
HAL Id: hal-01170299
https://hal.science/hal-01170299v1

Submitted on 3 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Glass Coating Lines: MIP Models and Valid
Inequalities

Céline Gicquel, Nicolas Miègeville, Michel Minoux, Yves Dallery

To cite this version:
Céline Gicquel, Nicolas Miègeville, Michel Minoux, Yves Dallery. Optimizing Glass Coating Lines:
MIP Models and Valid Inequalities. European Journal of Operational Research, 2010, 202 (3), pp.747-
755. �10.1016/j.ejor.2009.06.027�. �hal-01170299�

https://hal.science/hal-01170299v1
https://hal.archives-ouvertes.fr


Optimizing glass coating lines: MIP model

and valid inequalities
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Abstract

Glass coating is a specific transformation aiming at improving glass

performance. The work presented in this paper deals with the deter-

mination of the optimal configuration of the production lines used to

perform this operation. We propose a first MIP formulation of the

problem and then discuss several types of valid inequalities for im-

proving it. The main idea is to exploit explicit or implicit binary ex-

clusion constraints to derive stronger valid inequalities: the maximal

clique constraints. Efficient (polynomial time) separation algorithms

exploiting special structure of the problem are described, giving rise to

a cutting-plane generation procedure for strengthening the initial for-

mulation. The computational study carried out shows that, with the

enhanced formulation, good solutions can be obtained within reason-

able computation times using currently available integer programming

software.
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1 Introduction

This work is motivated by an industrial problem arising in the glass industry

in connection with a specific transformation of flat glass called glass coating.

Glass coating consists of depositing in vacuum thin layers of metal on the

surface of glass sheets. As a general rule, the process involves several layers

of distinct metals. This aims at giving the glass additional properties such as

a better thermal insulation: see e.g. Arnaud (1997) for an overview on the

applications of coated glass. According to the sequence and thickness of the

layers, the property obtained is different: hence production managers have

to cope with some product diversity.

Glass coating can be done on specific production lines called ”soft-coating

lines” using a process called ”cathodic sputtering” (Suzuki (1999)). Basically,

these lines are made of a number of metallic cathodes, each being used to

spray or ”sputter” a specific metal on the glass sheets. Each sheet can go

only once through the production line: during this single passage, all the

metal layers to be deposited on the sheet must be sputtered following the

sequence imposed by the product specifications.

The cathodes are ordered along the line: a configuration of the line cor-

responds to a sequence of cathodes. A cathode contains a finite volume of

a single metal. Once the metal of a cathode has been used up, the cathode

must be changed. But, due to technical reasons, this requires a line shut-

down during several days. Because of these time-consuming changeovers,

soft-coating lines are operated according to the following organization. All

cathodes on the line are changed together during a line shutdown. After this,

production takes place continuously with this configuration during the next

production run, the duration of which is typically about one month. When

the run is over, all cathodes are changed and a new configuration is set up.

The problem addressed in the present paper concerns the determination

of the optimal configuration to be set up between two line shutdowns. This

decision can be based on reliable future demand forecasts: the requested

products and the anticipated surface to be coated are assumed to be perfectly
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known. The configuration set up at the beginning of a production run should

be able to process all needed products in the quantity requested until the next

production shutdown. In this context, determining the configuration to be

set up consists of selecting among a set of available cathodes the ones to

be placed on the line, ordering them along the production line and deciding

how to use them to process the requested products. Because of its limited

capacity, a cathode may not be sufficient to sputter the entire volume needed

to process a given layer. Thus we have to consider the situation where a layer

is sputtered by several cathodes placed at different positions on the line. The

objective is to minimize the number of cathodes to be placed on the line.

Indeed, the larger the number of cathodes to be placed on the line during

a setup, the greater the changeover operations will be and the more time

will be lost for useful production. Investigation of models and algorithms for

solving the resulting discrete optimization problem is the subject addressed

in the present paper.

The problem under study shares some common features with a string

processing problem called the Shortest Common Supersequence problem (see

e.g. Maier (1978)). It is however significantly different due to various extra

constraints which must be taken into account, one of the most significant

being the limitations imposed on cathode capacity, which frequently result

in the use of a significant number of additional positions.

The problem of optimizing glass coating lines can also be related to the

”Assembly Line Design Problem” (ALDP). In the ALDP, a production line

is described as a series of workstations, each being responsible for perform-

ing a specific set of assembly tasks. The problem consists of selecting a

piece of equipment for each workstation and deciding which tasks should be

performed by which workstation. Recent overviews on the literature on the

ALDP can be found in Becker and Scholl (2006) and Boysen et al. (2007).

Nevertheless, the glass coating line problem is different from the ALDP stud-

ied in most papers (see e.g. Pinnoi and Wilhelm (1998) and Bukchin and

Tzur (2000)). The main reason is that in the ALDP, each assembly task is
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performed exactly once, i.e is assigned to a single workstation on the line,

whereas on a glass-coating line, a layer can be sputtered by several cathodes

placed at different positions on the line. The problem of optimizing glass

coating lines can thus be seen as an extension of the ALDP to the case where

a task can be assigned to more than one workstation (”parallelized” in the

terminology of Boysen et al. (2007)). To the best of our knowledge, the only

solution approach already available to deal with this particular extension of

the ”Assembly Line Design Problem” can be found in Boysen and Fliedner

(2008) who propose a flexible heuristic search procedure that can be modified

to solve various extensions of the ”Assembly Line Balancing Problem”. In

their paper, the authors assume that the processing time of a parallelized

task is equally allocated to the chosen workstations. On the contrary, on a

glass coating line, the volume of a layer sputtered by several cathodes can

be unequally divided among the various cathodes so that we have to decide

about the allocation of the metal volume to be sputtered among the chosen

cathodes. Moreover, their solution approach is purely heuristic whereas ours

being based on a mixed integer linear programming (MIP) model is intended

to provide exact optimal solutions.

The paper is organized as follows. In section 2, we introduce an initial

mathematical formulation of this problem as a mixed integer linear program.

In section 3, we consider several ways to strengthen this initial formulation

by adding valid inequalities of various types. In section 4, we discuss the

results of some computational experiments showing the practical usefulness

of the proposed valid inequalities at improving the efficiency of a Branch

& Bound type procedure. Conclusions and perspectives for future work are

presented in section 5.

2 Problem formulation

We wish to determine the optimal configuration of a glass coating line to

be set up between two production shutdowns. In this section, we introduce
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an initial formulation for this optimization problem as a mixed integer lin-

ear program. To describe the problem precisely we introduce the following

notation.

The set of anticipated requirements is supposed to involve M metals and

P distinct final products. Each metal type is indexed by m: m = 1, 2, ..., M .

Each product, indexed p = 1, 2, ..., P , is made of a glass sheet on which Op

layers are to be sputtered. For a given product p, a layer o = 1, 2, ..., Op is

made of a specific metal denoted mpo and its thickness is given by epo. The

anticipated surface of product p to be processed during the production run,

Sp, being known, the volume of metal mpo needed to sputter the oth layer of

product p can be deduced as: Vpo = epo ∗ Sp.

Possible positions of cathodes on the production line are indexed by

i = 1, 2, ..., N . These positions are ordered according to the orientation of

production flow. The cathode i + 1 is located immediately after the cathode

i along the line.

Available cathodes correspond to C types of cathodes. For each type of

cathode c = 1, 2..., C, we assume that we know mc, the corresponding metal,

Vc, the volume of available metal in each cathode and νc, the number of

cathodes belonging to this type. We agree to use an additional type c = 0

(the empty cathode) to represent free positions on the line. For each metal

m, we denote C(m) the subset of cathode types c such that mc = m. The

complementary subset is denoted C(m) = {c = 1, 2, ..., C st mc 6= m}.

2.1 First formulation of the problem as a MIP

Here we first provide a mathematical statement of the problem involving the

following decision variables:

- zi
c = 1 if a cathode of type c is placed in line position i, zi

c = 0 otherwise.

- yi
po = 1 if the cathode placed in position i is used to sputter the oth layer

of product p, yi
po = 0 otherwise.

- xi
po gives the proportion of Vpo sputtered by the cathode placed in the ith

position. Thus all the xi
po are continuous variables in [0; 1].
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Considering the criterion of minimizing the total number of positions used,

the formulation proposed is:

min

N∑
i=1

C∑
c=1

zi
c (1)

∀i,
C∑

c=0

zi
c = 1 (2)

∀c,
N∑

i=1

zi
c ≤ νc (3)

∀i, ∀p, ∀o, yi
po +

∑

c∈C(mpo)

zi
c ≤ 1 (4)

∀p, ∀o,
N∑

i=1

xi
po = 1 (5)

∀i, ∀p, ∀o, xi
po ≤ yi

po (6)

∀p, ∀(o, o′) st o > o′,∀(i, i′) st i < i′, yi′
po′ + yi

po ≤ 1 (7)

∀i, ∀m,
∑

c∈C(m)

Vcz
i
c −

∑

(p,o) st mpo=m

xi
poVpo ≥ 0 (8)

∀i ∈ [1; N − 1], zi
0 ≤ zi+1

0 (9)

∀i, ∀p, ∀o, yi
po ∈ [0; 1], xi

po ∈ [0; 1] and ∀i, ∀c, zi
c ∈ [0; 1] (10)

∀i, ∀p, ∀o, yi
po ∈ {0; 1} and ∀i, ∀c, zi

c ∈ {0; 1} (11)

The objective expressed by (1) is to minimize the total number of cathodes

placed on the line. Constraints (2) ensure that at most one cathode is placed

in position i. zi
0 = 1 means that the ith position on the line is free. Constraints

(3) ensure that no more than the number of available cathodes of type c, νc,

are placed on the line. Constraints (4) guarantee the compatibility between

the metal mpo for layer o of product p and the metal of the cathode placed in

position i : we cannot open the connection yi
po = 1 if the cathode in position

i contains a metal other than mpo. Equalities (5) ensure that the demand is
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perfectly met: all the volume of each layer should be sputtered. Constraints

(6) link the continuous variables xi
po with the binary variables yi

po: some

volume of the oth layer of product p can be sputtered in position i only if

the connection is open. Precedence constraints (7) force compliance with

the order according to which the layers of a product should be sputtered:

for a given product p, the layer o which is above the layer o′ should not

be processed with a cathode i placed before the cathode i’ if the latter is

used to sputter o′. Inequalities (8) guarantee that the limited capacity of the

cathodes is not exceeded: for each type of metal, the volume remaining at the

end of the production run in the cathode placed in position i should be non-

negative. Constraints (9) are used to enforce consecutive empty positions at

the end of the line in case all positions are not used.

2.2 A small illustrative example

Problem P0 is a small instance we use in order to illustrate the problem and

its resolution. P0 involves M = 4 metals, P = 3 products made of 3 or 4

layers and N = 12 positions on the line. Table 1 gives the numerical data

relative to this example. The optimal configuration in this case is a sequence

of Z∗ = 7 cathodes. Table 2 gives this sequence as well as the optimal use

of cathodes to process the 3 products. We may notice that the first layer of

product p = 3 is sputtered by two cathodes made of gold (placed at positions

2 and 4). This is due to the fact that the volume of metal needed to sputter

this layer exceeds the capacity of a single cathode made of gold. In the sequel,

P0 is used to illustrate various features of the proposed resolution method.

3 Valid inequalities

The formulation introduced in section 2 enables us to solve exactly only small

instances: computation times for industrial problems of larger size using one

of the best currently available commercial MIP solver are prohibitively long

as can be seen from table 4. A possible explanation for this lies in the ob-
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Table 1: Problem P0: data on products and available cathodes
Product p = 1 o 1 2 3 4

Metal mpo Ag Au Ti Ag
Volume Vpo 210 400 100 100

Product p = 2 o 1 2 3
Metal mpo Ag Ti Au
Volume Vpo 410 800 200

Product p = 3 o 1 2 3
Metal mpo Au Pt Ti
Volume Vpo 4000 1000 1000

Cathode c 1 2 3 4
Number νc 5 5 5 5
Metal mc Ag Ti Au Pt
Volume Vc 1000 2000 3000 2000

Table 2: Problem P0: optimal solution
Line Volume sputtered for the layer (p, o)

i Cathode p = 1 p = 2 p = 3
1 Ag, 1000 (1,1) 210 (2,1) 410
2 Au, 3000 (1,2) 400 (3,1) 1200
3 Ti, 2000 (1,3) 100 (2,2) 800
4 Au, 3000 (2,3) 200 (3,1) 2800
5 Pt, 2000 (3,2) 1000
6 Ti, 2000 (3,3) 1000
7 Ag, 1000 (1,4) 100

servation that the linear relaxation of the problem (1)-(11) only provides a

poor approximation to the exact optimal integer solution values. In order

to address this issue, we investigate below several ways of strengthening the

initial formulation (i.e. of reducing the integrality gap). The enhancements

discussed here focus on various aspects of the problem under study, namely:

- available cathodes have a limited capacity,

- only one metal can be assigned to each position on the line,

- precedence constraints between layers of a given product must be respected.
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In section 4, computational experiments will be reported showing that, thanks

to these enhancements, the linear relaxation is tightened and instances of

significantly larger size can be solved exactly with standard integer linear

programming tools.

3.1 Valid inequalities from limited capacity of available

cathodes

For each metal, we can compute a lower bound on the number of cathodes

containing this metal to be placed on the line. This gives M valid inequalities

(12) that can be added to the formulation.

∀m,

N∑
i=1

∑

c∈C(m)

zi
c ≥

⌈∑P
p=1

∑
o=1...Op st mpo=m Vpo

Max{Vc, c ∈ C(m)}

⌉
(12)

Namely, for each metal m, dividing the global volume of metal needed to

process all final products by the volume contained in the maximum capacity

cathode containing metal m and rounding up gives the minimal number of

cathodes of type c ∈ C(m) to be placed on the production line.

3.2 Valid inequalities from metal compatibility con-

straints

In this subsection, we discuss another family of valid inequalities to fur-

ther strengthen the formulation. In a first step, we derive a series of binary

exclusion constraints. These constraints are logical consequences of the for-

mulation (1)-(11). In a second step, we exploit the special structure of these

constraints to derive stronger valid inequalities which correspond to maximal

clique constraints in the underlying graph. (See e.g. Nemhauser and Wolsey

(1988)). We note here that similar approaches have been used on other

optimization problems such as assembly line design (Pinnoi and Wilhelm

(1998)), harvest scheduling (Goycoolea et al. (2005)), cellular telecommuni-
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cations networks design (Kalvenes et al. (2005)) or air line crew scheduling

(Zeghal and Minoux (2006)). We observe however that in all the above-

mentioned references the structures of the underlying constraint graphs were

significantly different from those studied in the present paper, leading to

clearly distinct separation algorithms. In particular, in Pinnoi and Wilhelm

(1998), the separation of clique constraints is carried out using either com-

plete enumeration or a greedy heuristic whereas our separation algorithms

are exact and polynomial.

We first state various families of binary exclusion constraints. These con-

straints are implied by the constraints (2)-(11) of the initial formulation but

their explicit statement turns out to be useful with respect to strengthening.

They link pairs of binary variables related to the same position i on the

production line, but to different products, layers or types of cathodes:

∀i,∀c, ∀p, ∀o st mc 6= mpo, z
i
c + yi

po ≤ 1 (13)

∀i,∀p, ∀o, ∀p′,∀o′ st mpo 6= mp′o′ , y
i
po + yi

p′o′ ≤ 1 (14)

∀i,∀p, ∀(o, o′) st o 6= o′, yi
po + yi

po′ ≤ 1 (15)

∀i,∀c, ∀c′ st c 6= c′, zi
c + zi

c′ ≤ 1 (16)

Constraints (13) state that for a given position, there is an incompatibility

between a cathode and a given layer if the corresponding metals are different.

Similarly, constraints (14) state that two layers made of distinct metals can-

not be sputtered at the same position. Constraints (15) are a consequence

of the precedence constraints: they guarantee that two layers belonging to a

given product will not be sputtered at the same position on the production

line. Constraints (16) ensure that two distinct cathodes will not be placed

at the same position on the production line.

We next investigate a strengthened formulation for the constraints (13)-

(16) based on the analysis of the associated constraint graph and the use of

valid inequalities deduced from maximal cliques.

In the constraint graph G = (V ,A), a node v ∈ V represents either a
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type of cathode placed in a given position (i.e a variable zi
c) or a metal layer

sputtered in a given position (i.e a variable yi
po). There is an edge a ∈ A

between two pairs of nodes if the corresponding variables are linked by one

of the binary exclusion constraints (13)-(16). Constraints (13)-(16) all deal

with variables related to a same position i on the production line. Therefore,

there is no edge in graph G between two nodes corresponding to different

positions on the line. In addition, for a given position, the binary variables

involved as well as the exclusion relations linking them are identical. G is thus

seen to decompose into N independent subgraphs with identical structure:

Gi = (V i,Ai) with V i the subset of nodes related to position i and Ai the

subset of edges linking these nodes. In the remainder of this subsection, we

will study one of these graphs Gi for an arbitrary choice of i.

A set C ⊂ V i is called a clique if each pair of nodes in C is connected

by an edge. A maximal clique is a clique which is not properly contained in

another clique. Each maximal clique in Gi thus gives rise to a valid inequality

called a maximal clique constraint stating that the sum of corresponding

binary variables should be less than or equal to 1. In the following, those

are referred to as type I valid inequalities. We observe that constraints (2)

and (4) of the initial formulation are among the clique constraints we can

obtain thanks to the study of one of the subgraphs Gi. But not all of them

are maximal clique constraints. In the sequel, we show how to exploit the

special structure of the graphs Gi to strengthen these constraints and find

other maximal clique constraints, in particular constraints linking variables

related to various distinct products.

The structure of a constraint graph Gi is close to that of a complete

multipartite graph, i.e a graph with node set partitioned into clusters such

that any two nodes belonging to different clusters have an edge connecting

them and that there is no connection between nodes within a single cluster.

Here, the set of nodes V i can be divided into M + 1 subsets V i
m which will

be referred to as clusters. The cluster V i
m ⊂ V i is the subset of nodes in Gi

related to metal m. There is an additional cluster, denoted V i
0, made of a
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single node, namely the node related to the variable zi
0. Thanks to constraints

(13), (14) and (15), there is an edge between any two nodes belonging to

different clusters. But, because of the constraints (15) and (16), there are

some additional edges between nodes belonging to the same cluster, namely

in the cases where the corresponding variables are related to two layers of

the same product or to two distinct types of cathodes.

The clusters V i
m can be seen to have a special structure. Namely let

π(m) ⊂ {1, ..P} be the set of indices of products p using metal m in at least

one layer. The cluster V i
m is made of 1 + |π(m)| disjoint cliques (possibly

containing a single node):

- K0
m, the clique containing the nodes related to cathode types c ∈ C(m),

- for each p ∈ π(m), Kp
m, the clique containing the nodes related to the layers

of product p made of metal m.

Proposition 1 is a direct consequence of this particular graph structure.

Proposition 1. A maximal clique in Gi is the union of M + 1 cliques, each

clique belonging to a different cluster V i
m of the graph.

Figure 1 illustrates the structure of a graph Gi for problem P0 introduced

in section 2.2. We show a maximal clique containing 6 nodes and yielding the

valid inequality: zi
0+zi

2+yi
1,1+yi

1,4+yi
2,3+yi

3,2 ≤ 1. For the sake of simplicity,

only the edges linking the nodes of this maximal clique are displayed.

Using proposition 1, we can compute the number of maximal cliques in

a graph Gi as the number of possible combinations obtained by choosing in

each cluster V i
m one clique out of (1 + |π(m)|) cliques:

Proposition 2. The number of maximal cliques in a graph Gi is given by:∏
m=1..M(1 + |π(m)|).

This number can be quite high: e.g for the industrial problem P20 (see

appendix), Gi has 2880 maximal cliques so that 2880∗30 = 86400 type I valid

inequalities should be added to the formulation. Due to this large number,

all maximal cliques constraints cannot be added a priori to the model. They
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P3

Ti
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o=1
o=1 

o=4 
P1 P2

Ag

Cath. c=3

o=2
Au

P1.

o=3P2

o=1P3

Figure 1: Constraint graph Gi for problem P0

can, however, be generated as needed according to a cutting-plane strategy.

In order to do this, we need to address the so-called separation problem.

The separation problem here can be stated as follows: ”given (z∗, y∗, x∗)

the optimal solution of the linear relaxation of the problem, find a violated

type I valid inequality or decide that (z∗, y∗, x∗) satisfies all type I valid in-

equalities ”. To solve this problem, we use the following separation algorithm:

(SEP1) Given (z∗, y∗, x∗) the optimal solution of (1)-(10), for i = 1...N ,

1. assign to each node in Gi a weight equal to the value of the corresponding

variable,

2. for m = 0...M ,

- compute the weight of each clique in the cluster V i
m: this weight is defined

as the sum of the weight of all clique nodes.

- select the clique Kmax
m of maximal weight wmax

m .

3. compute W =
∑

m=0...M wmax
m .

- if W > 1, the valid inequality given by the maximal clique C =⋃
m=0...M(Kmax

m ) is violated ,

- else all valid inequalities corresponding to position i are satisfied.

If, for each position i = 1...N , W ≤ 1, then (z∗, y∗, x∗) satisfies all type

I valid inequalities, otherwise at least one violated valid inequality has been
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…

…

…o=1

o=2

o=3

o=4

Figure 2: Constraint graph G1 for product p = 1 of problem P0: the edges
drawn as dotted lines connect nodes belonging to a maximal clique.

found. In the sequel, algorithm (SEP1) is used to generate type I violated

inequalities in order to strengthen the initial formulation.

3.3 Valid inequalities from precedence constraints be-

tween layers

We now focus on another subset of constraints in our problem: the precedence

constraints between layers of a given product. As in subsection 3.2, we exploit

the special structure of these binary exclusion constraints to derive a family

of stronger valid inequalities corresponding to maximal clique constraints and

to further strengthen the formulation.

We first explain how this family of stronger valid inequalities is derived.

We have two families of binary exclusion constraints related to a single prod-

uct p: constraints (7) of the original model stated in section 2 and valid

inequalities (15) stated in the previous subsection. We define the corre-

sponding constraint graph Gp = (Vp,Ap). A node v ∈ Vp refers to a binary

variable yi
po and can thus be indexed by (i, o). There is an edge a ∈ Ap

between two nodes of Vp if there is a binary exclusion constraint (7) or (15)

linking the corresponding variables. Figure 2 shows the graph G1 obtained

for product p = 1 of problem P0. Only a fraction of edges is presented, the

edges drawn as dotted lines connect the nodes belonging to a maximal clique.
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Maximal cliques in graphs Gp have special features that can be exploited

as shown by the following result:

Proposition 3. A maximal clique in Gp consists of exactly Op nodes, each

node related to a different layer of product p.

Proof. No two nodes in Vp related to the same layer are connected so that

the cardinality of a clique in Gp cannot be greater than Op, the number of

layers of product p.

In addition, a clique in Gp cannot be maximal if it does not include a

node related to each layer 1...Op. Namely, suppose K is a clique contain-

ing Op − 1 nodes. All nodes relate to a different layer so that all lay-

ers 1, 2, ...Op except layer o are present. K is thus the subset of nodes

K = {(i1, 1), (i2, 2), ..., (io−1, o− 1), (io+1, o + 1), ..., (iOp , Op)} with i1 ≥ i2 ≥
... ≥ io−1 ≥ io+1 ≥ ... ≥ iOp .

We now show that K cannot be a maximal clique. Consider a node (io, o)

such that io−1 ≥ io ≥ io+1. This node is connected to each node in K. We

have namely:

- ∀ω = 1...o − 1, iω ≥ io and ω < o. Hence there is a precedence constraint

linking yiω
pω and yio

po and (io, o) is connected to (iω, ω).

- similarly, ∀ω = o + 1...Op, iω ≤ io and ω > o. Hence there is a precedence

constraint linking yiω
pω and yio

po and (io, o) is connected to (iω, ω).

So K
⋃{(io, o)} is a clique containing K : K is not a maximal clique of Gp.

Each maximal clique in Gp provides a valid inequality for our problem.

These valid inequalities will be referred to as type II valid inequalities.

We can compute the number of maximal cliques in a graph Gp by induc-

tion, as stated below:

Proposition 4. Let Gp(N, L) be the graph for a product p made of L layers

and a production line with N positions. We denote by µ(N, L) the number

of maximal cliques in Gp(N,L). We have:

(i) ∀N, µ(N, 1) = N
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(ii) ∀N, ∀L ≥ 2, µ(N, L) =
∑N

i=1 µ(N − i + 1, L− 1)

(The proof is left to the reader).

The number of maximal cliques in Gp grows very fast with the problem

size, in particular with the number N of positions. With the recurrence given

above, the reader can easily check that e.g. for the product p = 5 in problem

P20, there are more than 38 billion type II valid inequalities. Hence it is not

possible to include directly all type II valid inequalities in the formulation.

This is why we propose two ways of using them to strengthen the formulation.

First, we remove constraints (7) from the formulation and replace them

by a much smaller number of type II valid inequalities. This involves finding

a minimal subset of type II valid inequalities such that every binary exclusion

constraint of type (7) is implied by at least one valid inequality belonging

to this subset, i.e. to find a minimal subset of maximal cliques in Gp such

that each edge a ∈ Ap is covered by at least one maximal clique belonging

to this subset. The following heuristic procedure (REP) was devised in or-

der to achieve this. It is based on the idea that the edges of graph Gp can

be covered in a systematic way by relying on the angle they make with the

horizontal axis. More precisely, for each node (i, Op) in Vp, we generate the

maximal cliques made up by the edges forming an angle α with the horizontal

axis such that tan(α) = b
a

where a = 1...N − i and b = 1...Op − 1.

(REP)

1. For p = 1...P , for i = 1...N , for a = 1...N − i, for b = 1...Op − 1,

generate the following type II valid inequality:

dOp
b
e∑

k=1

O(Op,k,b)∑

o=Op−b(k−1)

yI(i,k,a)
p,o ≤ 1

with I(i, k, a) = max(i+a(k−1); N) and O(Op, k, b) = min(Op− bk +

1; 1).
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2. Check wether each binary exclusion constraint of type (7) is covered by

at least one generated type II valid inequality. If an uncovered binary

exclusion constraint is found corresponding to layers o and o′ < o and

positions i and i′ > i, generate the following type II valid inequality:∑o′
ω=1 yi′

p,ω +
∑Op

ω=o′+1 yi
p,ω ≤ 1

3. For each generated type II valid inequalities, check wether all binary

exclusion constraints it replaces are covered by more than one type

II valid inequalities. If so, eliminate the corresponding type II valid

inequality.

As shown by the computational experiments to be presented in section

4, the use of procedure (REP) results in a substantial reduction on the total

number of constraints in the model as well as in an enhancement of the

formulation.

Second, in order to further strengthen the formulation, we generate ad-

ditional type II valid inequalities according to a cutting-plane strategy. This

involves solving the following separation problem for type II valid inequal-

ities: ”given (z∗, y∗, x∗) the optimal solution of the linear relaxation of the

problem, find a type II violated valid inequality or decide that (z∗, y∗, x∗)

satisfies all type II valid inequalities”. In order to solve it, we will make

use of proposition 5 below. We first build the oriented graph G̃p = (Ṽp, Ãp)

in which nodes in Ṽp correspond to binary variables yi
po and are indexed by

(i, o). There is an oriented arc from node (i′, o′) to node (i, o) if i ≤ i′ and

o = o′ + 1. We define a path as a sequence of nodes linked by arcs directed

from a node to the following one. A maximal path is a path which is not

contained in another path. Figure 3 shows the graph G̃1 obtained for product

1 in problem P0. Only a fraction of all arcs is presented.

Proposition 5. There is an 1-1 correspondence between the maximal cliques

of Gp and the maximal paths of the associated oriented acyclic graph G̃p.

Proof. The graph G̃p is an oriented acyclic graph. Due its special structure,

a maximal path P in G̃p contains Op nodes, each one corresponding to a
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…

…

…o=1

o=2

o=3

o=4

Figure 3: Oriented graph G1 for product p = 1 of problem P0: the arcs drawn
as dotted lines are the arcs connecting nodes belonging to the maximal path
corresponding to the maximal clique shown in figure 2.

different layer. P is a subset of nodes in Ṽp: P = {(i1, 1)..., (io, o)..., (iOp , Op)}
with i1 ≥ ... ≥ io ≥ ... ≥ iOp . Thanks to proposition 3, we know that

the corresponding subset of nodes in Vp is a maximal clique of Gp. Thus a

maximal path of G̃p corresponds to a maximal clique in Gp. The converse is

straightforward.

Thanks to proposition 5, solving the separation problem for type II valid

inequalities reduces to the solution of a number of longest path problems

in an acyclic graph, leading to the following separation algorithm: (SEP2)

Given (z∗, y∗, x∗) the optimal solution of (1)-(10), for p = 1...P :

1. Assign to each node (i, o) in G̃p a weight equal to the value of the

corresponding variable yi
po.

2. Find the maximal weight path P̃max in the acyclic oriented graph G̃p

with a standard longest path algorithm.

3. Let Wmax be the weight of P̃max.

- if Wmax > 1, the valid inequality given by the maximal clique Kmax

corresponding to the path P̃max is violated,

- else all type II valid inequalities are satisfied for product p.

If Wmax ≤ 1 for all products p = 1...P , then all type II valid inequalities

are satisfied, otherwise we have found at least one violated inequality. In the

18



sequel, algorithm (SEP2) is used to generate type II violated inequalities in

order to strengthen the initial formulation.

4 Computational results

In this section, we discuss the results of the computational experiments car-

ried out to evaluate the impact of the formulation enhancements presented

in section 3. We also present an empirical study carried out to show the

impact of some problem parameters on the algorithmic performance.

4.1 Comparison of the initial and enhanced formula-

tions

In order to evaluate the impact of the proposed formulation enhancements,

we solved the problem with a standard MIP software (CPLEX 8.1.0) using

either the initial formulation described in section 2 or the enhanced formula-

tion. More precisely, the strengthened formulation is obtained thanks to the

following procedure:

1. We use procedure (REP) to replace precedence constraints of type (7)

by a subset of type II valid inequalities and we add the M valid inequalities

(12) to the formulation. We solve the linear relaxation of the problem.

3. We use the separation algorithm (SEP1) to add type I violated valid

inequalities.

4. When no more type I violated valid inequalities can be found, we look for

type II violated valid inequalities using the separation algorithm (SEP2).

5. When no more type II violated valid inequalities can be found, we go

back to step 3 and repeat until no more violated valid inequalities (whether

of type I or type II) can be generated.

All the tests were run on a Pentium 4 (2.8 GHz) with 504 Mo of RAM, run-

ning under Windows XP. We used the default settings of CPLEX solver.

This means that some cutting planes, among which are clique cuts, cover

cuts and Gomory fractional cuts, are added automatically to the model (see
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ILOG (2002) for more details).

We used an industrial data set available in Miegeville (2005) to build 20

test problems. P20 is the industrial problem presented in Miegeville (2005)

and described in table 7 (see Appendix). P0 is the simple example introduced

in section 2, P1 to P19 are simpler versions of P20. These instances were

obtained by using one or several of the following simplifications: removal

of possible positions along the production line; removal of some products;

removal of some layers; removal of a metal; removal of some cathode types.

Table 3 displays the following information for each problem tested: the num-

ber N of possible positions along the line; the total number
∑

p Op of layers

to be sputtered; the number C of cathode types; the number Var of binary

variables and the number Const of constraints in the initial formulation.

Table 3: Test problems
N

∑
p Op C Var Const Remarks

P0 12 10 4 180 1117 small example in section 2.2
P1 20 17 10 560 8826 P20 without products 4 and 5
P2 20 19 10 600 11378 P20 without products 2 and 3
P3 20 20 10 620 11799 P20 without products 1 and 5
P4 20 22 10 660 14351 P20 without products 1 and 3
P5 20 21 10 640 13170 P20 without products 1 and 2
P6 25 24 5 750 20333 P20 without product 5
P7 25 25 5 775 22484 P20 without product 4
P8 25 26 5 800 24335 P20 without product 3
P9 25 25 5 775 22484 P20 without product 2
P10 25 28 5 850 27137 P20 without product 1
P11 25 26 8 875 20108 P20 without metal Ag
P12 25 22 8 775 13004 P20 without metal Ti
P13 25 25 8 750 17957 P20 without metal Au
P14 25 28 8 925 22310 P20 without metal Pt
P15 25 25 8 850 17032 P20 without metal Steel
P16 25 15 5 525 5449 P20: at most 3 layers per product
P17 25 20 5 650 10204 P20: at most 4 layers per product
P18 25 24 5 750 15208 P20: at most 5 layers per product
P19 25 28 5 850 21437 P20: at most 6 layers per product
P20 30 32 26 1770 41772 see Appendix
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The computational results obtained with the initial and enhanced formu-

lations are displayed in table 4. For both series of results, we provide:

- Const: the number of constraints in the formulation. For the enhanced

formulation, this is the value obtained after applying the procedure (REP).

- Gap0: the initial gap, i.e. the relative difference between the lower bound

provided by the linear relaxation of the problem and the best integer solution

found after at most 8 hours of computation. For the enhanced formulation,

we use the value obtained after the strengthening procedure has stopped.

- Nodes : the number of nodes of the search tree explored before the optimal

solution is found or the computation time limit of 8 hours is reached.

- CPUIP : the time in seconds required to find the optimal integer solution

when it has been found.

- Gap: the gap obtained after at most 8 hours of computation between the

best integer solution found and the best lower bound found.

For the enhanced formulation, we also provide:

- CutsI and CutsII : the number of type I and type II cuts added to the

formulation during the strengthening procedure,

- CPUcuts: the time in seconds spent to find the type I and type II violated

inequalities.

As can been seen from table 4 (columns 2-6), using the initial formulation,

only 7 of the 21 problems can be solved exactly within the computational lim-

its. Despite long computation times (8 hours), non-optimal integer solutions

are found for 13 problems and in these cases, the remaining gaps obtained

remain quite large (16% on average). In addition, no feasible integer solution

can be found for problem P20.

We compare these results with the ones obtained while using the enhanced

formulation to solve the problem. The results from table 4 (columns 7-14)

show that computation times for small instances are decreased and that more

instances (11 out of 21 problems) are solved exactly. In addition, using the

enhanced formulation, a feasible integer solution is found for all test problems

and, in case the optimal integer solution could not be found after 8 hours of
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computation, the remaining gap is smaller (9.6 % on average).

Comparison between the results obtained with the two formulations thus

shows that the enhanced formulation improves the efficiency of the Branch

& Bound procedure. The main explanatory factor for this is that the lower

bounds provided by the linear relaxation of the enhanced formulation (table

4 column 11) appear to be stronger than the ones provided by the linear

relaxation of the initial formulation (table 4 column 3). Indeed, the inte-

grality gap (i.e the relative difference between ZLP and ZIP ) is reduced on

average from around 22% with the initial formulation to about 7.1% with

the enhanced formulation. Moreover, it is worth pointing out here that the

results provided in table 4 strongly suggest that the automatic cutting-plane

generation procedures embedded in the CPLEX software do not seem able

to identify the type I and type II valid inequalities exhibited and discussed

in section 3.

4.2 Influence of cathode capacity

We carried out some additional numerical tests to evaluate the influence of

cathode capacity on the algorithmic performance. We considered problems

P1 to P5 described in table 3 and we modified the data relative to the cath-

odes. More precisely, we considered only one type of cathodes per metal and

we built instances with various cathode capacity values:

- infinite capacity,

- large capacity: for each metal, the available cathode is the cathode with

the largest volume among those described in table 7,

- medium capacity: for each metal, the available cathode is the cathode with

the second largest volume among those described in table 7,

- small capacity: for each metal, the available cathode is the cathode with

the third largest volume among those described in table 7.

We used the enhanced formulation to solve these instances. Table 5 displays

the computational results. We provide Gap0, Gap, CPUIP and Nodes as

defined in subsection 4.1 and Opt the number of instances that could be
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Table 4: Comparison of the initial and the enhanced formulations: results
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Table 5: Influence of cathodes capacity
Cathode capacity Gap0 Opt Gap CPUIP (s) #Nodes

infinite 11.4 5 0 2617 8781
large 5.4 5 0 10930 30983

medium 11.9 1 8.8 > 28800 105480
small 2.6 1 2.6 > 28800 39088

solved to optimality within the computation limit. These results suggest

that instances with medium or small capacity cathodes are more difficult to

solve than instances with infinite or large capacity cathodes. Namely, all

instances using infinite or large capacity could be solved to optimality within

2 hours of computation whereas only 2 out of the 10 instances using medium

or small capacity cathodes could be solved to optimality within 8 hours of

computation. Moreover no feasible solution could be found for 2 out of the

5 instances using small capacity cathodes.

4.3 Influence of product composition

We finally discuss the results of some experiments carried out to evaluate the

influence of product composition, i.e. of the sequence of metal layers to be

deposited on the glass sheets. We built 15 instances involving M = 5 metals,

P = 5 products made of 6 layers, N = 20 positions on the line, C = 5 infinite

capacity cathodes. They differ only with respect to the sequence of metal

layers:

- In E1 to E5, there is a basic sequence of metal defined by product 1.

Products 2 to 5 are obtained by a simple modification of this sequence (switch

between two consecutive layers or modification of the metal for one layer).

- In R1 to R5, the sequences of metal layers are randomly generated from a

discrete uniform DU(1, 5) distribution. If two consecutive layers are made of

the same metal, we repeat the random generation until a product is obtained

without any identical consecutive layers.

- In H1 to H5, the sequence of layers for each product are chosen in order to
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obtain supposedly difficult instances (products made of reverse sequences of

metal, products made of sequences with no common metal...).

In order to compare the generated instances, we introduce a measure

aiming at evaluating the difference between the products of a given instance

with respect to the sequence of metal layers. This difference denoted d is

defined as: d =
∑P

p1=1

∑P
p2=p1+1 d(p1, p2) where d(p1, p2) = SCS(p1, p2) −

LCS(p1, p2). SCS(p1, p2) is defined as the minimum number of cathodes

needed to sputter products p1 and p2 and LCS(p1, p2) is the maximum num-

ber of cathodes that can be used to sputter layers from both p1 and p2.

SCS(p1, p2) and LCS(p1, p2) can be computed by a dynamic programming

algorithm as respectively the Shortest Common Supersequence containing p1

and p2 and the Longest Common Subsequence contained in p1 and p2.

We used the enhanced formulation to solve these instances. The compu-

tational results are displayed in table 6. These results suggest that instances

with a large value of d are more difficult to solve than instances with a small

value of d. Namely, all instances E1-E5 could be solved to optimality within

one hour of computation whereas the mean computation time for the in-

stances R1-R5 and H1-H5 is above 4.5 hours. Moreover no feasible solution

could be found for 2 out of the 5 instances H1-H5. It is worth pointing out

that for the instance P20 presented in Appendix d = 5.8. This seems to

indicate that in a industrial situation, the products to be made on the glass

coating line are quite different with respect to the sequence of metal layers

to be deposited, leading to an additional difficulty to solve the problem.

Table 6: Influence of product composition
Instances d Gap0 #Opt Gap CPUIP (s) #Nodes

E1-E5 2.8 22.4 5 0 2184 7405
R1-R5 5.5 13.1 4 6.5 14642 32325
H1-H5 6.4 11.1 3 0 19075 29792
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5 Conclusion and perspectives

In this paper, we studied an optimization problem arising in the context of the

glass industry in connection with a specific transformation of flat glass called

glass coating. In order to improve an initial MIP formulation, three fami-

lies of valid inequalities have been discussed: valid inequalities from limited

capacity constraints; valid inequalities from metal compatibility constraints

(type I valid inequalities); valid inequalities from precedence constraints be-

tween layers of a given product (type II valid inequalities). The results of

our computational experiments confirm the positive impact of the proposed

enhancements on the computation times and solution quality.

Among the possible research directions suggested by the present work, it

might be worth exploring other optimization criteria such as minimizing the

volume of unused metal remaining in the cathodes at the end of the produc-

tion run. Indeed, partially consumed cathodes at the end of a production

run represent a cost, either as a direct loss because of the unused metal or

as additional constraints for the forthcoming production run because they

will impose the use of a set of initial reduced capacity cathodes. Looking for

other families of valid inequalities in order to further improve the formulation

might also be an interesting research direction.
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Appendix

Table 7: Problem P20: data on products and cathodes
p = 1 o 1 2 3 4

mpo Ag Au Ti Ag
Vpo 2200 2400 2000 2000

p = 2 o 1 2 3 4 5 6 7
mpo Ag Au Ti St Au Ti Ag
Vpo 2100 1300 1000 1000 700 2000 4000

p = 3 o 1 2 3 4 5 6
mpo Au Pt Ti St Au Pt
Vpo 2000 1000 1000 2400 1000 2000

p = 4 o 1 2 3 4 5 6 7
mpo St Ti St Au Pt Ti St
Vpo 1500 1000 2400 1000 750 500 1000

p = 5 o 1 2 3 4 5 6 7 8
mpo Au Pt Ti St Ag St Ti St
Vpo 1000 750 500 1000 2000 1500 1000 2400

c 1 2 3 4 5 6 7 8 9 10
νc 10 10 10 10 10 10 10 10 10 10
mc Ag Ag Ag Ag Ag Ag Ti Ti Ti Ti
Vc 300 500 1000 2000 3000 4000 4000 3000 2500 1000
c 11 12 13 14 15 16 17 18 19 20
νc 10 10 10 10 10 10 10 10 10 10
mc Ti Au Au Au Au Au St St St St
Vc 400 100 500 1000 2500 3500 500 750 1000 1500
c 21 22 23 24 25 26
νc 10 10 10 10 10 10
mc St Pt Pt Pt Pt Pt
Vc 2000 500 750 1000 1500 2000
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