 1 + j)
and (n+ 1, 1 + j). Let j be a positive even integer in the range 0 ≤ j ≤ 2k− 2, and
assume the robot can reach the positions (1, 1+j) and (n+1, 1+j). The base case,
when j = 0, is obvious. If j is even, from (1, j + 1), the robot can slide to (j + 1, 1)
then to (n, n− j) where it get stopped by block B j

2
(see Figure 12b). Then it can

go up to (1, n − j) and diagonally to (n + 1, n − j − 1), proving the property for
j + 1 and j + 2.

From these positions, with similar arguments as in the previous lemma, we get
that the robot can always reach positions of type (1, 1 + α gcd(n,m) − j) or (n +
1, 1+α gcd(n,m)−j) as well as (1+α gcd(n,m)+j, 1) or (1+α gcd(n,m)+j, n+1)
with 0 ≤ j ≤ 2k (see Figure 13. Then, the robots can reach all positions whose
line or column can be written in such a way. So consider now a position of type
(1 + α gcd(n,m) + x, 1 + β gcd(n,m) + y) where x and y are larger than 2k but
less than gcd(n,m) − 2k ≤ 6k + 3. If |x − y| ≤ 2k, then the robot can reach
that position by sliding diagonally from (1 + (α − β) gcd(n,m) + (x − y), 1) or
(1, 1 + (α− β) gcd(n,m) + (x− y)). If |x− y| ≥ 2k + 1, we deduce that

x+ y − gcd(n,m) ≤ 2(gcd(n,m)− 2k − 1)− (2k + 1)− gcd(n,m) ≤ 2k

x+ y − gcd(n,m) ≥ 2(2k + 1) + 2k + 1− gcd(n,m) ≥ −2k

Therefore, if y′ = 1+α gcd(n,m)+x+n+1− (1+β gcd(n,m)+y) is non negative,
then it can be writen in the form 1 + γ gcd(n,m) + j or 1 + γ gcd(n,m)− j where
0 ≤ j ≤ 2k, and the position can be reached diagonally from (n+ 1, x′), otherwise
x′ = n+ 1− y′ and then the position can be reached from (x′, 1).

�

When gcd(m,n) > 3, it is not difficult to verify that there is no solution without
any block, by checking all the possible moves. We can observe that there is no
possibility to reach the position (2, 3) for example. However, we do not have any
general proof that our bound is optimal, and we leave it as an open question.

4. Other instances of ice slide

4.1. ice slideS
B. In what follows, we consider the game ice slide played with

blocks on a grid where the robot has to stop on each square. An inner square of
the grid is a square (i, j) such that 2 ≤ i ≤ n−1 and 2 ≤ j ≤ m−1. Other squares
are called border squares.

We obtain the following lower bound for ισS
B(Gn,m):

Proposition 21. For each n ≥ m ≥ 3, we have ισS
B(Gn,m) ≥ γ(Gn−2,m−2).

Proof. Consider an optimal solution B of ice slideS
B on Gn,m. Let (i, j) be an

inner square of the grid. There must a block adjacent to (i, j) otherwise the robot
cannot stop on it. Let G′ be the grid induced by the inner squares. It is isomorphic
to Gn−2,m−2. Let B1 be the set of blocks of B that are located on inner squares.
Let Vb be the set of squares of G′ that are not adjacent to a block of B1. Note
that all these squares are on the border of G′, and that, for each square (i, j) of Vb,
there is a block on an adjacent square of (i, j) which is on the border of Gn,m. Thus
we have |B| ≥ |B1| + |Vb|. Now let us consider B′ defined as the disjoint union of
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Figure 13 – Two blocks for the King grid K20,20.

B1 and Vb. Clearly, B′ is a dominating set of Gn−2,m−2, and we have |B′| ≤ |B|.
Hence we have:

ισS
B(Gn,m) = |B| ≥ |B′| ≥ γ(Gn−2,m−2).

�

We now give a construction of a solution of ice slideS
B on Gn,m.

Proposition 22. For any n ≥ m ≥ 3, we have

ισS
B(Gn,m) ≤ γ(Gn−2,m−2) +

18

25
(m+ n) +

28

5
.

Proof. Let n ≥ m ≥ 2.
We construct a solution B of ice slideS

B in three steps. The construction is
illustrated on Figures 14 and 15.

Let first B1 be the set of blocks that are the translation of the block located on
square (1, 2) by linear combinations of the two vectors {(1, 2), (3, 1)} (see Figure 14).
Note that B1 covers all the inner squares of Gn,m and that each inner square is
covered exactly once.

Let us call B′1 the subset of blocks which are located on the border. By construc-
tion, there are at most 2

(⌈
n−2
5

⌉
+
⌈
m−2
5

⌉)
≤ 2

5 (m + n) + 2 such blocks. Clearly,
the blocks of B′1 cover a subset S′ of the inner squares such that |B′1| = |S′|.
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Let us denote S′′ the set of inner squares which are not in S′. Since each inner
square is covered exactly once, then the subset B′′1 of blocks of B1 that are located
on inner squares satisfies 5|B′′1 | = |S′′|.

On the other hand, since each square of the grid has at most four neighbours, then
we have γ(Gn−2,m−2) ≥ 1

5 (|S′|+|S′′|). Hence we have γ(Gn−2,m−2) ≥ 1
5 |B

′
1|+|B′′1 |,

and since B1 is the disjoint union of B′1 and B′′1 then we have |B1| ≤ γ(Gn−2,m−2)+
8
25 (m+ n) + 8

5 .
The blocks of B1 will be enough to ensure that the robot will be able to stop

on almost each inner square as soon as it may reach some of them. Indeed, if the
robot enters in a rectangle of size 4 × 4 that has four blocks on its border (see as
an example the gray rectangle on Figure 14), then it will be able to stop in the
four inner squares of this rectangle and thus to go out of the rectangle from these
four places (see Figure 15). To ensure that the robot will be able to enter in those
rectangles from the border of the grid and to stop on the border, we add some
blocks that will form the set B2.

Figure 14 – Solution of ice slideS
B on G8,10

Figure 15 – Pattern of the solution of ice slideS
B

For each block of B1 located on an inner square which is neighbour of a border
square, we add a block in B2 in the following way:

• for each block (2, j) ∈ B1, we add the block (1, j) to B2;
• for each block (n− 1, j) ∈ B1, we add the block (n, j − 1) to B2;
• for each block (i, 2) ∈ B1, we add the block (i, 1) to B2;
• for each block (i,m− 1) ∈ B1, we add the block (i,m) to B2.
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By construction, we have |B2| ≤ 2
(⌈

n−2
5

⌉
+
⌈
m−2
5

⌉)
≤ 2

5 (m+ n) + 2.
Finally, we add blocks in the corners of Gn,m if these squares are not reachable

by the robot:

• if there is a block on (2,m− 1), then we add the block (1,m);
• if there is a block on (n− 1, 2), then we add the block (n, 1);
• if there is a block on (n− 1,m− 1), then we add the block (n,m).

These blocks form the set B3. Note that at most two blocks are added in B3,
since (1,m) is added if and only if m ≡ 0 mod 5, and (n, 1) is added if and only if
n ≡ 2 mod 5.

The set of blocks B = B1∪B2∪B3 form a solution of ice slideS
B , of cardinality

at most γ(Gn−2,m−2) + 18
25 (m+ n) + 28

5 .
�

By combining the lower and uppers bounds and since γ(Gn,m) =
⌊
(n+2)(m+2)

5

⌋
−

4 [6], we obtain an asymptotic value for ισS
B(Gn,m):

Corollary 23. If m and n are large enough, ισS
B(Gn,m) = mn

5 +O(m+ n).

Notice that the construction of Proposition 22 is optimal for n = m = 2, n =
m = 3, and m = n = 4. We did not try to find the exact value of ισS

B(Gn,m) in
the general case since we think that such a result does not deserve much interest
compared to the tedious case study it would need to be proved.

Remark 24. Remark that, in the torus, using an optimal dominating set we im-
mediately get ισS

B(Tn,m) = nm
5 when n ≡ 0 mod 5 and m ≡ 0 mod 5. Similarly, in

the general case, one could also show that ισS
B(Tn,m) = nm

5 +O(m+ n).

4.2. ice slideP
W . In what follows, we consider the game ice slide played with

walls on a grid and where the robot has to pass over each square. Unlike blocks,
there will be two types of walls: horizontal and vertical ones (see Figure 3).

Definition 25. Let W be a set of walls. The row Ri, 2 ≤ i ≤ n− 1 (resp. column
Cj, 2 ≤ j ≤ m − 1) is said to be covered by W if there is at least one horizontal
wall of W adjacent to row Ri (resp. one vertical wall adjacent to column Ci).

By similar considerations to Subsection 3.1, we get the following observation:

Observation 26. If W is a set of walls in Gn,m which covers every column Cj,
2 ≤ j ≤ m− 1, then |W | ≥ ρ(Pm−2).

This result leads to the following lower bound for ισP
W (Gn,m):

Proposition 27. For each n ≥ m, we have ισP
W (Gn,m) ≥ ρ(Pm−2).

Proof. Similar to the one of Proposition 9. If every column is covered by a wall,
then the proposition holds from Observation 26. Now consider an optimal solution
W such that there exists a column Cj , 2 ≤ j ≤ m−1 which is not covered by a wall.
The robot cannot move vertically in Cj since there is no vertical wall adjacent to
this column. Hence it has to go horizontally through every row Ri, 2 ≤ i ≤ n− 1,
implying that each such row must be covered by a wall. Therefore we get the
desired result:

|W | ≥ ρ(Pn−2) ≥ ρ(Pm−2).

�
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The following lemma is the key to reach the lower bound of the above proposition:

Lemma 28. Assume that the pattern Pn of size n× 4 depicted on Figure 16 is in
position (1, j) ((1, j) being the top-left square of the pattern). Then, if a robot is able
to enter horizontally either in (1, j) or (n, j + 3), it can pass vertically through all
the columns Cj to Cj+3. In addition, if a robot enters horizontally the pattern Pn

in position (1, j), it can leave it horizontally on rows R1 and Rn in either direction.

A proof of this result is given by Figure 16.

Figure 16 – Pattern of size n× 4 for ice slideP
W on grid

Theorem 29. For any n ≥ m ≥ 4, we have ισP
W (Gn,m) = ρ(Pm−2).

For m = 3 and n ≥ m, we have ισP
W (Gn,m) = 1.

For m ≤ 2 and n ≥ m, we have ισP
W (Gn,m) = 0.

Proof. Let n ≥ m ≥ 4. A solution is build by gluing dm−24 e copies of Pn starting
from column C2 and ending in Cm−1 (leaving columns C1 and Cm empty). In this
process, if (m− 2) 6≡ 0 (mod 4), then remove the (m− 2) (mod 4) last columns of
the rightmost copy of Pn. Figure 16 ensures that all the columns (except the last
ones) of all the copies are visited by entering from row R1. It also shows that all
the rightmost columns of each pattern can be visited by entering from the right on
row Rn. Note that it is also true for the rightmost copy of Pn since the robot can
move vertically in column Cm.
In the case where m = 3, it is straightforward to see that from position (1, 1), the
robot cannot visit all the squares if there is no wall. A vertical wall adjacent to
position (1, 2) is however sufficient. �

Remark 30. Note that Theorem 29 remains valid for any starting position. It is
not hard to see that the pattern of Figure 16 ensures the robot to reach (1, 1) from
any position.

4.3. ice slideS
W . In what follows, we consider the game ice slide played with

walls on a grid where the robot has to stop on each square. Constructions and
proofs are similar to the ones of Subsection 4.1. We obtain the following lower
bound for ισS

W (Gn,m):
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Proposition 31. For each n ≥ m ≥ 3, we have ισS
W (Gn,m) ≥ ρ(Gn−2,m−2).

Proof. Consider an optimal solution W of ice slideS
W on Gn,m. Let (i, j) be an

inner square of the grid, i.e 2 ≤ i ≤ n − 1 and 2 ≤ j ≤ m − 1. There must a wall
adjacent to (i, j) otherwise the robot cannot stop on it. Let G′ be the grid induced
by the inner squares. It is isomorphic to Gn−2,m−2. Let W1 be the set of walls that
are adjacent to two inner squares of Gn,m. Let Vb be the set of squares of G′ that
are not adjacent to a wall of W1. Note that all these squares are on the border of
G′ and for each square of Vb, there is a wall between this square and the adjacent
square on the border of Gn,m. Hence one can add to W1 one wall adjacent to each
square of Vb and this new set W ′ will have size at most |W |. The set W ′ naturally
corresponds to a set of edges of G′ that cover the vertices of G′. Hence we have:

ισS
W (Gn,m) = |W | ≥ |W ′| ≥ ρ(Gn−2,m−2).

�

We now give a construction of a solution of ice slideS
W on Gn,m.

Proposition 32. For any n ≥ m ≥ 3, we have

ισS
W (Gn,m) ≤ ρ(Gn−2,m−2) +

3(m+ n)

4
+ 3.

Proof. Let n ≥ m ≥ 3. We construct a solution W of ice slideS
W in three steps.

The construction is illustrated on Figures 17 and 18.
We denote by (i, j) − (i, j + 1) the vertical wall between the square (i, j) and

(i, j+ 1) and use similar notations for horizontal walls. An inner wall is a wall that
is not touching the border (if it is a vertical wall, it means that 2 ≤ j ≤ m− 2 and
i is not constrained in the previous notation).

Let first W1 be the set of inner walls that are the translation of the walls (2, 2)−
(2, 3) and (3, 2)−(4, 2) by linear combinations of the three vectors {(1, 1), (0, 4), (4, 0)}
(see the inner walls of Figure 17). Note that W1 covers all the inner squares of Gn,m

and that each square is covered exactly once. Some walls of W1 are located be-
tween an inner square and a border square. There are at most 2

(⌈
n−2
4

⌉
+
⌈
m−2
4

⌉)
≤

m+n
2 + 2 such walls. Hence |W1| ≤ ρ(Gn−2,m−2) + m+n

4 + 1.
The walls of W1 will be enough to ensure that the robot will stop on almost each

inner square as soon as it will enter to some of them. Indeed, if the robot enters
in a rectangle of size 3× 2 that has four walls on its border (see as an example the
gray rectangle on Figure 17), then it will be able to stop in the four corners of this
rectangle and thus to go out of the rectangle from these four places (see Figure 18).
To ensure that the robot will enter in the rectangles of the border of the grid and
stop on the border, we add some walls that will form the set W2. For each wall of
W1 located between an inner square and a border square, we add a wall in W2 in
the following way:

• for each (1, j)− (2, j) ∈W1, we add the wall (1, j)− (1, j + 1) to W2;
• for each (n− 1, j)− (n, j) ∈W1, we add the wall (n, j − 1)− (n, j) to W2;
• for each (i, 1)− (i, 2) ∈W1, we add the wall (i, 1)− (i+ 1, 1) to W2;
• for each (i,m− 1)− (i,m) ∈W1, we add the wall (i− 1,m)− (i,m) to W2.

We furthermore add the wall (2, 1) − (3, 1) to W2. Finally, if (n − 2,m − 1) −
(n − 1,m − 1) (respectively (n − 1,m − 2) − (n − 1,m − 1)) is a wall, we add the
wall (n,m − 2) − (n,m − 1) (resp. (n − 2,m) − (n − 1,m)) to W2. Note that the



ICE SLIDING GAMES 19

first case holds if and only if n −m ≡ 2 mod 4 and whereas the second case holds
if and only if n−m ≡ 3 mod 4.

The final set of walls W1 ∪W2 is a solution of ice slideS
W of size at most

ρ(Gn−2,m−2) +
3(m+ n)

4
+ 3.

�

Figure 17 – Solution of ice slideS
W on G9,7

Figure 18 – Pattern of the solution of ice slideS
W

By combining the lower and uppers bounds and noticing that ρ(Gn,m) =
⌈
nm
2

⌉
,

we obtain an asymptotic value for ισS
W (Gn,m):

Corollary 33. If m and n are large enough, ισS
W (Gn,m) = mn

2 +O(m+ n).

As for Subsection 4.1, we did not try to find the exact value of ισS
W (Gn,m).

Remark 34. The solution built in Proposition 32 remains valid for any starting
position except the part of the border around the bottom-right corner when n−m ≡
0 mod 4 or n−m ≡ 1 mod 4.
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Discrete Math. 25 (3), pp. 1443–1453 (2011).

[7] J. R. Hartline and R. Libeskind-Hadas, The Computational Complexity of Motion Planning,

SIAM Review, Vol. 45, No. 3, pp. 543-557 (2003).
[8] M. Hock, Exploring the complexity of the ufo puzzle, Undergraduate thesis, Carnegie Mellon

University, (2001) http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-02/hock.ps

[9] A. Klobucar, Total domination numbers of cartesian products, Mathematical Communica-

tions 9, 35-44 (2004).

[10] J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston, MA, (1991).
[11] TCS questions & answers Website (2012)

http://cstheory.stackexchange.com/questions/10813/

what-is-the-known-complexity-of-this-game-similar-to-pushpush-1


