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Choquet-based optimisation in multiobjective shortest

path and spanning tree problems

Lucie Galand, Patrice Perny and Olivier Spanjaard

LIP6, Université Pierre et Marie Curie, Paris, France.

Abstract

This paper is devoted to the search of Choquet-optimal solutions in finite graph problems with
multiple objectives. The Choquet integral is one of the most sophisticated preference models used
in decision theory for aggregating preferences on multiple objectives. We first present a condition on
preferences (name hereafter preference for interior points) that characterizes preferences favouring
compromise solutions, a natural attitude in various contexts such as multicriteria optimisation,
robust optimisation and optimisation with multiple agents. Within Choquet expected utility theory,
this condition amounts to using a submodular capacity and a convex utility function. Under these
assumptions, we focus on the fast determination of Choquet-optimal paths and spanning trees. After
investigating the complexity of these problems, we introduce a lower bound for the Choquet integral,
computable in polynomial time. Then we propose different algorithms using this bound, either based
on a controlled enumeration of solutions (ranking approach) or an implicit enumeration scheme
(branch and bound). Finally, we provide numerical experiments that show the actual efficiency of
the algorithms on multiple instances of different sizes.

Key words: Multiobjective discrete optimisation, Choquet integral, Shortest path problem,
Minimum spanning tree problem, Submodular capacity.

1 Introduction

Most algorithmic works dealing with optimisation problems in graphs aim at developing effi-
cient search procedures to determine one or several optimal solutions within a combinatorial
set of possibilities. Classical optimisation problems such as shortest path problems or mini-
mal spanning tree problems involve a single cost function, additively decomposable over the
arcs (or edges). The effort is put on the design of constructive procedures taking advantage
of this decomposability to construct an optimal solution from locally optimal sub-solutions.
However, the growing complexity of real applications (e.g. optimisation of communication net-
works, transportation problems, planning) has led researchers to consider problems including
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additional sources of complexity such as uncertainty, multi-source information, multicriteria
analysis, bringing new problems and new algorithmic challenges for computer scientists, math-
ematicians and operations researchers. For example, we consider here optimisation problems in
multivalued graphs. Such problems appear when the value of a solution cannot be represented
by a single decomposable cost-function, and must be assessed from several dimensions (criteria,
agents or scenarios, depending on the problem). Such problems appear frequently in the field
of multicriteria or multiagent optimisation, but also in the field of robust optimisation under
risk or uncertainty. This explains the growing interest for multiobjective optimisation in the
recent years [7,8].

As soon as multiple objectives are considered in the evaluation of a solution, the notion of
optimality is not straightforward and various options are available in the literature on decision
theory and multicriteria analysis to characterize the most-preferred solutions. Among them,
the concept of Pareto optimality is one of the most widely used. A solution is said to be Pareto-
optimal if it cannot be improved on one objective without being depreciated on another one.
At first sight, Pareto optimality seems natural because it does not require much preference
information from the Decision Maker and can be used as a preliminary filter to circumscribe
the set of reasonable solutions. However, in combinatorial optimisation problems, the complete
enumeration of the set of Pareto-optimal solutions may be practically intractable because the
size of the Pareto set grows, in worst case, exponentially with the size of the instance (see [20] for
multiobjective shortest path problems, and [9,19] for multiobjective spanning tree problems).
Hence, the computation of the set of Pareto solutions may induce prohibitive response times
and require a very large memory space. Knowing this difficulty, it is worth spending some time
on preference elicitation so as to get a finest preference model, able to discriminate between
Pareto optimal solutions and to narrow the area of interest within the Pareto set.

Once the preference model of the decision maker is known in a multiobjective optimisation
problem, there is no need to enumerate the entire set of Pareto-optimal solutions. Instead,
the search can be focused on good compromise solutions for the decision maker. This notion
of compromise is natural in multiobjective decision support and has counterparts in other
optimisation contexts involving several dimensions. For example, in the context of multi-agent
optimisation problems, the notion of compromise solution refers to equity or fairness (see e.g.
[29]). In the context of optimisation under uncertainty, compromise solutions refer to the idea
of robustness (see e.g. [25,42,33]). The quality of the compromise achieved can be measured
using an overall utility function refining Pareto dominance to better discriminate between the
various possible solutions. In this paper we will resort to the Choquet expected utility model,
which is one of the most sophisticated decision criteria used in decision analysis [5,35,17]. It
provides both a generalisation of weighted means and weighted ordered averages [44], enhancing
their descriptive and prescriptive possibilities. A similar study might be carried out using other
scalarising functions, e.g. Tchebycheff distance to the ideal point which is classically used in
interactive multiobjective optimisation [39]. A first step in this direction has been done to solve
multiobjective shortest path problems in state space graphs [13].

In this paper, we adress the problem of finding optimal paths and spanning trees on graphs
endowed with multiple cost functions, where optimality refers to the minimisation of a Choquet
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expected disutility function. The paper is organized as follows: in Section 2, we recall basic el-
ements linked to Choquet integrals. Then we formulate a condition characterizing preferences
favouring compromise solutions and discuss its impact on the Choquet expected disutility
model. This leads us to consider the problem of minimising a Choquet integral with a sub-
modular capacity over a set of cost-vectors attached to feasible paths or trees. In Section 3
we discuss the complexity of these problems and establish preliminary results that will be
used later in the algorithms. Then, we propose original algorithms to find Choquet-optimal
paths and spanning trees in a multivalued graph. They are either based on a ranking approach
performing a controlled explicit enumeration of solutions or a branch and bound algorithm per-
forming an implicit enumeration. In Sections 4 and 5 we report numerical experiments showing
the practical efficiency of the proposed algorithms.

2 Compromise search using a Choquet integral

2.1 Notations and definitions

Let G = (V,E) be a given directed or undirected graph, where V denotes the set of vertices and
E the set of arcs (or edges). A feasible solution is a subset X ⊆ E satisfying a given property
(here, we will only consider paths or spanning trees). The edges are weighted according to n
objectives fi : E → N, i ∈ N = {1, . . . , n} interpreted as cost functions to be minimised.
Thus, each edge e ∈ E is weighted by a vector f(e) = (f1(e), . . . , fn(e)). We assume here
that cost functions are additive. Hence, the cost of any feasible solution X ⊆ E is defined
by vector f(X) =

∑
e∈X f(e). The set of all feasible cost vectors is denoted X . Comparing

feasible solutions amounts to comparing their respective cost vectors in X . For example, Pareto
dominance can be stated as follows: a solution X ⊆ E Pareto-dominates a solution Y ⊆ E
whenever its cost vector x = f(X) is at least as “good” as y = f(Y ) on every component, and
strictly “better” on at least one component. Formally this writes xi ≤ yi for all i ∈ N , and
xj < yj for some j ∈ N .

As usual in multiobjective problems, the most preferred solutions belong to the set of Pareto-
optimal solutions i.e. those solutions that are dominated by no other feasible solution. However
Pareto optimality is generally not sufficient to discriminate between multiple feasible alterna-
tives and we need a finer preference model to characterize the type of compromise sought in the
Pareto set. As a decision criterion refining Pareto dominance, we use here the Choquet integral
[5] which is a compromise operator that aggregates costs using a weighting function defined on
every subset of criteria. Formally the weights of subsets are represented by a capacity.

Definition 1 A capacity is a set function v : 2N → [0, 1] such that: v(∅) = 0, v(N) = 1, and
∀A,B ∈ 2N , A ⊆ B ⇒ v(A) ≤ v(B).

For any subset A ⊆ N , v(A) represents the importance of coalition A. The Choquet integral
of a vector x ∈ Nn with respect to capacity v is then defined by:
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Cv(x) =
n∑
i=1

[
v(X(i))− v(X(i+1))

]
x(i) (1)

=
n∑
i=1

[
x(i) − x(i−1)

]
v(X(i)) (2)

where (.) represents a permutation on {1, . . . , n} such that 0 = x(0) ≤ x(1) ≤ . . . ≤ x(n),
X(i) = {j ∈ N , xj ≥ x(i)} = {(i),(i + 1), . . ., (n)} for i ≤ n and X(n+1) = ∅. Note that
X(i+1) ⊆ X(i), hence v(X(i)) ≥ v(X(i+1)) for all i. The Choquet integral generalizes the classical
notion of average with the following interpretation based on Equation (2): for a given vector
x = (x1, . . . , xn), the cost is greater or equal to x(1) on all criteria belonging to X(1), which
represents a weight of v(X(1)) = 1; then the cost is greater or equal to x(2) on all criteria
belonging to X(2) which represents an increment of x(2) − x(1) with weight v(X(2)). The same
applies from x(2) to x(3) for all criteria belonging to X(3) which weights v(X(3)), and so on...
The overall integral is therefore obtained by aggregation of marginal increments x(i) − x(i−1)

weighted by v(X(i)).

In Decision Theory, the Choquet integral is often used in maximisation problems under the
form Cv(u(x1), . . . , u(xn)) where u is a utility function defined on payoffs, to be maximised
[35]. In our context where costs replace payoffs we need to reformulate the criterion using a
disutility function to be minimised. Assuming we work with integer costs belonging to [1,M ]
where M is a positive integer, we will use a strictly increasing function w : [0,M ]→ R+, such
that w(x) represents the disutility of cost x. The Choquet Expected Disutility model (CED) is
then defined from function w and capacity v by:

ψwv (x) = Cv(w(x1), . . . , w(xn)) (3)

Note that there always exists a cost vector x minimising ψwv (x) in the Pareto set of X . This is a
direct consequence of the componentwise non-decreasingness of ψwv (provided w is at least non-
decreasing) [17]. The CED model includes the classical weighted average as a particular case. It
is indeed sufficient to set w(x) = x for all x and to use an additive capacity v, i.e. a capacity such
that v(A) =

∑
i∈A vi for all A ⊆ N , where vi = v({i}). Then we have v(X(i))− v(X(i+1)) = v(i)

for all i and ψwv (x) =
∑n
i=1 v(i)w(x(i)) =

∑n
i=1 vixi. When used with a non-additive capacity

and/or with a non-linear disutility function w, it offers additional descriptive possibilities. As
an illustration, let us consider the following:

Example 1 Consider the bi-valued graph represented on Figure 1 (resp. Figure 2) and assume
that we are looking for an optimal spanning tree (resp. path from S to T ) w.r.t. two criteria
(or agents or scenarios). For simplicity, the instances given in Figure 1 and 2 are constructed
in such a way that the image of the set of feasible solutions in the biobjective space is the same
in both problems. It is pictured on the right part of Figure 3. We can easily see on this figure
that the Pareto-optimal points are p1, p3, p4, p7, p10 and p12 (bold lines in the table given in
the left part of Figure 3) representing the possible tradeoffs within the Pareto set. In order to
discriminate between the Pareto-optimal solutions, we might use the CED model with a non-
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Fig. 1. Biobjective spanning tree.
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Fig. 2. Biobjective shortest path.

Spanning trees Paths Cost vectors

X1 {AB,AC,BD} 〈S,A,F,E,J,T〉 p1 = (27, 66)

X2 {AC,BD,CD} 〈S,C,H,G,J,T〉 p2 = (29, 78)

X3 {AB,BD,CD} 〈S,A,F,J,T〉 p3 = (31, 49)

X4 {AB,AC,CD} 〈S,A,D,E,J,T〉 p4 = (33, 47)

X5 {AD,AC,BD} 〈S,A, F,G, J, , T 〉 p5 = (33, 79)

X6 {AC,BD,BC} 〈S,C,H, J, T 〉 p6 = (35, 65)

X7 {AB,BC,BD} 〈S,A,F,E,I,T〉 p7 = (37, 36)

X8 {AB,AC,AD} 〈S,A,E, J, T 〉 p8 = (37, 48)

X9 {AD,BD,CD} 〈S,B,C,H,G, J, T 〉 p9 = (37, 62)

X10 {AD,AB,CD} 〈S,A,D,I,T〉 p10 = (41, 31)

X11 {AC,BC,CD} 〈S,C,G, J, T 〉 p11 = (41, 46)

X12 {AB,BC,CD} 〈S,A,D,E,I,T〉 p12 = (43, 17)

X13 {AD,BC,BD} 〈S,B,C,H, J, T 〉 p13 = (43, 49)

X14 {AD,AC,BC} 〈S,B,G, J, T 〉 p14 = (45, 47)

X15 {AD,AB,BC} 〈S,A,E, I, T 〉 p15 = (47, 18)

X16 {AD,BC,CD} 〈S,B,C,G, J, T 〉 p16 = (49, 30)

bisecting line

p12

p10

p7

p4

p3

p1

Fig. 3. Feasible solutions in Example 1.

additive capacity, e.g. v({1}) = 0.9, v({2}) = 0.5 and v({1, 2}) = 1 and a convex disutility
function w(x) = x2 which leads to the CED values given in Table 1.

Table 1
CED values of Pareto-optimal solution (case 1).

Solutions X1 X3 X4 X7 X10 X12

ψwv 2361 1609 1593 1358 1573 1615

In this example we can see that the most preferred solution is X7, then X10, X4, X3, X12 and
X1. Clearly this model favours compromise solutions. Conversely, using a different capacity and
a concave disutility, we might favour another type of compromise solutions, more contrasted
and less consensual. For example, choosing v({1}) = 0.5, v({2}) = 0.1, v({1, 2}) = 1 and
w(x) = 100

√
x leads to the CED values given in Table 2.
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Table 2
CED values of Pareto-optimal solutions (case 2).

Solutions X1 X3 X4 X7 X10 X12

ψwv 549 571 586 604 599 534

We can see that X12 is now the optimal solution, then X1, X3 and so on. Tables 1 and 2
show that the optimal compromise solution found in the Pareto set depends on the choice of
the capacity and the shape of the utility function. As mentioned in the introduction, we are
interested here in determining fair compromise solutions in multicriteria decision problems (or
robust solutions in multi-scenarios problems or consensual solutions in multi-agent problems)
such as those put forward in Table 1. In order to formalize this idea, the next subsection
introduces an axiom of preference for interior points and investigates its impact on the choice
of both capacities and utilities in the CED model.

2.2 Preference for interior points

Preference for compromise solutions means intuitively that smoothing or averaging a cost vector
makes the decision maker better off. This intuitive idea can be formalized using an axiom
initially named “preference for diversification” [3] due to its interpretation in the context of
portfolio management. This axiom can be reformulated in our framework as follows:

Definition 2 (Preference for interior points) A preference relation % defined on cost vec-
tors in Nn satisfies preference for interior points if, for any x1, . . . , xp ∈ Nn, and for all
α1, . . . , αp ≥ 0 such that

∑p
i=1 αi = 1, we have:

[x1 ∼ x2 ∼ . . . ∼ xp]⇒
p∑
i=1

αix
i % xk, k = 1, . . . , p (4)

where ∼ is the symmetric part of % (indifference relation).

This axiom says that any compromise cost vector obtained by a convex combination of p
indifferent cost vectors improves these vectors. Interestingly enough, Chateauneuf and Tallon
have shown that, within the Choquet expected utility theory, this axiom on preference is
equivalent to choosing a convex capacity v and a concave utility u [3], the convexity and
concavity of a capacity being classically defined as follows:

Definition 3 A capacity v is said to be convex (or supermodular) when v(A ∪ B) + v(A ∩
B) ≥ v(A) + v(B) for all A,B ⊆ N , and it is said to be concave (or submodular) when
v(A ∪B) + v(A ∩B) ≤ v(A) + v(B) for all A,B ⊆ N .

The direct counterpart of Chateauneuf and Tallon’s result in the case of cost minimisation
says that we should use the CED model with a concave capacity v and a convex disutility w
to exhibit preference for interior points. For this reason, throughout the paper, we will assume
that v is concave and w is convex (we recall that w is also assumed to be strictly increasing).
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Table 1 provides examples of evaluations obtained from the CED model with a concave capacity
and a convex disutility. We can see that solutions presenting a well-balanced profile receive a
lower overall disutility. Another clear illustration of preference for interior points as defined in
Equation (4) appears with a concave capacity such as v({1}) = 0.8, v({2}) = 0.4, v({1, 2}) = 1
and a convex disutility function such as w(x) = x2. Here, the evaluations of solutions according
to the CED model are the following (see Table 3).

Table 3
CED values of Pareto-optimal solutions (case 3).

Solutions X1 X3 X4 X7 X10 X12

ψwv 2180 1537 1537 1354 1537 1537

We can observe that points p3, p4, p10 and p12 are indifferent, with an overall disutility of 1537.
Hence, any point inside the trapezoid formed by these points (see the grey area on Figure 4) is
preferred (or indifferent) to these points. This is the case of p7 that lies within the grey area.
We can indeed see that p7 is evaluated to 1354 which is a better overall disutility than 1537
obtained for p3, p4, p10 and p12.

bisecting line

p10

p3
p4

p12

p7

Fig. 4. Preference for interior points in Example 1.

3 Choquet optimisation in graph problems

3.1 Problems formulation and complexity issues

Assuming we use a concave capacity v and a convex disutility function w, we are now interested
in finding Choquet-optimal spanning trees or paths in a multivalued graph. Choquet integral
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can be seen as the Lovász extension of capacity v and as such, is convex if and only if v is
concave [26]. Since w is also convex, ψwv is convex for any concave capacity v. Under these
hypotheses, the Choquet optimisation problems studied in this paper can be stated as follows:

Choquet-optimal spanning tree problem (ψwv -ST)

Input: a finite connected graph G = (V,E), n integer-valued objectives fi on E,

Goal: we want to determine a spanning treeX∗ onG such that ψwv (f(X∗)) = minX∈T ψ
w
v (f(X))

where T is the set of all spanning trees on G.

Choquet-optimal path problem (ψwv -P)

Input: a finite connected digraph G = (V,E) with a source node s and a sink node t, n
integer-valued objectives fi on E,

Goal: we want to determine a path X∗ such that ψwv (f(X∗)) = minX∈P ψ
w
v (f(X)), where P

is the set of all paths from s to t in G.

When choosing v(A) = 1 for all non-empty A ⊆ N , we get a concave capacity and CED can
be simplified as follows: ψwv (x) =

∑n
i=1

[
w(x(i))− w(x(i−1))

]
v(X(i)) = w(x(n)) = maxi∈N w(xi).

Hence the determination of a Choquet-optimal solution reduces, in this case, to a min-max
optimisation problem. Even when there are only two objective functions, the min-max spanning
tree problem has been proved NP-hard by Hamacher and Ruhe [19] and the min-max shortest
path problem has been proved NP-hard by Yu and Yang [45]. Consequently, the determination
of a Choquet-optimal solution is NP-hard for both problems. However, there exist simple
particular subclasses of problems that can be polynomially solved. For example, when w(x) = x
for all x and v is an additive capacity, then ψwv is linear and ψwv -ST (resp. ψwv -P) boils down to
the classical minimal spanning tree (resp. shortest path) problem.

When preferences over vectors are represented by the CED model, resorting to classical con-
structive approaches like dynamic programming (for ψwv -P) or greedy search (for ψwv -ST) is
not easy. The two following examples illustrate the main difficulties to overcome when trying
to adapt dynamic programming and greedy approaches to cope with the CED model in ψwv -P
and ψwv -ST problems respectively.

Example 2 Consider the graph of the biobjective shortest path problem given in Figure 2. In
this graph, path P1 = 〈S,C〉 and path P2 = 〈S,B,C〉 are two different paths from S to C
with cost vectors (9, 31) for P1 and (17, 15) for P2. With capacity v({1}) = 0.8, v({2}) = 0.4,
v({1, 2}) = 1 and convex disutility function w(x) = x2, P2 is preferred to P1 w.r.t. ψwv since
ψwv (17, 15) = 276.2 and ψwv (9, 31) = 433. However consider now paths P ′1, the cost vector
of which is (28, 32), and P ′2, the cost vector of which is (36, 16), obtained from P1 and P2,
respectively, by adding arc (C,G). We can observe that the preference is reversed w.r.t. ψwv
since ψwv (28, 32) = 880 and ψwv (36, 16) = 1088, and hence P ′1 is preferred to P ′2. Thus we see
that an optimal path (here P ′1) can include a non-optimal subpath (here P1). In other terms,
the Bellman principle does not hold.

Example 3 Consider the graph of the biobjective spanning tree problem given in Figure 1.
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In the spirit of the greedy approach, we might want to construct the optimal spanning tree by
iteratively adding an edge e to a current subtree T such that ψwv (f(T ∪{e})) is minimal among
all possible acyclic completions of T by one edge. Using the capacity and the disutility function
given in Example 2, the best edge w.r.t. ψwv is edge AB (ψwv (11, 2) = 97.6). The current tree
is then T = {AB}. The optimal choice of the second edge is edge CD with cost (13, 14), since
ψwv (24, 16) = 512 is minimal among all ψwv -values of two-edge subtrees including edge AB. The
current tree is then T = {AB,CD}. For the choice of the third edge, all remaining edges (i.e.
edges BC, AC, AD or BD) are convenient since they lead to spanning trees with the same
ψwv -value (1537). For example, adding edge BC leads to spanning tree T = {AB,CD,BC}
with cost (43, 17), and ψwv (43, 17) = 1537. Nevertheless this tree is suboptimal. We can indeed
consider tree {AB,BC,BD}, with cost (37, 36) that gives ψwv (37, 36) = 1354.4 < 1537. This
shows that the greedy approach is not appropriate here.

The two previous examples show that we cannot simply extend the standard algorithms (Dijk-
stra or Bellman for paths, Kruskal or Prim for spanning trees) to determine an optimal solution
w.r.t. ψwv . In order to design exact solution methods for NP-hard problems, it is usual to pro-
ceed to a relaxation of the solution space so as to make the optimisation easier. This provides
bounds on the value of the best solution. We proceed here differently. Instead of relaxing the
solution space, we relax the non linear objective function to one which is easier to optimise.
More precisely, we use linear scalarising functions that provide bounds using standard algo-
rithms for shortest path and minimal spanning tree problems. This process is explained in the
following subsections.

3.2 A default approximation of the Choquet integral

Before introducing the default approximation, we recall some definitions linked to the core of
a capacity. Remark first that, to any capacity v, we can associate a dual capacity v̄ defined
by v̄(A) = 1 − v(N \ A) for all A ⊆ N . Note that the bidual capacity ¯̄v is equal to v.
Moreover v̄ is concave whenever v is convex and vice-versa. Finally, when v is concave, we have
v(A) + v(N \ A) ≥ 1, hence v̄(A) ≤ v(A) and we can soundly define the core of capacity v̄ as
follows:

Definition 4 The core of a capacity v̄ is defined by:

core(v̄) = {λ ∈ L : v̄(A) ≤ λ(A) ≤ v(A)}

where L is the set of additive capacities defined on 2N .

As shown by Shapley [38], when v is concave, the core of v̄ is non-empty. Using this notion of
non-emtpy core, Schmeidler [35,36] gives an intuitive interpretation of the Choquet expected
utility as the minimum of a family of expected utilities to be maximised. This result is also
related to the work of Edmonds in submodular optimisation [6,11], knowing that the Choquet
integral appears as the value returned by a greedy algorithm used to maximise a linear function
over a polymatroid. A useful by-product of these results on the CED model is the following:

9



Proposition 1 Let v be a concave capacity. For all additive capacities λ ∈ core(v̄) charac-
terized by positive coefficients (λ1, . . . , λn) such that λ(A) =

∑
i∈A λi (∀A ⊆ N), we have

ψwv (x) ≥
∑n

i=1 λiw(xi). Moreover, if w is convex we have: ψwv (x) ≥ w(
∑n

i=1 λixi).

PROOF. ψwv (x) =
∑n

i=1

[
w(x(i))− w(x(i−1))

]
v(X(i))≥

∑n
i=1

[
w(x(i))− w(x(i−1))

]
λ(X(i)) since

inequality v(X(i)) ≥ λ(X(i)) holds for all i (λ ∈ core(v̄)). Furthermore,
∑n

i=1

[
w(x(i))− w(x(i−1))

]
λ(X(i)) =

∑n
i=1[λ(X(i))− λ(X(i+1))]w(x(i)) =

∑n
i=1 λ(i)w(x(i)) by definition of λ. Then we have∑n

i=1 λ(i)w(x(i)) =
∑n

i=1 λiw(xi) ≥ w(
∑n

i=1 λixi) provided w is convex. 2

Hence, any weighting vector λ ∈ Rn
+ characterizing an additive capacity in core(v̄) can be used

to produce a default approximation w(λx) of ψwv (x). Among the natural choices for λ, we can
use φ = (φ1, . . . , φn), where φi is the Shapley value of criterion i. It represents the average
marginal contribution of criterion i to coalitions [38]. Shapley values are positive coefficients
adding-up to one and defined by:

φi =
∑

K⊆N\{i}

(n− |K| − 1)!|K|!
n!

(v̄(K ∪ {i})− v̄(K)).

Another possible choice for the weights is to determine a weighting vector λ∗ = (λ∗1, . . . , λ
∗
n)

with the maximal entropy, i.e. a solution to the following optimisation problem:

max −
∑n

i=1 λi log λi

s.t.
∑

i∈A λi ≤ v(A), ∀A ⊆ N

0 ≤ λi ≤ 1, i = 1, . . . , n.

(5)

As suggested by Jaffray [21], this optimisation problem can easily be solved by a greedy algo-
rithm (see Algorithm 1 hereafter). An example of such admissible weights is given in Table 4
when n = 3. Starting with a concave capacity v we define the dual v̄ and two additive capacities
in the core of v̄, respectively characterized by Shapley values φ = (0.5, 0.2, 0.3) and weights
maximising entropy λ∗ = (0.4, 0.3, 0.3).

Table 4
Core of a capacity and associated weights

∅ {1} {2} {3} {1, 2} {2, 3} {1, 3} N

v 0 0.6 0.3 0.4 0.8 0.6 0.9 1

φ 0 0.5 0.2 0.3 0.7 0.5 0.8 1

λ∗ 0 0.4 0.3 0.3 0.7 0.6 0.7 1

v̄ 0 0.4 0.1 0.2 0.6 0.4 0.7 1
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We can easily check that for any set of criteria A ⊆ N we have: v̄(A) ≤ φ(A) ≤ v(A) and v̄(A) ≤
λ∗(A) ≤ v(A). In a combinatorial problem, the best solution according to additive capacity φ or
λ∗ is easy to determine as soon as the standard version of the problem is polynomially solvable.
Thanks to Proposition 1, it provides a lower bound on the value of a ψwv -optimal solution. In the
following subsections, we present two ways to use this lower bound for Choquet optimisation,
namely under a ranking approach or under an implicit enumeration procedure.

Algorithm 1: computing λ∗ with max-entropy

Initialisation:
A← ∅;
B ← ∅;
while B 6= N do

Select A in arg min{v(B∪F )−v(B)
|F | , F ⊆ N\B,F 6= ∅};

for all i ∈ A do
λ∗i ←

v(B∪A)−v(B)
|A| ;

B ← B ∪ A;
Output: (λ∗1, . . . , λ

∗
n)

3.3 The ranking approach for Choquet optimisation

When used with a concave capacity and a convex disutility, the Choquet expected disutility
function is convex but non-linear. In order to determine ψwv -optimal spanning trees and paths
we first propose adopting a ranking approach. The idea of the ranking approach is first to
approximate function ψwv by another function g which is easier to optimise, then to rank
feasible solutions according to g until a stopping condition is met, ensuring that a ψwv -optimal
solution is found. This approach has been successfully used in similar contexts to optimise
other non-linear functions over combinatorial domains, see [13–16,19,31]. It is based on a 3-
steps procedure:

Step 1 [scalarisation] We consider the linear function ϕλ(x) =
∑n

i=1 λixi where (λ1, . . . , λn)
are positive coefficients adding-up to one defining an additive capacity in core(v̄). This function
is useful to compute a lower bound on values ψwv (x). By Proposition 1 we know indeed that
ψwv (x) ≥ w(ϕλ(x)) for all x ∈ Rn. Furthermore, for any feasible cost vector x = f(X) of a feasi-
ble solution X, the value ϕλ(x) is nothing else but the value of X in graph G endowed with the
scalar valuation f0(e) =

∑
i λifi(e). We have indeed f0(X) =

∑
e∈X f0(e) =

∑
e∈X

∑
i λifi(e) =∑

i λi
∑

e∈X fi(e) =
∑

i λifi(X) = ϕλ(f(X)).

Step 2 [ranking] We rank feasible solutions in G with respect to f0. More precisely, we
generate a sequence X1, X2, . . . , Xk of feasible solutions in such a way that: f0(X

i) ≤ f0(X
j)

whenever i < j. For problem ψwv -P, we rank paths by increasing f0-values using Jimenez
and Marzal’s algorithm [22] which is a lazy version of Eppstein’s ranking algorithm [10]. For
problem ψwv -ST, we rank spanning trees by increasing f0-values using Katoh, Ibaraki and
Mine’s algorithm [24] which is a sophistication of Gabow’s algorithm [12]. By construction,
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to each solution X i generated during Step 2 corresponds a cost vector xi = f(X i) such that
ϕλ(x

1) ≤ ϕλ(x
2) ≤ . . . ≤ ϕλ(x

k). We now have to identify a ψwv -optimal xi to stop the
enumeration as soon as possible. This is achieved by the next step.

Step 3 [stopping condition] The ranking procedure is stopped as soon as we reach a
solution Xk with cost xk such that w(ϕλ(x

k)) ≥ ψwv (xσ(k)) where σ(k) is the smallest integer
such that ψwv (xσ(k)) = mini∈[[1,k]] ψ

w
v (xi). This cut is justified by the following result:

Proposition 2 Let x1, ..., xk be the k-best cost vectors generated in Step 2, and σ(k) the in-
dex of one minimising ψwv among them (e.g. σ(k) is the smallest integer such that ψwv (xσ(k)) =
mini∈[[1,k]] ψ

w
v (xi)). If w(ϕλ(x

k)) ≥ ψwv (xσ(k)) then xσ(k) is ψwv -optimal, i.e. ψwv (xσ(k)) = minx∈X ψ
w
v (x).

PROOF. Assume that condition w(ϕλ(x
k)) ≥ ψwv (xσ(k)) holds. By construction we have an

increasing sequence ϕλ(x
1) ≤ ϕλ(x

2) ≤ . . . ≤ ϕλ(x
k). Moreover, for any i > k we have ϕλ(x

i) ≥
ϕλ(x

k) and therefore w(ϕλ(x
i)) ≥ w(ϕλ(x

k)) since w is strictly increasing. By proposition 1 we
also have ψwv (xi) ≥ w(ϕλ(x

i)). Hence we have ψwv (xi) ≥ w(ϕλ(x
i)) ≥ w(ϕλ(x

k)) ≥ ψwv (xσ(k)).
Consequently, for all i > k, ψwv (xi) ≥ ψwv (xσ(k)) which shows that no solution found after step
k in the ranking can improve the current best solution Xσ(k) with cost vector xσ(k). 2

Figure 5 illustrates the behaviour of the procedure. Assuming there exist p distinct feasible
solutions, the white dots represent the increasing sequence w(ϕλ(x

i)), i = 1, . . . , p and the
black dots represent the corresponding values ψwv (xi), i = 1, . . . , p. The stepwise increasing
curve shows the evolution of w(ϕλ(x

i)) with xi, i = 1, . . . , p while the stepwise decreasing
curve shows the evolution of ψwv (xσ(i)), i = 1, . . . , p. The stopping condition is fulfilled as soon
as the two stepwise curves cross each other. This is achieved at step k.

Stopping condition is fulfilled

Values

w(ϕλ(x
i))

1 k p

ψwv (xσ(i))

i

Fig. 5. Representation of the stopping condition

Algorithm 2 summarises the procedure. We denote by σ(i) the index of the current best solution
found at step i.
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Algorithm 2: Choquet Optimisation

Determine the best solution X1 w.r.t. f0;
σ(1) ← 1; best ← ψwv (x1); i ← 1;
repeat

i ← i+ 1;
Determine the ith best solution X i w.r.t f0;
if ψwv (xi) < best then

σ(i) ← i;
best ← ψwv (xi)

else
σ(i)← σ(i− 1)

until w(ϕλ(x
i)) ≥ best;

Output: solution Xσ(i), its cost vector xσ(i) and value best

Note that, when stopping at iteration k, the complexity of Algorithm 2 is O(|E|+|V | log |V |+k)
for ψwv -P and O(k|E|+ min(|V |2, |E| log log |V |) for ψwv -ST. These complexities are the ones of
the ranking algorithms used, see [22,24].

Example 4 We now illustrate the 3 steps of the ranking approach on the graphs of Figures 1
and 2 simultaneously, using ψwv with a concave capacity v({1}) = 0.8, v({2}) = 0.4, v({1, 2}) =
1 and a convex disutility function w(x) = x2.

Step 1. [Scalarisation] As scalarising function, we use ϕλ with λ = (0.6, 0.4), obtained by
Algorithm 1, to get an additive capacity in the core of v̄. Hence, each edge e of the graph with
cost f(e) = (x1, x2) receives a scalar weight f0(e) = ϕλ(x1, x2) = 0.6x1 + 0.4x2.

Step 2 and 3. [Algorithm 2] The behaviour of the algorithm may be visualised in the bidi-
mensional space (see Figure 6) thanks to the following property: if two distinct points x and
y both lie on the bisecting line, then w(ϕλ(x)) > ψwv (y) if and only if xi > yi, i = 1, 2 (strict
Pareto-dominance). We have indeed w(ϕλ(x)) = w(x1) = w(x2) since x belongs to the bisect-
ing line; moreover ψwv (y) = w(y1) = w(y2) since y also belongs to the bisecting line; finally
w(xi) > w(yi) if and only if xi > yi, i = 1, 2 since w is strictly increasing.

At iteration 1 of the ranking algorithm (see Figure 6), the best feasible cost vector (minimal
with respect to ϕλ) is p12 = (43, 17) with ϕλ(43, 17) = 32.6. Line ∆λ represents all points having
the same value than p12 with respect to ϕλ. Hence point N at the intersection of ∆λ and the
bisecting line is equivalent to p12 with respect to ϕλ. Moreover, point M is equivalent to p12

with respect to ψwv (they are on the same isopreference curve). Since N strictly dominates M
we can graphically observe that w(ϕλ(p12)) < ψwv (p12). Hence the stopping condition does not
hold.

At iteration 2, we find the second best solution with respect to ϕλ. It is p15 = (47, 18) with
ϕλ(47, 18) = 35.4. Line ∆λ has moved and represents now all points having the same value
than p15 with respect to ϕλ. Hence point N ′ at the intersection of ∆λ and the bisecting line is
equivalent to p15 with respect to ϕλ. Moreover, point M (featuring variable best in Algorithm 2)
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remains unchanged since p15 does not improve p12 in terms of ψwv . Since N ′ strictly dominates
M we can graphically observe that w(ϕλ(p15)) < ψwv (p12). Hence the stopping condition does
not hold.

At iteration 3, we find the third best solution with respect to ϕλ. It is p7 = (37, 36) with
ϕλ(37, 36) = 36.6. Line ∆λ has moved and represents now all points having the same value
as p7 with respect to ϕλ. Hence point N ′′ at the intersection of ∆λ and the bisecting line
is equivalent to p7 with respect to ϕλ. Moreover, point M is replaced by point M ′ since p7

improves p12 in terms of ψwv . Since N ′′ strictly dominates M ′ we can graphically observe that
w(ϕλ(p7)) < ψwv (p7). Hence the stopping condition does not hold.

At iteration 4, we find the fourth best solution with respect to ϕλ. It is p10 = (41, 31) with
ϕλ(41, 31) = 37. Line ∆λ has moved and represents now all points having the same value than
p10 with respect to ϕλ. Hence point N ′′′ at the intersection of ∆λ and the bisecting line is
equivalent to p10 with respect to ϕλ. Moreover, point M ′ remains unchanged since p10 does not
improve p7 in terms of ψwv . Since N ′′′ is strictly dominated by M ′ we can graphically observe
that w(ϕλ(p10)) > ψwv (p7). Hence the stopping condition holds which completes the ranking
process.

iteration 1

p10

p7

p12

p15

∆λ

N

M

iteration 2

p10

p12

p7

p15

∆λ

N ′

M

iteration 3

p12

p10

p7

p15

∆λ

N ′′
M ′

iteration 4

p12

p7

p10

∆λ

p15

M ′ N ′′′

Fig. 6. Application of the ranking algorithm to Example 1.

14



3.4 Implicit enumeration

3.4.1 Branch and bound procedure for the Choquet-optimal spanning tree problem

The lower bound on ψwv (x) established in Proposition 1 can easily be used in the bounding
phase of a branch and bound method. We propose here resorting to such a method, where the
space of solutions is split into subspaces of solutions during the exploration. In the search tree,
a node η is characterized by:

• in(η) a set of mandatory edges,
• out(η) a set of forbidden edges.

Moreover, at each node η we define:

• T (n) the subset of spanning trees implicitly defined by in(η) and out(η) (spanning trees X
such that in(η) ⊆ X ⊆ E \ out(η)),
• T (η) a minimal spanning tree in T (η) for valuation f0, i.e. T (η) ∈ arg minX∈T (η) f0(X),
• LB(η) a lower bound on ψwv values at node η (detailed in Paragraph “Bounding” hereafter).

As usual, during the search, a node η is discarded when LB(η) ≥ UB where UB is the current
incumbent (the best feasible ψwv -value found so far). Let us now explain how the four classical
phases (initialisation, branching, bounding and updating) of the branch and bound method
are performed:

Initialisation. It is well known that a branch and bound method can be highly improved
when a good solution is known before starting the search. In this concern, we propose to resort
to an approximate version of the ranking approach previously presented (see Algorithm 2).
It is indeed sufficient to stop the repeat loop as soon as the following relaxed condition hold:
(1 + ε)w(ϕλ(x

i)) ≥ best. This is shown by the following:

Proposition 3 If Algorithm 2 is stopped at step k such that (1 + ε)w(ϕλ(x
k)) ≥ ψwv (xσ(k))

then (1 + ε) minx∈X ψ
w
v (x) ≥ ψwv (xσ(k)).

PROOF. The proof can be derived from the one of Proposition 2 after modification of the
stopping condition. By construction we have ϕλ(x

i) ≥ ϕλ(x
k) for all i > k and therefore

w(ϕλ(x
i)) ≥ w(ϕλ(x

k)) since w is strictly increasing. Then we have, thanks to the relaxed
stopping condition, (1 + ε)ψwv (xi) ≥ (1 + ε)w(ϕλ(x

i)) ≥ (1 + ε)w(ϕλ(x
k)) ≥ ψwv (xσ(k)). Thus,

for all i > k, (1 + ε)ψwv (xi) ≥ ψwv (xσ(k)) which shows that no solution found after step k in the
ranking can improve the current best solution with a ratio better than (1 + ε). 2

This method makes it possible to find a near ψwv -optimal spanning tree with an approximation
ratio 1 + ε. Indeed, we have observed that such a solution is generally quickly computed even
when ε is small. Computing this solution at the root of the search tree makes it possible to avoid
the exploration of some subspaces in which a ψwv -optimal spanning tree cannot be present.
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Branching. At each node η of the search tree, edge e is put into in(η) or out(η), where e is
one of the best remaining edges (e minimises ϕλ(f(e)) over E \ (in(η) ∪ out(η))). Then the
search space is split into two subspaces by creating two nodes η′ and η′′ such that:

• in(η′) = in(η) ∪ {e} and out(η′) = out(η),
• in(η′′) = in(η) and out(η′′) = out(η) ∪ {e}.

Note that when edge e creates a cycle in in(η), node η′′ is the only node to be created.

Bounding. We use here two complementary bounds. The first bound is obtained as fol-
lows. Let f ∗i (η) be the minimum spanning tree in T (η) for valuation fi, i = 1, . . . , n and
f ∗(η) = (f ∗1 (η), . . . , f ∗n(η)) the ideal cost vector in T (η). The components of this vector
are easily obtained by n runs of a standard minimal spanning tree algorithm for valuations
fi, i = 1, . . . , n successively. By construction, for all i = 1 . . . n we have f ∗i (η) ≤ fi(T ) for any
T ∈ T (η) and therefore ψwv (f ∗(η)) ≤ ψwv (f(T )) since ψwv is componentwise non-decreasing.
Hence ψwv (f ∗(η)) bounds the ψwv -values at node η.

The second bound is obtained using valuation f0. Using a standard minimal spanning tree
algorithm, we determine a minimal spanning tree T (η) ∈ T (η) for valuation f0. By proposition
1 we have indeed: ∀T ∈ T (η), ψwv (f(T )) ≥ w(f0(T (η))) which gives the second bound on ψwv -
values. The two bounds make it possible to define the evaluation function LB(η) at a node η
of the search-tree by: LB(η) = max{ψwv (f ∗(η)), w(f0(T (n)))} which requires to compute n+ 1
minimal spanning trees T0, . . . , Tn for valuations f0, f1, . . . , fn successively. The complexity of
Kruskal’s algorithm for determining a minimal spanning tree is O(|E| log |V |) when using a
union-find data structure [40]. The overall complexity for the computation of LB(η) is therefore
O(n|E| log |V |). Note that the n + 1 sortings of edges according to f0, . . . , fn (in Kruskal’s
algorithm) are performed once and for all at the root of the search tree.

Updating the incumbent. At each node η the branch and bound algorithm checks whether
mini∈{0,...,n} ψ

w
v (f(Ti)) improves UB in which case UB is updated. We take here advantage of

the fact that the lower bound is obtained from feasible solutions.

Algorithm 3 summarises the branch and bound procedure. First, note that the leaves of the
search tree are characterised by |in(η)| = |V | − 1 for any leaf η. Hence T (η) is a singleton
containing tree T (η) and UB is set to ψwv (f(T (η))). For the initial call of algorithm BB(η,UB),
root node η is characterized by empty sets in and out, and UB (corresponding to the current
optimal ψwv -value) is initialised using Algorithm 2 with the relaxed stopping condition given
in Proposition 3. For simplicity of presentation, we deliberately omitted the management of
buffer variables storing the current ψwv -optimal spanning tree and its cost vector.

3.4.2 Label setting algorithm for the Choquet-optimal path problem

We now present an implicit enumeration algorithm to compute a ψwv -optimal path. This algo-
rithm is based on a multiobjective extension of Dijkstra’s algorithm proposed by Martins [27]
to determine the set of Pareto-optimal paths from s to all other nodes. Before detailing the
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Algorithm 3: BB(η,UB)

/* Bounding */
if LB(η) < UB then

if |in(η)| = |V | − 1 then
UB← ψwv (f(T (η)));
return UB

else
/* Updating the incumbent */
for i = 0 to n do

if ψwv (f(Ti)) < UB then UB← ψwv (f(Ti))
/* Branching */
Select an edge e minimising f0 in E\(in(η) ∪ out(η))
Create node η′ such that: in(η′) = in(η) ∪ {e} and out(η′) = out(η);
best← BB(η′,UB);
UB← min{UB, best};
Create node η′′ such that: in(η′′) = in(η) and out(η′′) = out(η) ∪ {e};
best← BB(η′′,UB);
return min{UB, best};

else
return UB

way it can be taken out of its initial objective to focus on ψwv -optimal paths, we first describe
the original Martins procedure. It uses sets of labels for each node, representing Pareto-optimal
cost vectors among detected subpaths. A label ` is a triplet [v, P, f ], where v is the node under
consideration (i.e., to which ` is attached), P is a subpath from s to v, and f is the cost vector
of P . In the following, node v to which ` is attached is denoted by v`, the corresponding sub-
path is denoted by P`, and its cost vector by f`. The algorithm proceeds by expanding labels,
instead of nodes in Dijkstra’s algorithm. In the multiobjective version of Dijkstra’s algorithm,
several labels can indeed be assigned to the same node, since several Pareto-optimal subpaths
can reach this node. At each node v, the set of assigned labels, denoted by L(v), is divided into
two disjoint subsets: the set of temporary labels (yet to be expanded), and the set of definitive
labels (already expanded). We denote by TL the set of all temporary labels in the graph. In
the procedure, the labels are compared according to their f -value. By abuse of language, we
shall say that a label ` is Pareto-optimal in a set L if f` is Pareto-optimal in {f` : ` ∈ L}.
Following this convention, Martins procedure can be described as follows:

Step 1. Node s is labelled by `0 = [s, 〈s〉, (0, . . . , 0)], TL = {`0} and L(v) = ∅ for all v 6= s.

Step 2. At every iteration, a Pareto-optimal label ` in TL is expanded: for each outgoing arc
e = (v`, v) a new label `′ = [v, 〈P`, v〉, f` + f(e)] is obtained (where 〈P`, v〉 is the extension of
path P` to node v). For each successor node v, only Pareto-optimal labels in L(v) ∪ {`′} are
kept (dominated labels are discarded). This set is denoted by OPT (L(v) ∪ {`′}). Label ` is
then moved from TL to the set of definitive labels.

Step 3. When set TL becomes empty, the procedure stops. For all nodes v, {P` : ` ∈ L(v)} is
the set of Pareto-optimal paths from s to v.
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Actually we do not need to explicitly store the Pareto-optimal paths at each node; standard
bookkeeping techniques are used instead to recover the Pareto-optimal paths at the end of the
procedure. For simplicity, we deliberately omit the details here.

Martins’ procedure is pseudopolynomial for integer costs and a fixed number n of objectives. An
essential invariant of the algorithm is indeed that every expanded label at node v corresponds
to an actual Pareto-optimal subpath from s to v [7] (similarly to the invariant in Dijkstra’s
algorithm which guarantees that the label of every expanded node corresponds to an actual
shortest path). Futhermore, there can be at most (M + 1)n labels of distinct value at each
node, where M denotes an upper bound on the maximum value of a path for all criteria. The
total number of expanded labels is therefore bounded above by |V |(M + 1)n, which proves the
pseudopolynomiality of Martins’ procedure.

As mentionned previously, there always exists a ψwv -optimal path in the set of Pareto-optimal
paths. For Choquet-based optimisation, one could therefore use a two stage approach, where
one would first generate the set of Pareto-optimal paths, and second determine a ψwv -optimal
one among them. However, one can expect that many labels generated in the first stage do not
contribute to any ψwv -optimal path. For this reason, it would be useful to detect such labels as
soon as they are created, in order to get a significant speedup in the label setting algorithm.
This is precisely what we now describe. Similarly to the approach of Murthy and Her [28] for
the Min-Max shortest path problem, the label setting algorithm we propose includes a pruning
technique. This pruning technique is akin to the two complementary bounds used in the branch
and bound procedure of the previous subsection.

For the first bound, let h∗i (v) be the value of a shortest path from v to t for valuation fi, i =
1, . . . , n and h∗(v) = (h∗1(v), . . . , h∗n(v)) the ideal cost vector at node v. The components of
this vector are easily obtained by n runs of a standard shortest path algorithm to compute
the shortest paths from t to all other nodes in the reverse graph (graph obtained by reversing
all edges). By construction, for all ` in L(v), ψwv (f` + h∗(v)) bounds the ψwv -value of any path
extending P`.

The second bound is obtained thanks to valuation f0. For all nodes v we determine h0(v), the
value of the shortest path from v to t according to valuation f0. This can be achieved easily
by one run of Dijkstra’s algorithm from t to all nodes in the reverse graph. By proposition 1
we have the following property: for all ` in L(v), w(f0(P`) + h0(v)) is a lower bound on the
ψwv -values of all paths extending P`.

As in the branch and bound algorithm, these two bounds make it possible to define the eval-
uation function LB(`) of label ` by: LB(`) = max{ψwv (f` + h∗(v`)), w(f0(P`) + h0(v`))}. This
lower bound has a twofold advantage. It allows to prune any label ` whenever UB ≤ LB(`)
where UB is the ψwv -value of the best path from s to t found so far. Moreover it can be used
as a heuristic to select the next node to be expanded, by giving priority to labels minimising
LB(`). Algorithm 4 summarises the search procedure we use to determine a ψwv -optimal path.

It is worth noting that Algorithm 4 preserves the pseudopolynomiality of Martin’s procedure
thanks to the following proposition:
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Proposition 4 If ψwv is defined from a strictly increasing disutility function w and a strictly
increasing capacity v with respect to set inclusion (A ⊂ B ⇒ v(A) < v(B)), then any label `
expanded by Algorithm 4 corresponds to a Pareto-optimal path from s to v`.

PROOF. By contradiction, let us assume that a label ` corresponding to a dominated path
from s to v` is expanded. There exists a Pareto-optimal path P ′ from s to v` such that f(P ′)
Pareto-dominates f`. This path necessarily includes a node with a label `′ in TL corresponding
to a Pareto-optimal subpath of P ′ (otherwise label ` should have been discarded at node v` by
the label associated to P ′).

Since P`′ is a subpath of P ′ we know that f`′ + h∗(v`′) is at least as good as f(P ′) + h∗(v`)
on every component (i). Moreover, by assumption, f(P ′) Pareto-dominates f` and therefore
f(P ′) + h∗(v`) Pareto-dominates f(`) + h∗(v`) (ii). By combining (i) and (ii) we obtain that
f`′ + h∗(v`′) Pareto-dominates f(`) + h∗(v`) which implies that ψwv (f`′ + h∗(v`′)) < ψwv (f(`) +
h∗(v`)) (*) since ψwv is componentwise increasing (by strict increasingness of v).

Similarly we have f0(P`′) +h0(vl′) ≤ f0(P
′) +h0(vl) (iii) since P`′ is a subpath of P ′. Moreover,

f0(P
′) < f0(P`) since f(P ′) Pareto-dominates f` and f0 is componentwise increasing (the

components of the weighting vector λ defining an additive capacity in the core are necessarily
strictly positive since v is strictly increasing). Hence f0(P

′) + h0(vl) < f0(P`) + h0(vl) (iv).
From (iii) and (iv) we derive f0(P`′) + h0(vl′) < f0(P`) + h0(vl) and then w(f0(P`′) + h0(vl′)) <
w(f0(P`) + h0(vl)) (**) since w is strictly increasing.

By (*) and (**) we get LB(`) > LB(`′) which is in contradiction with the fact that ` is
expanded. 2

4 Experimental results for the Choquet-optimal path problem

We first test the ranking approach (Algorithm 2) and the label-setting algorithm (Algorithm 4)
on the ψwv -P problem. These algorithms are implemented in C++ and the experimentations are
performed on randomly drawn instances with an Intel Pentium Core 2 computer with 2.66Ghz.
We have used a convex disutility function w(x) = x2 and two types of concave and strictly
increasing capacities:

• capacities defined by v1(A) =
√∑

i∈A pi for all set A ⊆ N where pi’s are strictly positive
coefficients adding-up to one,
• capacities defined by v2(A) = 1 −

∑
E∩A=∅m(E) where sets {m(E) : E ⊆ N} are stricly

positive coefficients (Möbius masses) adding up to 1.

Note that this second type of capacities corresponds to plausibility measures since they are
defined as the dual of a belief function constructed from positive Möbius masses (for more
details, see Shafer [37]). We performed multiple tests using different capacities of both types,
obtained by random draw of coefficients pi, i = 1, . . . , n or masses m(E), E ⊆ N . It can easily
be checked that such capacities are concave by construction and thus their dual capacities have
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Algorithm 4: A label setting algorithm for the ψwv -P problem

L(s)← {`0}; for v 6= s do L(v)← ∅;
create label `0 = [s, 〈s〉, (0, . . . , 0)];
TL← {`0}; UB← +∞; `← `0;
while [TL 6= ∅ and LB(`) < UB] do

begin
remove ` from TL;
if n` = t then

P ∗ ← P`;
x∗ ← f`;
UB← ψwv (f`);

else
for each node v such that e = (v`, v) ∈ E do

begin
create label `′ = [v, 〈P`, v〉, f` + f(e)];
if LB(`′) < UB then
L(v)← OPT (L(v) ∪ {`′});
if `′ ∈ L(v) then TL← TL ∪ {`′}

else discard label `′;
end

Select ` in arg min`′∈TLLB(`′) ;
end

Output: solution P ∗ (a ψwv -optimal path), its cost vector x∗ and value UB

a non-empty core. To define ϕλ and therefore f0, we use two types of additive measures in the
core of v̄ defined respectively by weighting vectors φ and λ∗ as introduced in Subsection 3.2.

4.1 Ranking approach

The experimentations on the Choquet-optimal path problem were performed on randomly
drawn graphs where the density is about 50% (the presence of every arc is randomly drawn
with a probability of 0.5). The costs are randomly drawn between 1 and 100 for each arc and
each objective. The number of objectives varies from 2 to 10. The number of nodes in the graph
varies from 1.000 to 4.000. For each kind of instances (depending on the number of nodes and
on the number of objectives), 50 different graphs are randomly drawn. Table 5 summarises the
average execution times of the ranking approach on these instances.

The results show that most of the instances are solved within a second, even on instances
with a large number of nodes. We observe that the average execution time grows slowly with
the number of objectives and with the number of nodes. Furthermore, times are neither really
sensitive to the type of capacity used nor to the choice of the additive capacity in the core
(defined by λ∗ or φ).

20



Table 5
Ranking approach for ψwv -P: execution times (in seconds).

2 obj. 3 obj. 5 obj. 10 obj.

|V | λ∗i φi λ∗i φi λ∗i φi λ∗i φi

1000 0.05 0.05 0.06 0.06 0.06 0.07 0.09 0.11

v1 2000 0.22 0.24 0.23 0.25 0.25 0.28 0.35 0.42

3000 0.51 0.58 0.56 0.61 0.59 0.68 0.73 0.86

4000 0.95 1.06 1.06 1.21 1.08 1.26 1.33 1.67

1000 0.05 0.05 0.05 0.06 0.08 0.09 0.24 0.25

v2 2000 0.22 0.24 0.23 0.23 0.31 0.31 0.71 0.68

3000 0.51 0.56 0.54 0.58 0.6 0.66 0.9 1.05

4000 0.96 1.06 1.16 1.31 0.94 1.05 2.43 2.56

4.2 Label setting algorithm

The experimentations for this algorithm were carried out with the same parameters than for
the ranking approach. Table 6 summarises execution times obtained. Compared to the ranking
approach, the label setting algorithm performs better when the number of objectives is small
(2, 3 or 5). However, for a greater number of objectives (for example, 10 objectives), the label
setting algorithm becomes less efficient than the ranking approach. A plausible explanation
is that a lot of time is spent in dominance tests. Besides, the type of capacity drawn (v1 or
v2) as well as the additive capacity chosen in the core (λ∗ or φ) seem to have little impact on
execution times, like in the previous approach.

Table 6
Label setting algorithm for ψwv -P: execution times (in seconds).

2 obj. 3 obj. 5 obj. 10 obj.

|V | λ∗i φi λ∗i φi λ∗i φi λ∗i φi

1000 0.01 0.01 0.01 0.01 0.02 0.03 0.15 0.26

v1 2000 0.02 0.02 0.02 0.03 0.04 0.08 0.44 0.77

3000 0.04 0.04 0.04 0.06 0.07 0.14 0.58 1.04

4000 0.06 0.07 0.07 0.12 0.1 0.21 0.73 2.13

1000 0.01 0.01 0.01 0.01 0.04 0.05 0.84 0.84

v2 2000 0.02 0.02 0.02 0.03 0.09 0.1 2.01 2.02

3000 0.04 0.04 0.04 0.05 0.12 0.13 1.31 1.82

4000 0.06 0.07 0.1 0.17 0.23 0.24 5.16 5.51
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5 Experimental results for the Choquet-optimal spanning tree problem

Experimentations on Choquet-optimal spanning tree problems are performed on the same class
of Choquet integrals as in the previous section (same construction of concave capacities v1 and
v2, same convex disutility w(x) = x2).

5.1 Ranking approach

The experimentations on the ψwv -ST problem were performed on complete graphs (cliques). The
components of cost vectors are randomly drawn between 1 and 100 on each edge. The number
of objectives varies, here again, from 2 to 10, and the number of nodes from 10 to 30. For each
kind of instances (depending on the number of nodes and on the number of objectives), 50
instances are randomly drawn. Table 7 summarises the average execution times of the ranking
approach on these instances. Symbol “-” means that some executions could not terminate due
to lack of memory space (more than 4GB required).

Table 7
Ranking approach for ψwv -ST: execution times (in seconds).

2 obj. 3 obj. 5 obj. 10 obj.

|V | λ∗i φi λ∗i φi λ∗i φi λ∗i φi

10 0 0.02 0.01 0.04 0.02 0.19 0.7 2.16

15 0 0.26 0.11 - 0.78 - 5.33 -

v1 20 0.08 - 0.85 - 2.21 - - -

25 0.22 - 1.11 - - - - -

30 0.63 - 1.49 - - - - -

10 0 0.01 0.01 0.03 0.06 0.57 4.92 5.27

15 0 0.22 0.02 0.58 0.9 1.23 - -

v2 20 0.01 - 0.1 - - - - -

25 0.19 - 0.56 - - - - -

30 0.78 - 1.53 - - - - -

We can see that, on instances with about 30 nodes, an optimal solution is quickly determined.
However, when the size of the instance grows, the memory space used by the ranking approach
also quickly increases. Clearly, this will not be sufficient for large size instances. Besides, we can
note that, contrary to what is observed for the Choquet-optimal path problem, the execution
times are sensitive to the number of objectives.
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5.2 Branch and bound procedure

The experimentations for this algorithm were carried out with the same parameters as for the
ranking approach. Table 8 summarises the average execution times of the branch and bound
procedure. Symbol “>1h” means that the average execution time is greater than one hour.

Table 8
Branch and bound approach for ψwv -ST: execution times (in seconds).

2 obj. 3 obj. 5 obj. 10 obj.

|V | λ∗i φi λ∗i φi λ∗i φi λ∗i φi

10 0 0 0.01 0.03 0.06 0.29 2.21 6.2

15 0.01 0.11 0.23 9.45 2.41 804 36.8 >1h

v1 20 1.03 >1h 8.68 2726 31.4 >1h >1h >1h

25 4.02 >1h 14.9 >1h 137.3 >1h >1h >1h

30 13.4 >1h 60.7 >1h >1h >1h >1h >1h

10 0 0 0.01 0.03 0.1 0.11 4.23 12

15 0.01 0.16 0.1 9.63 2.36 3.04 1950 1987

v2 20 0.48 40.13 0.86 63 72.1 >1h >1h >1h

25 2.04 >1h 5.57 >1h 985.7 >1h >1h >1h

30 5.11 >1h 48.6 >1h 3035 >1h >1h >1h

We can see that the average execution times are greater for the branch and bound procedure
than for the ranking approach. However, the branch and bound procedure does not require as
much memory space, and can therefore be applied to bigger instances. Nevertheless, as the size
of the graph grows up, the average execution time significantly increases (beyond 30 minutes).
The results also show that average execution times are sensitive to the number of objectives.
Finally, here again, we observe that the execution time does not really depend on the type of
capacity used (v1 or v2). The choice of an additive capacity inside the core (λ∗ or φ) has a
greater impact: the results obtained with λ∗ are indeed significantly better than those obtained
with φ.

5.3 Improving the quality of the lower bound

The lower bound introduced in Subsection 3.2 depends on a weighting vector λ defining an
additive measure in the core of v̄. We have proposed two possible weighting vectors, φ and
λ∗, but there is no systematic argument to prefer one to the other and the best choice might
really depend on the instance to deal with. One weakness of the bound we have introduced
is that it relies on the choice of vector λ which is made a priori and independently of the
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graph instance. However, all admissible weighting vectors λ do not provide the same value
for the lower bound, and the best choice for these weights (i.e., providing the maximal lower
bound) might depend on the trees under consideration. We want to select the most appropriate
weighting vector λ for bounding the value of a ψwv -optimal spanning tree at a given node η
(corresponding to the set of spanning trees T (η)) of the search tree. Let Y denote the image of
T (η) in the multidimensional space (n criteria, scenarios or agents). Keeping in mind that w
is strictly increasing, the optimal set of weights (i.e., providing the best lower bound according
to Proposition 1) can be obtained by solving the following program:

max
λ∈Rn

z(λ) = min
y∈Y

n∑
i=1

λiyi, (6)

s.t.
∑
i∈A

λi ≤ v(A) ∀A ⊆ N, (7)

n∑
i=1

λi = 1, (8)

λi ≥ 0 ∀i = 1, . . . , n. (9)

Given that z is a concave piecewise linear function (since it is the lower envelope of a set of
linear functions {

∑n
i=1 yiλi : y ∈ Y }), we solve this program by using the SolvOpt library

[23], which is an implementation of Shor’s r-algorithm. This algorithm is indeed especially
convenient for non-differentiable optimisation. To take into account constraints (7)-(9), the
penalty function method is used, i.e. constraints are relaxed and one maximises z(λ) − g(λ)
instead of z(λ), where g is a penalty function (that takes a positive value if a constraint is
violated at point λ, and value 0 otherwise). Function g is defined as the sum of the residuals
of the sets of violated constraints at point λ. More formally, g(λ) =

∑
A⊆N max{rλA, 0} where

rλA =
∑

i∈A λ− v(A).

Let us briefly explain the iterative optimisation process. For simplicity, we omit constraints (8)
and (9) in the presentation. When performing a maximisation (as this is the case here), the basic
principle of the algorithm is to build a sequence (λk) of points (a point is here a set of weights) by
repeatedly making steps in the direction of a subgradient 1 5(z(λk)−g(λk)) = 5z(λk)−5g(λk)
at the current point (steepest ascent). However, unlike the standard subgradient method, every
step is made in a dilated space, in a direction depending on the previous step.

More precisely, the minimisation of function z(λ)− g(λ) at a given node η proceeds as follows.
We chose an initial admissible weighting vector. Then, at iteration k of the procedure, we need
to compute 5z(λk)−5g(λk). In this respect we first determine a minimum spanning tree T k

for valuation fk0 =
∑n

i=1 λ
k
i fi to determine z(λk). Hence the subgradient of z at point λk is

nothing else but the vector yk = f(T k) (the image of the minimum spanning tree computed at
iteration k). Then, subgradient 5g(λk) is equal to (|C1| , . . . , |Cn|), where Ci denotes the set

1 The subgradient plays here an analogous role to the one of the gradient in differentiable optimisation.
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of violated constraints involving objective i. Then λk+1 is computed by SolvOpt from λk and
5z(λk)−5g(λk) as indicated above. Since the set of feasible vectors is compact, the optimum
is finite and the algorithm progressively converges to the optimum. Note that any set of weights
that satisfies constraints (7)-(9) provides a lower bound. Hence, to save time, we can use only
an approximation of the optimal solution and stop as soon as a given convergence threshold is
achieved. The corresponding near-optimal value z(λk) provides a bound for {ψwv (y), y ∈ Y }.

Figure 7 presents a comparison between the average execution times obtained by the branch
and bound procedure for the two kinds of lower bounds (using dynamic weights computed by
Shor’s r-algorithm or static weights computed a priori by Algorithm 1). Numerical tests were
carried out on complete graphs of various sizes (from 10 to 30 nodes) using between 2 and
10 objectives, with concave capacities of type v1 (see Section 4). We can see that the use of
dynamic weights significantly improves the bounds and considerably decrease the computation
times when the number of objectives is 5 or 10. When this number is smaller, the time spent
at each node of the search-tree in Shor’s r-algorithm is not compensated by the gain in the
number of nodes. Consequently, the branch and bound procedure performs better with a static
weights defined a priori.

Note that the use of dynamic weights to improve lower bounds could also be applied to the
Choquet-optimal path problem. However, due to already satisfying numerical results for this
problem, one can expect that the potential gain would not be as significant as for the minimum
spanning tree problem.
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6 Conclusion

In this paper, we have studied Choquet-based optimisation when the capacity used to param-
eterize the Choquet integral is concave and the disutility is convex. We have presented various
algorithms to compute Choquet-optimal solutions in multiobjective minimal spanning tree
and shortest path problems. All of them rely on the use of a default approximation bounding
Choquet expected disutilities.

The potential use of the bound we have introduced in the paper is not restricted to Choquet-
optimal shortest path or spanning tree problems. As soon as a polynomial time algorithm is
known for the standard version of a combinatorial problem, Proposition 1 provides a polyno-
mially computable bound that can be used for the search of a Choquet-optimal solution in the
multiobjective version. This bound can either be used in a branch and bound procedure or in a
ranking approach, the latter requiring an efficient k-best solution procedure. For example, this
is the case of matching problems [4], scheduling problems [2] and network flow problems [18].
The bound also holds for the OWA (Ordered Weighted Average) operator [44], its weighted
extension WOWA [41], Yaari’s model [43] and RDU (Rank Dependent Utility) [34], each of
them being a particular case of Choquet expected utility.

For future works, it would be interesting to study a complementary type of bounds by relaxing
the solution space rather than the objective function. For this purpose, the optimisation of a
Choquet integral on a convex polyhedron is worth investigating. In this respect, a first step
in this direction is the work by Ogryczak [30] on WOWA optimisation, that studies different
LP reformulations of the problem. Another research direction would be to design polynomial
time approximation algorithms (with performance guarantee) for ψwv -ST and ψwv -SP. Note that
fully polynomial time approximation schemes (FPTAS’s) already exist to determine the set
of Pareto-optimal spanning trees and paths [32]. There also exist FPTAS’s for the min-max
versions of both problems (when the number of objective functions is bounded by a constant)
[1]. It is likely that these approximation schemes can be extended to obtain FPTAS’s for ψwv -ST
and ψwv -P.
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