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Abstract

This paper deals with the multiobjective version of the optimal spanning tree problem. More precisely, we are in-
terested in determining the optimal spanning tree according to an Ordered Weighted Average (OWA) of its objective
values. We first show that the problem is weakly NP-hard. We then propose different mixed integer programming
formulations, according to different subclasses of OWA functions. Furthermore, we provide various preprocessing
procedures, the validity scopes of which depends again on the considered subclass of OWA functions. For designing
such procedures, we propose generalized optimality conditions and efficiently computable bounds. These procedures
enable to reduce the size of the instances before launching an off-the-shelf software for solving the mixed integer
program. Their impact on the resolution time is evaluated on the basis of numerical experiments.

Key words: Multiobjective spanning tree problem, ordered weighted average, MIP formulation, optimality
conditions, bounding procedure

1. Introduction

Multiobjective combinatorial optimization deals with problems involving multiple viewpoints [7]. More formally,
the valuation structure of such problems is made of vectors (each component representing a specific viewpoint) instead
of scalars. Most popular single objective optimization problems (e.g., valued graph problems, integer linear program-
ming...) can be recasted in this setting, and solution algorithms must be proposed. Several types of approaches can
be studied: either one aims at generating the whole set of Pareto solutions (i.e., solutions that cannot be improved on
one objective without being depreciated on another one), also called the Pareto set, or one focuses on a specific subset
of the Pareto set (e.g., supported Pareto solutions, Lorenz optimal solutions [26]), or one looks for a best compro-
mise solution according to a given aggregation function (e.g., max operator, Chebyshev’s norm to a reference vector
[48], ordered weighted average [49], Choquet integral [15]). Computing the Pareto set is natural when no preferential
information is available or when the available information is unsufficient to elicit the parameters of the aggregation
function: the solutions in the Pareto set are indeed the only ones likely to be selected by any rational decision maker.
The interest in this approach has spawned a substantial literature (for a survey on the topic, the reader can refer to
several quite recent papers [8, 9]). However, the number of Pareto solutions can grow exponentially with the size of
the instance [e.g., 16, 17] and the number of objectives [39]. To overcome this difficulty, a first way to proceed could
be to focus on a specific subset of the Pareto set, such as, for instance, the supported Pareto solutions. Those are the
Pareto solutions that optimize linear scalarizations of the different objectives. When the single objective version of
the studied problem is polynomially solvable, generating a supported solution can also be made in polynomial time.
However, it is possible to exhibit instances for which even the number of supported solutions is exponential in the
size of the instance [e.g., 16, 17]. Furthermore, focusing on supported Pareto solutions a priori excludes compromise
solutions that could be preferred by the decision maker. For this reason, more involved decision criteria have been
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proposed in the field of multicriteria decision making [e.g., 23]. Consequently, for tractability and decision theoretic
reasons, focusing on one particular compromise solution seems to be a better approach when an aggregation function
is available. This enables indeed to considerably speed up the resolution procedure while preserving the decision
maker’s preferences. This is the approach we study in this paper.

More precisely, we investigate here the multiobjective version of the optimal spanning tree problem. This problem
arises naturally in various contexts. For example, consider a broadcasting network where the values of the edges
represent bandwidths. Assuming that the bandwidth of a chain is equal to the minimum bandwidth over its edges, it is
well-known that, in a maximal spanning tree, the bandwidth between two nodes is the maximum possible. When there
are several scenarios of traffic (impacting on the values of the bandwidths) or several opinions of experts on the values
of the bandwidths, the problem becomes multiobjective. Previous works on the topic mainly deal with generating the
whole Pareto set in the biobjective case [4, 16, 43, 44], or computing a min-max (regret) optimal solution when there
are two or more objectives [3, 10, 16, 21, 47, 52]. To our knowledge, there is therefore no operational algorithmic tool
for this problem when there are more than two objectives and when the min-max (regret) criterion is not really suitable.
The present paper precisely aims at tackling this gap, by providing algorithms able to optimize a less conservative
decision criterion for any number of objectives. Provided the required preferential information is available, and
provided the objectives are commensurate (which is the case in the above example for instance), we propose to resort
to an averaging operator to compare the vectorial values of the feasible solutions (spanning trees). According to the
decision context, one may however want to put the emphasis on the best, the worst or the median evaluations of
a solution. In other words, one needs to assign importance weights not to specific objectives (scenarios, experts),
but rather to best and worst evaluations. The Ordered Weighted Average (OWA) precisely enables to model such
concern. The optimization of this (non-linear) function has been widely studied in location problems under the name
of Discrete Ordered Median Problem (DOMP) [e.g., 6, 24, 27, 28, 29]. A location problem typically involves a
set of sites at which facilities can be located, and a set of demand points (clients) that request to be serviced from
facilities. In DOMP, one aims at locating facilities so as to fairly satisfy the clients. In this concern, for evaluating
a feasible solution, the OWA function (or ordered median function) is particularly suitable to aggregate the costs
incurred by the different clients. Several mixed integer programming (MIP) formulations of the problem have been
proposed in the literature [e.g., 6]. These formulations involve a linearization of the OWA function. In the case of
decreasing weights (favouring well-balanced solutions), another way to linearize the OWA function has been studied
by Ogryczak, Sliwinski and Tamir [31, 32, 33] in the field of continuous optimization under linear constraints.

We focus here on the OWA-optimal spanning tree problem, i.e. finding an optimal spanning tree according to the
OWA function in a multiobjective spanning tree problem. We propose MIP formulations of the problem, together
with preprocessing procedures that enable to reduce the size of the formulations before launching an off-the-shelf
software. The paper is organized as follows. After recalling some preliminary definitions and stating the problem, we
give some insights into its computational complexity (Section 2). In the next section, we present two alternative MIP
formulations, one in the case where the OWA function is endowed with decreasing weights, and the other one in the
case of arbitrary weights (Section 3). We then propose various preprocessing procedures to reduce the size of the MIP
formulations (Section 4), based on generalized optimality conditions and/or efficiently computable bounds. Finally,
we provide numerical experiments to assess the operationality of the proposed methods (Section 5).

2. Preliminaries

2.1. Multiobjective compromise search problem

A multiobjective compromise search problem is a problem endowed with vectorial costs where one searches for
a best compromise solution according to a given aggregation function. A generic multiobjective compromise search
problem can be formulated as a mathematical program. We now introduce some notations for this purpose. We denote
by X ⊆ {0, 1}m the set of feasible solutions, f : X → Rp a vector-valued function on X, and ϕ : Rp → R a multiobjec-
tive aggregation function. Within this setting, a multiobjective compromise search problem is written:

(P)


min ϕ(y)
s.t. y = f (x)
x ∈ X
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Denoting by Y = f (X) = { f (x) : x ∈ X} the image set of X in the objective space Rp, problem P can be simply
reformulated as miny∈Y ϕ(y). The OWA-optimal spanning tree problem (introduced in the following), consisting in
looking for an optimal spanning tree according to the OWA function, belongs to this class of problems. The prepro-
cessing methods we propose hereafter for this problem are generic. Mathematical formulation P will therefore be
convenient to describe these methods in the sequel. We now more specifically introduce the OWA operator and then
the OWA-optimal spanning tree problem.

2.2. The OWA operator

Given a set {1, . . . , p} of objectives (to minimize), one can associate a vector in Rp to every feasible solution
of a multiobjective problem. The comparison of solutions amounts then to comparing the corresponding vectors.
Following several works in multiobjective optimization [e.g., 29, 30, 35, 36], we propose to compare the vectors on
the basis of their OWA value [49] (to minimize), defined as follows:

Definition 1. Given a vector y in Rp, its ordered weighted average is OWA(y)=
∑p

i=1 wiy(i), where
∑p

i=1 wi = 1 and y(1)
≥ .. ≥ y(p) are the components of y sorted in non-increasing order.

According to the decisional context, one can distinguish within the class of OWA operators several interesting
subclasses depending on the definition of the weights:

• decreasing weights, i.e. w1 ≥ . . . ≥ wp ≥ 0: the set of weights naturally belongs to this class when performing
robust discrete optimization. In robust optimization [21], the cost of a solution depends on different possible
scenarios (states of the world). The aim is to find a robust solution according to this multiobjective representa-
tion, i.e. a solution that remains suitable whatever scenario finally occurs. The use of the OWA criterion with
decreasing weights in this setting is justified since it can be characterized by a set of axioms that are natural for
modelling robustness [35]. Compared to the max criterion, frequently used in robustness, the OWA criterion
is less conservative since it enables trade-offs between several scenarios. Note however that the OWA criterion
includes the max criterion as a special case, where one sets w1 = 1 and w2 = . . . = wp = 0. Another inter-
esting special case is obtained for “big-stepped weights”, i.e. when the gaps between successive weights are
huge (w1 � . . . � wp). The OWA criterion reduces then to the leximax operator, which consists in comparing
two vectors on the basis of their greatest component, their second greatest one in case of equality on the first
one, and so on... This criterion refines thus the max criterion by discriminating between vectors with the same
value on the greatest component. Finally, the k-centra criterion [5] is also a well-identified special case of OWA
optimization, where w1 = . . . = wk = 1/k and wk+1 = . . . = wp = 0. It consists in evaluating a vector according
to the sum of its k greatest components.

• arbitrary weights: one of the most famous decision criterion in decision under complete uncertainty (i.e., when
several states of the world can occur, and no information is available about their plausibilities) is the Hurwicz
criterion, that enables to model intermediate attitudes towards uncertainty (i.e., neither desperately pessimistic
nor outrageously optimistic) by performing a linear combination of the maximum possible value of a solution
under the different scenarios, and the minimum possible one. More formally, if y is the image of a solution
in the objective space, then its value according to the Hurwicz criterion is: αmaxi yi + (1 − α) mini yi. The
Hurwicz criterion is clearly a special case of the OWA criterion, obtained by setting w1 = α, wp = 1 − α and
wi = 0 ∀i , 1, p. As soon as there are more than two scenarios and α < {0, 1}, these sets of weights are
neither non-increasing nor non-decreasing. Another natural decision context where the sequence of weights is
arbitrary happens when every component represents the opinion of a particular expert, and one wants to dismiss
the extreme opinions. For instance, one can set w1 = 0, wp = 0 and wi = 1/(p − 2) ∀i , 1, p. The k-trimmed
mean, used in location problems, is a generalization of this kind of criterion, where one sets w1 = . . . = wk = 0,
wk+1 = . . . = wp−k = 1/(p − 2k) and wp−k+1 = . . . = wp = 0.

Not only do these subclasses have different decision theoretic meanings, but also different algorithmic properties.
Consequently we distinguish these two cases in the sequel of the paper. For the convenience of the reader, we denote
by OWA↓ the subclass of OWA operators endowed with decreasing weights.
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2.3. Problem and complexity
The problem we study in this paper is the OWA-optimal spanning tree problem, that can be formulated as follows:

OWA-optimal spanning tree problem (OWA-ST)
Input: a finite connected graph G = (V, E),

p integer valuations vk
j for every edge ek ∈ E ( j = 1, . . . , p and k = 1, . . . ,m),

a set of weights wi (i = 1, . . . , p) for the OWA criterion;
Goal: determine a spanning tree T ∗ ∈ arg minT∈T OWA( f (T )),

where T is the set of spanning trees in G and f (T ) = (
∑m

k=1 vk
1, . . . ,

∑m
k=1 vk

p).

Coming back to generic formulation P of a multiobjective compromise search problem, problem OWA-ST cor-
responds to the following specifications: a spanning tree T is characterized by a vector x = (x1, . . . , xm) ∈ X where
xk = 1 if edge ek belongs to T , and its cost is f (x) = ( f1(x), . . . , fp(x)) where f j(x) =

∑m
k=1 vk

j x
k. The aggregation

function is of course defined by ϕ(y) = OWA(y). We now introduce a small instance of problem OWA-ST that will be
used as a running example in the sequel of the paper.

Example 1. Consider a complete graph G with 4 vertices, and assume that the edges have been evaluated according
to 3 objectives (scenarios, experts...). The set of vertices is V = {1, 2, 3, 4} and the valuations of the edges are the
following: v[1,2] = (3, 2, 3), v[1,3] = (4, 3, 1), v[1,4] = (1, 2, 2), v[2,3] = (2, 4, 1), v[2,4] = (2, 6, 1), v[3,4] = (1, 5, 1),
where the valuation of edge e is denoted by ve. A minimum spanning tree is T1 = {[1, 4], [2, 3], [3, 4]} according
to the first dimension and the arithmetic mean, T2 = {[1, 2], [1, 3], [1, 4]} according to the second dimension, and
T3 = {[1, 3], [2, 3], [3, 4]} according to the third dimension. None of them is however completely satisfying: either it
is too much unbalanced ( f (T1) = (4, 11, 4) and f (T3) = (7, 12, 3)), or it is too much conservative ( f (T2) = (8, 7, 6)).
Spanning tree T4 = {[1, 2], [1, 4], [2, 3]} (with f (T4) = (6, 8, 6)) presents none of the drawbacks of the previous trees,
and is OWA-optimal when setting for instance w1 = 0.5, w2 = 0.3 and w3 = 0.2. The overall ranking according to
OWA on T1, . . . ,T4 is indeed: 1) T4 with OWA(6, 8, 6) = 7, 2) T2 with OWA(8, 7, 6) = 7.3, 3) T1 with OWA(4, 11, 4) =

7.5, 4) T3 with OWA(7, 12, 3) = 8.7.

As already indicated above, when w1 = 1 and all other weights wi’s are equal to zero, the OWA criterion reduces
to the max criterion. It has been proved NP-hard to compute an optimal solution with respect to the max criterion in a
multiobjective spanning tree problem [16, 52]. Consequently, problem OWA-ST is also NP-hard in the general case.
Note however that it is polynomially solvable for some subclasses of instances:

• if w1 = w2 = . . . = wp (arithmetic mean), an optimal solution can be obtained by valuing every edge ek by∑p
j=1 vk

j, and then applying a standard minimum spanning tree algorithm (e.g., Prim’s algorithm or Kruskal’s
algorithm);

• if wp = 1 and wi = 0 ∀i , p (min criterion), an optimal solution can be obtained by solving p standard minimum
spanning tree problems (one for each objective) and then returning the optimal one among them according to
OWA;

• if there exists a permutation π of objectives such that vk
π(1) ≥ . . . ≥ vk

π(p) for every edge ek, an optimal solution
can be obtained by valuing every edge ek by

∑p
i=1 wivk

π(i), and then applying a standard minimum spanning tree
algorithm.

Note that these types of polynomial instances are quite uncommon. Nevertheless, one can design a Fully Polynomial
Time Approximation Scheme (FPTAS) that works for any instance of OWA-ST. For this purpose, in the way Aissi et al.
[2] designed an FPTAS for the max criterion, one can enrich the FPTAS proposed by Papadimitriou and Yannakakis
[34] for approximating the OWA-optimal spanning tree. The FPTAS of Papadimitriou and Yannakakis indeed returns
a set Tε of spanning trees, the cardinality of which is polynomial in the size of the instance. For every spanning tree T
in the graph, there exists Tε ∈ Tε such that f j(Tε) ≤ (1 + ε) f j(T ) for j = 1, . . . , p. Note that [y j ≤ y′j ∀ j]⇒ OWA(y)
≤ OWA(y′) [11], and that OWA((1 + ε)y) = (1 + ε)OWA(y). Thus, a spanning tree T ∗ε which is OWA-optimal among
the trees of Tε satisfies OWA( f (T ∗ε )) ≤ (1+ε)OWA( f (T ∗)), where T ∗ is an OWA-optimal spanning tree in T . We have
therefore an FPTAS for problem OWA-ST (the algorithm is indeed polynomial since the search for T ∗ε is performed
in a set of polynomial cardinality). However, the efficiency of the FPTAS quickly decreases with the number of
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objectives since its complexity is exponential in this parameter. Note that another FPTAS [1, 18] has been proposed,
based on the matrix-tree theorem, but is specific to the biobjective case. To our knowledge, no other FPTAS can be
found in the literature for this problem. In this paper, we propose exact and operational procedures (the complexity
of which is exponential in the worst case) for problem OWA-ST, based on linearizations of the OWA function. The
validity of these linearizations depends on the subclass of weights used in the OWA criterion: decreasing or arbitrary.

3. MIP formulations of OWA-ST

We present below two MIP formulations of OWA-ST, one taking advantage of the decreasingness of the weights
in the OWA↓ function, the other one remaining valid whatever are the weights used. In the way of Yaman et al.
[51] for the robust spanning tree problem with interval data, we start from a compact mixed integer programming
(MIP) formulation of the minimum spanning tree problem proposed by Magnanti and Wolsey [22]. We recall this
formulation in the following section.

3.1. Non-linear formulation of OWA-ST
In the formulation proposed by Magnanti and Wolsey [22], the minimum spanning tree problem is considered as

a special version of a flow problem. Every edge [i, j] is replaced by two opposite arcs (i, j) and ( j, i). The set of such
arcs is denoted by A in the sequel. Some vertex of the graph — say 1 — is selected as a source, and n−1 units of flow
are incoming into it (where V = {1, . . . , n}). Furthermore, 1 unit of flow is outgoing of every vertex i , 1. To each
feasible flow in the directed graph, one can associate a connected partial graph by selecting edge ek = [i, j] as soon as
there is at least one unit of flow on (i, j) or ( j, i). By imposing that the number of selected edges is n − 1, one obtains
a spanning tree. Let ϕi j denote the flow on arc (i, j), and xk denote the boolean variable taking value 1 if ϕi j > 0 or
ϕ ji > 0 (for ek = [i, j]). The constraints defining the set Xst of feasible spanning trees are the following:

Xst =

{
x ∈ {0, 1}m :

∑
(i, j)∈A

ϕi j −
∑

( j,i)∈A

ϕ ji =

{
n − 1 if i = 1,
−1 ∀i ∈ V \ {1},

ϕi j ≤ (n − 1)xk ∀ek = [i, j],
ϕ ji ≤ (n − 1)xk ∀ek = [i, j],

m∑
k=1

xk = n − 1,

ϕi j ≥ 0 and ϕ ji ≥ 0 ∀[i, j] ∈ E
}
,

where x = (x1, . . . , xm) is the characterizing vector of a spanning tree, as defined in Section 2.3. In order to obtain
a mathematical programming formulation of OWA-ST, it remains to define the objective function. For this purpose,
one introduces variables y j =

∑m
k=1 vk

j x
k ( j ∈ {1, . . . , p}) corresponding to the value of spanning tree x on the jth

component. It yields the program:

(NLPowa)


min OWA(y)
s.t. y = f (x)
x ∈ Xst

Nevertheless, this formulation is not linear due to the non-linearity of the objective function.

3.2. Linearization with decreasing weights
The decreasingness of the weights implies the convexity of the OWA↓ function. It is well-known that convexity of

the objective function is a suitable property in minimization problems. In particular, this property makes it possible
to linearize the OWA↓ function without introducing new binary variables. Such a linearization, specifically dedicated
to decreasing weights, has been studied by Ogryczak, Sliwinski and Tamir [32, 33]. The key idea of this linearization
is to use the Lorenz vector of y, the ith component of which is defined, in a minimization setting, by Li(y) =

∑i
j=1 y( j).

This notion has been introduced in economics for inequality comparisons (in a maximization setting), where y is seen
as an income distribution [e.g., 26]. By noting that OWA↓(y) =

∑p
i=1(wi − wi+1)Li(y), where wp+1 = 0, it appears that

5



function OWA↓ is linear in the components of the Lorenz vector. Furthermore, component Li(y) is the solution of
linear program Py

i defined below. However, when y is a variable, program Py
i is not linear anymore. To overcome this

difficulty, it is worth considering the dual version Dy
i , where di

j (resp. ri) are the dual variables for the inequality (resp.
equality) constraints:

(Py
i )


max

∑p
j=1 α

i
jy j

s.t.
∑p

j=1 α
i
j = i,

0 ≤ αi
j ≤ 1 ∀ j ∈ {1, . . . , p}.

(Dy
i )


min iri +

∑p
j=1 di

j
s.t. ri + di

j ≥ y j ∀ j ∈ {1, . . . , p},
di

j ≥ 0 ∀ j ∈ {1, . . . , p}.

Replacing Li(y) by program Dy
i for i = 1, . . . , p, program NLPowa becomes linear:

(Powa↓ )



min
p∑

i=1

(wi − wi+1)(iri +

p∑
j=1

di
j)

s.t. ri + di
j ≥ y j ∀i, j ∈ {1, . . . , p},

y j =
∑m

k=1 vk
j x

k ∀i ∈ {1, . . . , p},
d j

i ≥ 0 ∀i, j ∈ {1, . . . , p} and ri unrestricted,
x ∈ Xst.

Note that this formulation is valid if wi − wi+1 ≥ 0 for i = 1, . . . , p, which is the case here since the wi’s are
assumed to be decreasing. With m edges in the graph, the program involves p2 +n+2m+1 constraints and p2 + p+3m
variables (variables yi’s can be omitted in the implementation): its size is therefore linear in the size of the input for a
fixed number of objectives.

3.3. Linearization with arbitrary weights
In the case of arbitrary weights, we linearize the OWA operator in the way of Boland et al. [6] for the discrete

ordered median problem (DOMP). We transpose the linearization of DOMP in our setting by using the following
variables:

si j =

{
1 if objective j is the ith highest one in spanning tree x,
0 otherwise

for i = {1, . . . , p} and j = {1, . . . , p}. We also introduce variables zi jk = si jxk, so zi jk = 1 if objective j is the ith highest
one and edge ek belongs to spanning tree x, and 0 otherwise. The linearization of OWA-ST can then be formulated as
follows:

(Plom)



min
p∑

i=1

wi(
p∑

j=1

m∑
k=1

vk
jzi jk)

s.t.
p∑

i=1

si j = 1 ∀ j ∈ {1, . . . , p},

p∑
j=1

si j = 1 ∀i ∈ {1, . . . , p},

p∑
j=1

m∑
k=1

vk
jzi jk ≥

p∑
j=1

m∑
k=1

vk
jz(i+1) jk ∀i ∈ {1, . . . , p − 1},

p∑
i=1

zi jk = xk ∀ j ∈ {1, . . . , p},∀k ∈ {1, . . . ,m},

m∑
k=1

zi jk = (n − 1)si j ∀i ∈ {1, . . . , p},∀ j ∈ {1, . . . , p},

si j ∈ {0, 1}, zi jk ≥ 0 ∀i ∈ {1, . . . , p},∀ j ∈ {1, . . . , p},∀k ∈ {1, . . . ,m},
x ∈ Xst.

(1a)

(1b)

(1c)

(1d)

(1e)
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Every instanciation of variables si j compatible with constraints 1a and 1b defines some permutation of the objec-
tives. For intance, assume that p = 2 and objective 2 is higher than objective 1 for spanning tree x, then the values
of variables si j’s should be: s11 = s22 = 0 and s12 = s21 = 1. Constraint 1c ensures that variables si j characterize the
ranking of the objectives in spanning tree x. Constraints 1d and 1e make it possible to linearize contraints zi jk = si jxk.
Note that if edges ek and ek′ belong to spanning tree x then zi jk = zi jk′ for all i and j. Consequently program Plom can
be directly improved by defining variables yi j =

∑m
k=1 vk

jzi jk. These variables yi j denote the value of spanning tree x on
objective j if objective j is the ith highest one, and are equal to 0 otherwise. The formulation with y variables instead
of z variables is thus as follows:

(Powa)



min
p∑

i=1

wi(
p∑

j=1

yi j)

s.t.
p∑

i=1

si j = 1 ∀ j ∈ {1, . . . , p},

p∑
j=1

si j = 1 ∀i ∈ {1, . . . , p},

p∑
j=1

yi j ≥

p∑
j=1

y(i+1) j ∀i ∈ {1, . . . , p − 1},

yi j ≤ Msi j ∀i ∈ {1, . . . , p},∀ j ∈ {1, . . . , p},
p∑

i=1

yi j =

m∑
k=1

vk
j x

k ∀ j ∈ {1, . . . , p},

si j ∈ {0, 1}, yi j ≥ 0 ∀i ∈ {1, . . . , p},∀ j ∈ {1, . . . , p},

x ∈ Xst.

(2a)

(2b)

(2c)

(2d)

(2e)

where constant M denotes a value greater than all possible values of the objective functions. Constraint 2d ensures
that, for a given objective j, one and only one variable yi j can be strictly positive, and constraint 2e ensures that the
value of this latter variable is precisely the value of spanning tree x on objective j. With n vertices and m edges in the
graph, program Powa involves p2 + m binary variables, p2 + 2m real variables, and p2 + 4p + n + 2m constraints.

In order to further reduce the number of variables and constraints involved in Powa↓ and Powa, we now provide
preprocessing methods.

4. Preprocessing the formulations

In this section, we first propose generalized optimality conditions that only hold for the OWA↓ subclass. We then
propose efficiently computable bounds that allow us to identify some edges as mandatory or forbidden by applying a
procedure called shaving (detailled in the following). These preprocessing procedures make it possible to significantly
reduce the density of the graph prior to the resolution.

As often done when presenting algorithms for constructing spanning trees [e.g., 45], we describe our preprocessing
method as an edge coloring process. Initially all edges are uncolored. We color one edge at a time either blue
(mandatory) or red (forbidden). At each step of the preprocessing method, we have therefore a partial coloring c(·)
of the edges of G. For a partial coloring c, we denote by T (c) the set of trees including all blue edges, some of the
uncolored ones (possibly none), and none of the red ones. The aim of the preprocessing method is to color as many
edges as possible, so as to get a maximal coloring c such that minT∈T (c) OWA( f (T )) = minT∈T OWA( f (T )).

4.1. Generalized optimality conditions for OWA↓

We now give conditions under which an edge can be colored blue or red, which are adaptations of the well-known
cut optimality condition and cycle optimality condition to our problem.
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Before introducing the optimality conditions, we recall some definitions from graph theory. A cut in a graph is a
partition of the vertices into two disjoint sets and a crossing edge (with respect to a cut) is one edge that connects a
vertex in one set to a vertex in the other one. When there is no ambiguity, the term cut will also be used to refer to the
set of crossing edges defined by the partition of the vertices. Thanks to these definitions, we can now formulate the
generalized optimality conditions (we recall that vk denotes the cost vector of edge ek):

Proposition 1 (optimality conditions). Let G be a connected graph with coloring c of the edges. The following
properties hold:
(i) Cut optimality condition. Let us consider a cut C in G with no blue edge. If there is some uncolored edge ek ∈ C
such that OWA↓(vk − vk′ ) ≤ 0 for all uncolored edges ek′ ∈ C, then ek belongs to an OWA↓-optimal tree in T (c).
(ii) Cycle optimality condition. Let us consider a cycle C in G containing no red edge. If there is some uncolored
edge ek ∈ C such that OWA↓(vk′ − vk) ≤ 0 for all uncolored edges ek′ ∈ C, then ek can be colored red without changing
value minT∈T (c) OWA↓( f (T )).

Proof. The proof relies on the following property of function OWA↓ with non-increasing weights: OWA↓(y − y′) ≥
OWA↓(y) −OWA↓(y′). To prove this property, one uses the convexity of function OWA↓, which follows from the fact
that OWA↓(y) = maxπ∈Π

∑
i wiyπ(i) where Π is the set of all possible permutations of (1, . . . , p). Combining convexity

of OWA↓ and equality OWA↓(λy) = λOWA↓(y), one deduces thus the required inequality: OWA↓(y−y′)+OWA↓(y′) =

2( 1
2 OWA↓(y − y′) + 1

2 OWA↓(y′)) ≥ 2OWA↓( 1
2 (y − y′) + 1

2 y′) = OWA↓(y).
Proof of (i). Suppose there exists a cut C and an uncolored crossing edge ek that satisfies the cut optimality

condition. Let T be an OWA↓-optimal spanning tree of T (c) that does not contain ek. Now consider the graph
formed by adding ek to T . This graph has a cycle that contains ek, and this cycle must contain at least one other
uncolored crossing edge — say ek′ — such that ek′ ∈ C, and therefore we have OWA↓(vk − vk′ ) ≤ 0. We can get a
new spanning tree T ′ ∈ T (c) by deleting ek′ from T and adding ek. We claim that OWA↓( f (T ′)) ≤ OWA↓( f (T )).
Cost f (T ′) is indeed equal to f (T ) − vk′ + vk. By the property indicated above, we have OWA↓( f (T ) − vk′ + vk) −
OWA↓( f (T )) ≤ OWA↓( f (T )− vk′ + vk − f (T )) = OWA↓(vk − vk′ ). Consequently, since OWA↓(vk − vk′ ) ≤ 0, we deduce
OWA↓( f (T ′)) = OWA↓( f (T ) − vk′ + vk) ≤ OWA↓( f (T )), and T ′ is therefore an OWA↓-optimal spanning tree in T (c)
(that does contain edge ek).

Proof of (ii). Suppose there exists a cycle C containing no red edge with an uncolored edge ek ∈ C such that
OWA↓(vk′ − vk) ≤ 0 for all uncolored edges ek′ ∈ C. Let T be an OWA↓-optimal spanning tree of T (c) that contains
ek. Now consider the graph formed by removing ek from T . This graph is compounded of two connected components.
The induced cut contains at least one other uncolored crossing edge — say ek′ — such that ek′ ∈ C, and therefore
OWA↓(vk′ − vk) ≤ 0. We can get a new spanning tree T ′ ∈ T (c) by deleting ek from T and adding ek′ . We claim that
OWA↓( f (T ′)) ≤ OWA↓( f (T )). Cost f (T ′) is indeed equal to f (T ) − vk + vk′ . By the property indicated above, we
have OWA↓( f (T ) − vk + vk′ ) − OWA↓( f (T )) ≤ OWA↓(vk′ − vk). Consequently, since OWA↓(vk′ − vk) ≤ 0, we deduce
OWA↓( f (T ′)) ≤ OWA↓( f (T )), and T ′ is therefore an OWA↓-optimal spanning tree in T (c) (that does not contain edge
ek).

Let us come back to the instance of Example 1 to illustrate how to color edges according to these conditions.

Example 2. In the graph of Example 1, by considering cut {[1, 4], [2, 4], [3, 4]}], edge [1, 4] can be colored blue
since OWA↓(v[1,4] − v[2,4]) = OWA↓(−1,−4, 1) = −0.6 (with w1 = 0.5, w2 = 0.3 and w3 = 0.2) and OWA↓(v[1,4] −

v[3,4]) = OWA↓(0,−3, 1) = −0.1, where the valuation of edge e is denoted by ve. Furthermore, by considering
cycle {[2, 4], [2, 3], [3, 4]}, edge [2, 4] can be colored red since OWA↓(v[2,3] − v[2,4]) = OWA↓(0,−2, 0) = −0.4 and
OWA↓(v[3,4] − v[2,4]) = OWA↓(−1,−1, 0) = −0.5.

Note that Pareto-dominance of edge ek′ over edge ek implies OWA↓(vk′ − vk) ≤ 0 since all components of vk′ − vk

are negative in such a case (see edge [2, 4] in the previous example). Our optimality conditions are thus an enrichment
of the multiobjective optimality conditions provided by Sourd and Spanjaard [43], which are sufficient conditions for
an edge to be mandatory or forbidden when generating the whole Pareto set. These conditions are indeed exclusively
based on Pareto dominance between edges. We take here advantage of the knowledge of the OWA↓ operator to
optimize so as to be able to color a higher number of edges.

The single objective versions of these conditions make it possible to design a generic greedy method [e.g., 45],
from which Kruskal’s and Prim’s algorithms can be derived. For problem OWA↓-ST, this method can be adapted so

8



Algorithm PreprocessingByGoc(G,c)
Input : A graph G with coloring c of edges
Output : A maximal coloring c
for each edge e of E do

if the cut optimality condition holds for e then
set c(e) = blue

else if the cycle optimality condition holds for e then
set c(e) = red

return c

Figure 1: Preprocessing by applying generalized optimality conditions (goc) in the case of decreasing weights.

as to preprocess the graph prior to the resolution of the MIP formulation by a solver. The corresponding algorithm is
indicated in Figure 1. Obviously, and contrarily to the single objective case, this preprocessing method does not yield
a spanning tree since binary relation OWA↓(vk − vk′ ) ≤ 0 does not induce a complete ordering of the edges in E. It
enables however an important reduction of the number of variables (see numerical experiments), and therefore of the
resolution time.

The complexity of the preprocessing method strongly depends on the complexity of detecting uncolored edges
satisfying an optimality condition. In practice, to determine whether an uncolored edge ek = [i, j] satisfies the cut
optimality condition, one performs a depth first search from i in the partial graph Gcut

k = (V, Ecut
k ) where Ecut

k = {ek′ ∈

E |OWA↓(vk − vk′ ) > 0} ∪ {ek′ ∈ E | c(ek′ ) = blue}. If j does not belong to the set of visited vertices, then the partition
between visited and non-visited vertices constitutes a cut for which ek satisfies the cut optimality condition. Similarly,
to determine whether an uncolored edge ek = [i, j] satisfies the cycle optimality condition, one performs a depth first
search from i in the partial graph Gcyc

k = (V, Ecyc
k ) where Ecyc

k = {ek′ ∈ E |OWA↓(vk′ − vk) ≤ 0} \ {ek}∪ {ek′ ∈ E | c(ek′ ) =

blue}. If j is visited, then the chain from i to j in the search tree, completed with [i, j], constitutes a cycle for which
ek satisfies the cycle optimality condition. Since the number of edges in the graph is m and the complexity of a depth
first search is within O(m) in a connected graph, the complexity of the overall preprocessing is O(m2).

4.2. Shaving procedures

The term “shaving” was introduced by Martin and Shmoys [25] for the job-shop scheduling problem. It aims
at reducing the size of the instance before running the main algorithm. The shaving procedure can be specified as
follows for OWA-ST. Assuming at least a feasible solution is known, for each edge e, we build a subproblem in which
e is made mandatory. If the computation of a lower bound proves that the subproblem cannot improve the current best
known solution, then it means that e can be made definitively forbidden (colored red). Conversely when e has not
been colored red by the previous procedure, we test similarly whether e can be made definitively mandatory (colored
blue). Note that, when computing the lower bounds, one checks whether a newly detected spanning tree improves the
current best known solution (according to OWA). Of course, the shaving procedure is all the more efficient as a good
feasible solution is initially known. For this purpose, we generate k feasible solutions by running a k-best ranking
algorithm (i.e., returning the k best solutions) for the minimum spanning tree problem on the instance valued by the
arithmetic mean of the vectors. The choice of k depends on the size of the instance.

Example 3. Let us come back to the graph of Example 1. Assuming that the k-best ranking algorithm is run for k = 2,
the current best known solution is then spanning tree T4 = {[1, 2], [1, 4], [2, 3]}. Let us now simulate the progress of
the shaving procedure. Making edge [1, 2] forbidden, assume that the optimal OWA-value is lower bounded by 7.4.
Since it is strictly greater than the OWA-value of T4 (OWA( f (T4)) = 7), edge [1, 2] is colored blue. Then, making edge
[1, 3] mandatory, the optimal OWA-value is lower bounded by 7.3. Since it is strictly greater than the OWA-value of
T4 (OWA( f (T4)) = 7), edge [1, 3] is colored red. The procedure continues until all the edges have been examined.

For such procedure, the efficient computation of bounds on the optimal value of problem OWA-ST is therefore
worth investigating. To obtain such bounds, we present here two alternative relaxation methods for a multiobjective
compromise search problem P: minϕ(y) s.t. y = f (x), x ∈ X, as defined in Section 2.1.
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• Relaxation of the image set: it consists in defining a superset Y ′ ⊇ Y of the image set (we recall that Y = f (X))
and solving problem PY ′ defined by:

(PY ′ )
{

min ϕ(y)
s.t. y ∈ Y ′

• Relaxation of the objective function: it consists in defining a function ϕ′ : Rp → R such that for all images y in
Y , ϕ′(y) ≤ ϕ(y) and solving problem Pϕ′ defined by:

(Pϕ′ )


min ϕ′(y)
s.t. y = f (x)

x ∈ X

The main point is then to define Y ′ (resp. ϕ′) such that the optimal value of problem PY ′ (resp. Pϕ′ ) can be
efficiently computed and provide a tight bound. In this concern, it seems opportune to consider some continuous
relaxations of Y (resp. linear aggregation function ϕ′). In the following, we show more precisely how these relaxations
can be performed when the aggregation function is an ordered weighted average. Note that, in both relaxations
presented in the following, the computational efficiency of the procedure (to solve PY ′ or Pϕ′ ) only depends on the
ability to quickly solve the single objective version of the problem. Consequently, these procedures can be applied to
a broad spectrum of problems for which the single objective version can be efficiently solved.

4.2.1. Defining Y ′ and solving problem PY ′

We now present a first bound on the value of an optimal solution to P, obtained by relaxation of the image set. For
this purpose, let us define relaxed space Y ′ in program PY ′ as follows:

Y ′ = {y ∈ Rp : yi ≥ bi ∀i = 0, . . . , p}

where bi = min{ fi(x) : x ∈ X} denotes the value of an optimal solution according to fi, and f0 =
∑p

i=1 fi. The values
bi’s (i = 1, . . . , p) are obtained by n runs of a standard algorithm for the single objective version of the problem
(provided it can be efficiently solved) for valuations fi’s successively (i = 1, . . . , p). Concerning the computation of
b0, for simplicity purpose, we only detail the case of multiobjective spanning tree problems. Value b0 is obtained
by applying a standard minimal spanning tree algorithm on the graph where each edge ek is valued by vk

0 =
∑p

i=1 vk
i :

for any spanning tree x, we have indeed f0(x) =
∑p

i=1 fi(x) =
∑p

i=1(
∑m

k=1 vk
i xk) =

∑m
k=1(
∑p

i=1 vk
i )xk =

∑m
k=1 vk

0xk. Note
that this technique to compute b0 extends to many multiobjective versions of classical combinatorial optimization
problems (actually, as soon as the value of a feasible solution is additively decomposable over its elements).

As indicated above, in order for the relaxation to be interesting in practice, one needs to provide an efficient
procedure to compute the optimal value of program PY ′ . When the objective function is OWA, one clearly needs to
take into account the way the components of solution y are ordered for solving PY ′ . The OWA function is actually
piecewise linear. More precisely, it is linear within each subspace of Rp where all vectors are comonotonic, i.e. for
any pair y, y′ of vectors, there exists a permutation π of (1, . . . , p) such that yπ(1) ≥ . . . ≥ yπ(p) and y′π(1) ≥ . . . ≥ y′π(p).
Problem PY ′ can thus be divided into several subproblems, each one focusing on a particular comonotonic subspace
of Rp. The solution of PY ′ reduces to solving each linear program PY ′,π defined by a particular permutation π of
(1, . . . , p):

(PY ′,π)



min
p∑

i=1

wiyπ(i)

s.t. yπ(i) ≥ yπ(i+1) ∀i ∈ {1, . . . , p − 1},
yi ≥ bi ∀i ∈ {1, . . . , p},

p∑
i=1

yi ≥ b0,

y ∈ Rp.

(3a)
(3b)

(3c)

The value of the optimal solution y∗Y ′ to PY ′ is then minπ∈Π OWA(y∗Y ′,π) where y∗Y ′,π denotes the optimal solution to
linear program PY ′,π and Π the set of all possible permutations. Note that for p components, there are |Π|=p! linear
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programs to solve. However, in practice, it is not necessary to solve the p! linear programs. There exists indeed an
easily computable permutation π∗ for which OWA(y∗Y ′ ) = OWA(y∗Y ′,π∗ ):

Proposition 2 (Galand and Spanjaard, 2007 [14]). Let π∗ denote the permutation such that bπ∗(1) ≥ bπ∗(2) ≥ . . . ≥
bπ∗(p). For any feasible solution y to PY ′,π, there exists a feasible solution y′ to PY ′,π∗ such that OWA(y′) = OWA(y).

Proof. The idea is to determine a feasible solution y′ to PY ′,π∗ such that y′(i)=y(i) ∀i (where y(1) ≥ . . . ≥ y(p)). It im-
plies indeed OWA(y) = OWA(y′) and the conclusion is then straightforward. In this respect, we construct a sequence
(y j) j=1,...,k of solutions and a sequence (π j) j=1,...,k of permutations such that y j is feasible for PY ′,π j (for j=1, . . . , k), with
y1=y, π1=π, πk=π∗ and y1

(i)=y2
(i)= . . . =yk

(i) ∀i. Assume there exist i0, i1 ∈ {1, . . . , p} such that i0 < i1 and bπ1(i0) < bπ1(i1).
Let permutation π2 be defined by π2(i0)=π1(i1), π2(i1)=π1(i0), and π2(i)=π1(i) ∀i , i0, i1. Let solution y2 be defined by
y2
π2(i)=y1

π1(i) for i=1, . . . , p. We now show that y2 is a feasible solution to PY ′,π2 . Note first that y1
π1(i0) ≥ bπ1(i0), y1

π1(i1) ≥

bπ1(i1), y1
π1(i0) ≥ y1

π1(i1) and bπ1(i1) > bπ1(i0). Hence, constraints 3b are satisfied since:
• y2

π2(i0)=y1
π1(i0) ≥ y1

π1(i1) ≥ bπ1(i1)=bπ2(i0),
• y2

π2(i1)=y1
π1(i1) ≥ bπ1(i1) > bπ1(i0)=bπ2(i1),

• y2
π2(i)=y1

π1(i) ≥ bπ1(i)= bπ2(i) for i , i0, i1.
Constraints 3a are also satisfied since [y1

π1(i) ≥ y1
π1(i+1) ∀i]⇒ [y2

π2(i) ≥ y2
π2(i+1) ∀i]. Indeed, we have y1

π1(i)=y2
π2(i) ∀i. These

equalities imply also that constraint 3c is satisfied and that y2
(i)= y(i) ∀i. Solution y2 is therefore feasible for PY ′,π2 with

y2
(i)=y(i) ∀i. Since any permutation is the product of elementary permutations, one always can construct in this way a

sequence of permutations that leads to π∗ (and the corresponding feasible solutions). By setting y′=yk, one obtains the
desired feasible solution to PY ′,π∗ . �

An immediate consequence of this result is that OWA(y∗Y ′ ) = OWA(y∗Y ′,π∗ ). Thus, the computation of OWA(y∗Y ′ )
reduces to solving linear program PY ′,π∗ . For the sake of illustration, we present below an example.

Example 4. Let us come back to Example 1 where bounds bi’s are defined from spanning trees T1, T2 and T3 by
b1 = 4, b2 = 7, b3 = 3. The optimal spanning tree with respect to f0 is spanning tree T = {[1, 4], [2, 3], [3, 4]} with
f0(T ) = 19. The value of b0 is thus 19. It yields the following program PY ′ (the values of w1, w2 and w3 do not matter):

min OWA(y) = w1y(1) + w2y(2) + w3y(3)
s.t. y1 ≥ 4 y2 ≥ 7 y3 ≥ 3,

y1 + y2 + y3 ≥ 19,
y1 ∈ R, y2 ∈ R, y3 ∈ R.

As a consequence of Proposition 2, solving PY ′ amounts to solving linear program PY ′,π∗ defined by:
min w1y2 + w2y1 + w3y3
s.t. y2 ≥ y1 ≥ y3,

y1 ≥ 4 y2 ≥ 7 y3 ≥ 3,
y1 + y2 + y3 ≥ 19,
y1 ∈ R, y2 ∈ R, y3 ∈ R.

We have indeed π∗(1) = 2, π∗(2) = 1 and π∗(3) = 3 since b2 ≥ b1 ≥ b3. If w1 = 0.5, w2 = 0.3 and w3 = 0.2, the value
of the bound provided by programm PY ′,π∗ is then 6.5 (we recall that the value of the OWA-optimal spanning tree is 7).

4.3. Defining ϕ′ and solving problem Pϕ′

The second bound for P is obtained by relaxation of the objective function. The idea is to use a linear function ϕ′

defined by ϕ′(y) =
∑p

i=1 λiyi where the vector λ = (λ1, . . . , λp) of coefficients satisfy the following constraints:

∑
i∈I

λi ≤

|I|∑
i=1

wi for all subset I ⊆ {1, . . . , p} of objectives (4)

When using such weight vectors, we have indeed ϕ′(y) ≤ ϕ(y) for all y in Y , as established by the following:
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Proposition 3. Let Λ denote the set of all vectors λ ∈ Rp satisfying Constraint 4. If λ ∈ Λ, then for all y ∈ Rp,∑p
i=1 λiyi ≤ OWA(y).

Proof. Let π denote a permutation such that yπ(1) ≥ . . . ≥ yπ(p). Note first that OWA(y) =
∑p

i=1 wiyπ(i) =∑p
i=1(
∑i

j=1 w j)(yπ(i) − yπ(i+1)) where yπ(p+1) = 0. By Constraint 4 with subset of objectives I = {π(1), . . . , π(i)}, we have∑i
j=1 w j ≥

∑i
j=1 λπ( j) ∀i. Thus

∑p
i=1(
∑i

j=1 w j)(yπ(i)−yπ(i+1)) ≥
∑p

i=1(
∑i

j=1 λπ( j))(yπ(i)−yπ(i+1)). Since
∑p

i=1(
∑i

j=1 λπ( j))(yπ(i)−

yπ(i+1)) =
∑p

i=1 λπ(i)yπ(i) and
∑p

i=1 λπ(i)yπ(i) =
∑p

i=1 λiyi, we have OWA(y) ≥
∑p

i=1 λiyi. �

This result can be seen as a specific instanciation of a more general result of Schmeidler [40, 41] on Choquet
integrals in decision under uncertainty (OWA being a particular subclass of Choquet integrals). Schmeidler’s result
has been used to provide bounds in Choquet-based optimization under uncertainty [12], as well as under multiple
objectives [13]. Note that, in the case of decreasing weights in OWA, a useful by-product of Schmeidler’s result is
the existence of a normalized set of weights (i.e., summing up to 1) such that Proposition 3 holds: for instance, when
setting λi = 1/p, we have

∑
i(1/p)yi ≤ OWA(y) by Chebyshev’s sum inequality. Nevertheless, when the weights are

not decreasing, the existence of normalized weights satisfying Constraint 4 is not guaranteed.
Solving problem Pϕ′ can be efficiently done by valuing every edge ek by

∑p
i=1 λivk

i and then performing a standard
minimum spanning tree algorithm. Besides, in order to obtain the best lower bound as possible, the optimal set
of weights λ ∈ Λ (i.e., providing the best lower bound according to Proposition 3) can be obtained by solving the
following program:

max
λ∈Rp

z(λ) = min
y∈Y

p∑
i=1

λiyi,

s.t.
∑
i∈I

λi ≤

|I|∑
i=1

wi ∀I ⊆ {1, . . . , p},

λi ≥ 0 ∀i = 1, . . . , p.

Given that z is a concave piecewise linear function of λ for a fixed y (since it is the lower envelope of a set of linear
functions {

∑p
i=1 yiλi : y ∈ Y}), we solve this program by using the SolvOpt library [19], which is an implementation

of Shor’s r-algorithm [42]. This algorithm is indeed especially convenient for non-differentiable optimization, and
the implemented SolvOpt library enables to perform constrained optimization. This approach is closed to the lower
bounding procedure proposed by Punnen and Aneja [37] for min-max combinatorial optimization. In broad outline,
it can be viewed as a sequence of minimum spanning tree computations according to a varying weight vector λ, until
convergence towards a weight vector maximizing miny∈Y

∑p
i=1 λiyi.

Example 5. Let us come back again to the instance of Example 1. Running Shor’s r-algorithm yields λ = (0.28, 0.5, 0.22)
and y = (6, 8, 6) (the image of spanning tree {[1, 2], [1, 4], [2, 3]}, which is actually OWA-optimal). The bound is there-
fore 0.28×6+0.5×8+0.22×6 = 7 (which is the value of an OWA-optimal tree). This is better than the bound obtained
by the previous relaxation (value 6.5). The computational burden is however more important, since it requires to solve
much more single objective problems.

5. Experimental results

Before we study more carefully the behavior of our algorithms, we give some insights into previous results on
related topics. The most widely studied related topic is the generation of the Pareto set in the bi-objective spanning
tree problem [4, 16, 38, 43, 44]. To our knowledge, the most efficient algorithm for this problem enables to solve
randomly drawn instances on complete graphs containing up to 400 vertices [43] (note that these results significantly
improved the size of the instances that could be handled, since it grew from 40 to 400 vertices). However these results
do not extend to more than two objectives. More generally, even when looking for a single compromise solution
within the Pareto set, it seems that there is very few available numerical experiments in the literature for more than
two objectives. Although several works deal with the min-max spanning tree problem (i.e. determining a spanning tree
minimizing the max criterion) [2, 3, 16, 47, 52], the content of these works is indeed mainly theoretical. Actually, the
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only numerical results we know for more than two objectives are devoted to the determination of a Choquet-optimal
spanning tree [13]. The size of the tackled instances goes from 30 to 70 vertices according to the number of objectives
and the parameterization of the Choquet integral.

5.1. Experimental details

All the algorithms have been implemented in C++ and were run on either an Intel Xeon 2.5 GHz personal com-
puter with a memory of 4GB for 3 and 5 objectives, or an Intel Core 3.0 GHz personal computer with a memory of
8GB for 8 objectives. The test instances are defined as follows. All considered graphs are complete. On each edge,
the components of cost vectors are randomly drawn according to an uniform distribution on [1, 100]. For each kind of
instances (depending on the number of nodes and on the number of objectives), 30 instances were randomly drawn to
obtain average results.

The global procedure to solve problem Powa consists of two phases:

1. Preprocessing phase: making the most possible edges blue (mandatory) or red (forbidden) by applying first the
generalized optimality conditions, and then a shaving procedure taking into account the current coloration.

2. Resolution phase: determining the OWA-optimal spanning tree by running solver IBM ILOG CPLEX 12 on the
reduced MIP.

For initializing the shaving procedure in the coloration phase, the k-best ranking algorithm proposed by Katoh et
al. [20] is launched for k varying from 500 to 5000 depending on the size of the instance. In all cases, the order of
magnitude of its running time is about a few milliseconds. Concerning the shaving itself, the procedure by relaxation
of the objective function is denoted by shϕ′ , while the one by relaxation of the image set is denoted by shY ′ . Note that
every edge is examined only once in the shaving procedure, since preliminary numerical tests have shown that there
is no significant gain in repeating the process to take into account new colored edges.

This section is compounded of two subsections: the first one is dedicated to the case of decreasing weights, and
the second one to the case of arbitrary weights. Whatever the weights, one compares three resolution procedures:

• solution by CPLEX without any preprocessing of the initial instance, denoted by P (using formulation Powa or
Powa↓ depending on the weights);

• solution by CPLEX on the instance preprocessed by using generalized optimality conditions (provided the
weights are decreasing) and shaving shϕ′ , denoted by Pϕ′ ;

• solution by CPLEX on the instance preprocessed by using generalized optimality conditions (provided the
weights are decreasing) and shaving shY ′ , denoted by PY ′ .

5.2. Tests with decreasing weights

In this section, one summarizes the results one has obtained for two classes of OWA↓, named hereafter OWA↓

with exponential weights and k-centra. Criterion OWA↓ with exponential weights is defined by setting the weights as
follows: wi = ( i

p )β − ( i−1
p )β where β ≥ 1. For β = 1, the subsequent OWA↓ function reduces to the arithmetic mean,

while it converges towards max when β increases. The k-centra criterion is defined by setting the weights as follows:
w1 = . . . = wk = 1

k and wk+1 = . . . = wp = 0 for k ∈ {1, . . . , p}. For k = p, here again, the subsequent OWA↓ function
reduces to the arithmetic mean, while it converges towards max when k decreases.

Tables 1, 2 and 3 summarize the results obtained for OWA↓ with exponential weights for β = 1.5, 2 and 3. The
algorithms have been launched on complete graphs with 3, 5 or 8 objectives, for various numbers of vertices for which
the average resolution time is lower than 15 minutes. Symbol “-” indicates that the average execution times is beyond
15 minutes. The upper parts of the tables summarize the informations about the preprocessing method (line goc for
the generalized optimality conditions and line shϕ′ or shY ′ for the shaving procedures). For each procedure and each
size of instance, the average execution time is indicated. Furthermore, below line goc (resp. shϕ′ or shY ′ ), the average
number of edges made blue (#b) or red (#r) after applying the generalized optimality conditions (resp. after applying
the generalized optimality conditions and shaving) is indicated (couple (#b − #r)). In the lower part of the tables are
indicated the average total resolution times. To evaluate the variability of the resolution time, the minimal running
time (min) as well as the maximal one (max) are also indicated (couple min−max under the average execution time).
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n 20 30 40 60 80 100
goc 0.01 0.02 0.05 0.21 0.55 1.18

(7.7 - 151.3) (11.3 - 370.2) (15.3 - 695) (23 - 1637.23) (30.2 - 2982.23) (38.57 - 4730.53)
shϕ′ 0.27 1.63 5.55 40.13 158.54 461.84

(14.97 - 165.03) (21.43 - 396.17) (30.93 - 730.47) (45.43 - 1692.7) (60.2 - 3058.83) (74.23 - 4824.07)
shY′ 0 0.01 0.02 0.05 0.10 -

(10.57 - 158.67) (14.13 - 382.63) (21.4 - 712.97) (29.57 - 1661.2) (41.37 - 3016.3)
β = 1.5 P 0.32 1.38 20.60 78.06 725.88 -

0.03 - 1.18 0.14 - 12.36 0.24 - 195.06 4.52 - 438.38 14.68 - 4413.27
Pϕ′ 0.28 1.68 5.73 40.69 163.40 469.45

0.15 - 0.48 1.09 - 2.24 4.73 - 9.72 24.21 - 62.01 122.49 - 230.01 364.25 - 606.18
PY′ 0.07 0.19 3.22 6.19 44.42 -

0.01 - 0.73 0.04 - 0.80 0.11 - 48.58 0.28 - 71.84 0.71- 496.61

goc 0.01 0.02 0.05 0.20 0.56 -
(3.64 - 133.68) (5.52 - 341.42) (6.78 - 642.24) (9.46 - 1554.83) (13.4 - 2868.43)

shϕ′ 0.48 2.72 10.38 72.43 304.18 -
(12.89 - 161.3) (20.02 - 392.12) (26.86 - 723.48) (40.33 - 1684.81) (56 - 3051.07)

shY′ 0.01 0.02 0.04 0.10 - -
(6.95 - 148.47) (11.08 - 371.24) (14.38 - 685.26) (22.68 - 1620.56)

β = 2 P 0.47 3.64 20.24 156.23 - -
0.04 - 4.17 0.08 - 111.26 0.31 - 166.89 6.51 - 1613.53

Pϕ′ 0.53 3.06 11.17 75.86 331.24 -
0.36 - 1.57 2.19 - 14.12 8.30 - 27.73 64.85 - 125.14 260.66 - 831.34

PY′ 0.17 1.62 5.98 23.45 - -
0.03 - 2.27 0.09 - 50.48 0.24 - 64.86 0.20 - 243.15

goc 0 0.02 0.05 0.21 0.59 -
(1.1 - 108.72) (1.66 - 297.74) (1.84 - 573.52) (2.5 - 1420.3) (3.5 - 2666.37)

shϕ′ 0.76 4.64 19.55 146.04 619.47 -
(10.84 - 157.18) (18.34 - 388.24) (24.42 - 717.52) (38.07 - 1674.87) (52.27 - 3027.57)

shY′ 0.01 0.03 0.06 - - -
(5.92 - 142.02) (10.96 - 364.8) (12.82 - 670.92)

β = 3 P 1.18 7.29 18.74 - - -
0.03 - 32.61 0.10 - 143.58 0.28 - 159.61

Pϕ′ 0.81 4.92 21.45 160.04 792.7 -
0.51 - 1.62 3.69 - 8.19 14.58 - 41.36 108.69 - 336.43 159.85 - 4310.91

PY′ 0.39 2.14 6.00 - - -
0.03 - 10.14 0.10 - 33.93 0.23 - 54.93

Table 1: Synthesis of the numerical results for 3 objectives and exponential weights. Execution times are indicated in seconds.
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n 20 30 40 50 60
goc 0.01 0.02 0.06 0.13 0.24

(3.23 - 132.27) (5.3 - 335.6) (6.33 - 632.13) (7.47 - 1027.9) (8.73 - 1530.2)
shϕ′ 0.83 4.72 18.75 56.18 131.17

(12.43 - 161.4) (17.63 - 389.2) (21.03 - 712.13) (26.47 - 1139.67) (31.33 - 1665.7)
shY′ 0.01 0.03 0.07 0.12 -

(3.67 - 134.3) (6.57 - 345.2) (7.37 - 647.7) (8.37 - 1037.2)
β = 1.5 P 0.83 2.86 18.10 127.41 -

0.06 - 4.92 0.29 - 13.76 1.17 - 116.95 2.93 - 610.01
Pϕ′ 0.91 5.20 22.77 68.87 154.16

0.62 - 2.08 3.71 - 9.66 14.63 - 58.79 50.18 - 204.46 110.53 - 232.27
PY′ 0.48 1.86 11.88 58.55 -

0.04 - 2.26 0.09 - 10.73 0.54 - 79.06 2.33 - 328.19

goc 0.01 0.02 0.06 0.14 0.26
(1.2 - 96.47) (1.13 - 260.33) (1.6 - 517.53) (2.1 - 862.37) (2.23 - 1306.43)

shϕ′ 1.38 8.61 34.77 97.05 248.61
(7.33 - 151.27) (10.63 - 369.8) (13.87 - 684.37) (17.63 - 1115.67) (20.27 - 1623.27)

shY′ 0.02 0.06 0.13 0.23 -
(2.03 - 107.67) (1.86 - 283.53) (2.6 - 543.57) (3.23 - 896.3)

β = 2 P 1.21 20.76 203.71 906.97 -
0.17 - 5.14 0.77 - 163.95 2.78 - 4038.47 7.10 - 12796

Pϕ′ 1.86 13.35 150.04 398.42 474.06
1.10 - 3.27 7.49 - 67.12 29.00 - 2640.69 82.18 - 7290.92 219.79 - 2666.74

PY′ 1.01 11.29 231.39 884.61 -
0.17 - 4.72 0.12 - 106.11 1.20 - 5007.4 4.39 - 17244.5

goc 0.01 0.02 0.06 0.14 0.28
(0.13 - 59.87) (0.07 - 177.7) (0.1 - 358.3) (0.07 - 630.97) (0.17 - 988.27)

shϕ′ 1.91 12.40 52.33 162.58 429.13
(6.47 - 142.13) (7.23 - 349.03) (8.57 - 652.4) (10.2 - 1067.93) (15.5 - 1578.1)

shY′ 0.03 0.09 0.20 - -
(0.9 - 88.4) (1.03 - 211) (0.73 - 426.47)

β = 3 P 2.68 79.78 225.84 - -
0.08 - 26.07 1.79 - 1693.07 4.46 - 2931.52

Pϕ′ 2.80 46.66 176.22 592.35 1552.49
1.60 - 6.69 10.93 - 623.80 48.83 - 1897.01 144.43 - 6532.91 357.75 - 26292.2

PY′ 2.32 108.57 205.24 - -
0.07 - 25.62 1.35 - 2485.93 4.77 - 2281.07

Table 2: Synthesis of the numerical results for 5 objectives and exponential weights. Execution times are indicated in seconds.
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n 20 30 40 50
goc 0 0.01 0.02 0.05

(1.73 - 107.23) (2.03 - 282.33) (2.47 - 555.67) (2.37 - 913.3)
shϕ′ 0.86 2.50 7.30 24.90

(12.23 - 157.63) (13.2 - 375.4) (15.27 - 692.7) (17.87 - 1104.93)
shY′ 0 0.02 0.04 0.09

(1.77 - 107.9) (2.03 - 282.33) (2.53 - 560.3) (2.37 - 913.3)
β = 1.5 P 4.14 13.26 217.66 1459.31

0.27 - 84.59 0.73 - 123.83 0.87 - 4512.49 13.18 - 28451.6
Pϕ′ 1.41 5.60 33.95 459.65

0.64 - 8.9 2.08 - 31.4 6.26 - 189.59 22.48 - 8809.44
PY′ 2.01 11.19 109.46 986.29

0.07 - 35.94 0.67 - 103.11 0.92 - 1517 11.09 - 15509.1

goc 0 0.01 0.02 -
(0.17 - 58.3) (0.13 - 172.53) (0.27 - 353.4)

shϕ′ 1.10 4.27 14.05 -
(4.33 - 136.5) (4.1 - 330.77) (5.6 - 621.97)

shY′ 0.01 0.03 0.07 -
(0.17 - 60.9) (0.27 - 178.1) (0.4 - 358.4)

β = 2 P 3.72 63.11 1839.15 -
0.87 - 10.66 4.48 - 529.61 6.45 - 40479.9

Pϕ′ 2.90 37.36 908.85 -
1.16 - 6.73 6.15 - 302.54 14.81 - 20912.8

PY′ 3.28 66.68 1270.19 -
0.63 - 11.12 5.27 - 621.6 7.27 - 26536.1

goc 0 0.01 - -
(0.03 - 22.9) (0 - 71.8)

shϕ′ 1.47 6.03 - -
(1.27 - 108.43) (1.37 - 273.93)

shY′ 0.01 0.05 - -
(0.03 - 26.9) (0 - 81.9)

β = 3 P 19.70 372.15 - -
1.93 - 159.87 10.22 - 1367.46

Pϕ′ 11.78 233.49 - -
1.72 - 77.35 11.21 - 978.84

PY′ 17.09 419.93 - -
2.6 - 151.42 10.33 - 1941.46

Table 3: Synthesis of the numerical results for 8 objectives and exponential weights. Execution times are indicated in seconds.
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Tables 1, 2 and 3 show that the coloration phase has a significant impact on the resolution time of the MIP
formulation. First and foremost, note that the number of blue edges has a more important impact on the size of the
reduced instance than the number of red ones. The former number is indeed upper bounded by n − 1 while the latter
is upper bounded by (n − 2)(n − 1)/2. One observes that applying the generalized optimality conditions makes it
possible to color a lot of edges in a negligible amount of time. Among the three coloration primitives (goc, shϕ′ and
shY ′ ), primitives goc and shY ′ are really interesting concerning the ratio number of colored edges over computation
time spent. Nevertheless, primitive shϕ′ becomes very useful when the size of the instance grows: the additionnal time
spent during the coloration phase becomes indeed largely offset by the time saved during the resolution phase itself,
since this primitive outperforms the two other ones in terms of detected blue edges. For instance, in Table 1, for β = 3
and n = 80, applying primitives goc and shϕ′ turns blue 52 edges instead of 3 for primitive goc alone. Overall, the
preprocessing procedures enable to save a large amount of time during the resolution phase. Primitive shY ′ should be
preferred for medium-sized instances thanks to its low computationnal cost, while primitive shϕ′ should be preferred
for larger instances since it colors blue much more edges. As could be expected, the resolution time considerably
increases with the number p of objectives and the number n of vertices. Besides, the resolution time exponentially
grows with parameter β: for β = 1.5, the behavior of the OWA↓ criterion is close to the arithmetic mean, and therefore
the resolution time is much lower than for β = 2 or 3.

Tables 4, 5 and 6 show the results obtained when using the k-centra criterion for various values of k (according
to the number p of objectives). Clearly, the closer k is to p (resp. 1), the more the k-centra criterion behaves like the
arithmetic mean (resp. the max criterion). The analysis of the numerical results yields the same observations as for
the exponential weights: the preprocessing procedures enables to save a large amount of time, and the resolution time
exponentially grows with the value of p − k.

n 40 50 60 70 80 90
goc 0.05 0.08 0.22 0.39 0.62 -

(0.08 - 469.22) (0.13 - 793) (0.03 - 1203.17) (0 - 1719.83) (0.03 - 2320.97)
shϕ′ 29.62 91.86 245.41 510.30 959.67 -

(21.04 - 709.54) (29.92 - 1138.29) (35.47 - 1661.8) (41.13 - 2297.07) (49.6 - 3024.9)
shY′ 0.09 0.14 0.26 - - -

(9.72 - 638.26) (17.13 - 1056.62) (13.7 - 1440.17)
k = 1 P 66.09 66.09 - - - -

1.26 - 1126.95 1.26 - 1126.95
Pϕ′ 34.63 34.63 281.28 575.19 1064.6 -

25.88 - 85.18 25.88 - 85.18 190.59 - 843.22 389.11 - 1403.64 737.67 - 2175.44
PY′ 20.68 20.68 295.37 - - -

0.28 - 286.27 0.28 - 286.27 0.52 - 2831.34

goc 0.05 0.08 0.20 0.34 0.55 0.78
(2.72 - 626.12) (3.47 - 1019.33) (3.93 - 1514.67) (3.77 - 2101.67) (4.23 - 2792.8) (5.1 - 3580.6)

shϕ′ 14.81 45.25 115.28 244.80 467.99 833.78
(26.52 - 722.42) (34 - 1153.4) (40.3 - 1686.17) (48.5 - 2318.23) (58.67 - 3049.4) (63.46 - 3876.97)

shY′ 0.04 0.07 0.12 0.18 0.24 -
(15 - 693.24) (18.67 - 1107.43) (15.6 - 1598.17) (18.47 - 2211.57) (33.07 - 2964.67)

k = 2 P 14.43 18.96 - - - -
0.39 - 122.35 1.75 - 116.80

Pϕ′ 16.48 45.85 119.18 257.66 488.58 916.08
12.1 - 51.6 40.48 - 55.88 102.59 - 197.42 194.91 - 533.60 365.83 - 938.68 678.75 - 2860.15

PY′ 6.54 5.83 106.47 234.99 504.91 -
0.23 - 70.5 0.16 - 63.01 0.34 - 1422.78 0.53 - 1983.71 0.78 - 11416

Table 4: Synthesis of the numerical results for 3 objectives and k-centra criterion. Execution times are indicated in seconds.
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n 20 30 40 50 60
goc 0.01 0.02 0.05 - -

(0 - 21.53) (0 - 72.43) (0 - 167.5)
shϕ′ 2.63 17.43 73.27 - -

(2.3 - 117.83) (4.03 - 316.17) (5.03 - 601.9)
shY′ 0.04 0.12 - - -

(0.33 - 51.67) (0.6 - 150.1)
k = 1 P 11.45 90.79 - - -

0.69 - 111.26 0.92 - 339.21
Pϕ′ 10.56 65.79 627.62 - -

2.33 - 92.63 14.28 - 229.17 63.08 - 2637.86
PY′ 11.41 85.48 - - -

0.64 - 118.39 0.81 - 333.85

goc 0.01 0.02 0.06 0.14 0.27
(0.43 - 82.43) (0.3 - 226.63) (0.4 - 452.9) (0.33 - 764.83) (0.4 - 1166.37)

shϕ′ 1.90 12.76 51.61 148.01 335.44
(7.77 - 149.73) (8.47 - 364.87) (14.47 - 684.87) (17.6 - 1105.83) (17.87 - 1614.77)

shY′ 0.02 0.07 0.15 0.29 -
(1.4 - 105.83) (1.3 - 263.1) (2.33 - 510.33) (1.5 - 814.9)

k = 3 P 0.83 31.14 78.27 2039.07 -
0.15 - 1.97 1.22 - 592.79 1.18 - 609.88 8.49 - 56913.1

Pϕ′ 2.26 24.26 86.82 420.05 659.58
1.42 - 3.48 10.32 - 224.53 41.33 - 442.88 118.68 - 7359.52 274.63 - 5825.48

PY′ 0.75 36.85 65.36 1896.52 -
0.15 - 2.14 0.96 - 832.75 1.15 - 616.93 6.11 - 54045.5

goc 0.01 0.02 0.06 0.13 0.23
(2.7 - 129.37) (3.2 - 325.67) (4.57 - 623.93) (4.67 - 1008.23) (5.03 - 1493.67)

shϕ′ 0.92 5.20 18.66 54.55 134.86
(12.2 - 161.13) (18 - 388.4) (24.43 - 717.07) (28.4 - 1143.43) (31.9 - 1667.03)

shY′ 0.01 0.04 0.07 0.14 0.21
(3.37 - 134.67) (4.4 - 333.83) (6.2 - 640.17) (7.17 - 1035.53) (8.1 - 1529.9)

k = 4 P 0.44 11.57 12.90 242.63 1115.72
0.05 - 2.13 0.27 - 184.38 0.43 - 225.17 0.90 - 4108.18 8.92 - 11015.1

Pϕ′ 0.96 5.60 19.43 60.31 393.96
0.67 - 1.31 4.31 - 9.94 14.69 - 29.53 45.77 - 103.19 115.43 - 3672.51

PY′ 0.34 4.13 13.75 58.11 842.55
0.04 - 2.22 0.15 - 64.42 0.16 - 273.18 0.52 - 366.36 3.70 - 9777.22

Table 5: Synthesis of the numerical results for 5 objectives and k-centra criterion. Execution times are indicated in seconds.
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n 20 30 40 50 60 70
goc 0.001 0.00466667 - - - -

(0 - 4.23) (0 - 14.6)
shϕ′ 1.8 7.36 - - - -

(0.3 - 68.17) (0.6 - 214.3)
shY′ 0.02 0.05 - - - -

(0 - 5.8) (0 - 21.1)
k = 2 P 56.66 1278.29 - - - -

5.18 - 435.96 36.9 - 6647.53
Pϕ′ 50.15 1023.7 - - - -

3.9 - 393.43 25.43 - 6000.2
PY′ 59.07 1269.18 - - - -

4.72 - 380.91 22.29 - 5583.47

goc 0 0.01 0.02 - - -
(0 - 24.6) (0 - 80.07) (0.03 - 169.47)

shϕ′ 1.47 6.52 25.12 - - -
(1.17 - 105.33) (2 - 283.5) (1.93 - 539.4)

shY′ 0.01 0.05 0.12 - - -
(0 - 30.2) (0 - 88.07) (0.1 - 184.03)

k = 4 P 23.42 295.01 1776.19 - - -
1.68 - 134.88 31.04 - 3414.13 95.06 - 11819.5

Pϕ′ 16.61 188.76 1040.29 - - -
1.78 - 81.39 18 - 1992.24 66.8 - 5028.68

PY′ 20.65 274.61 1697.1 - - -
2.32 - 112.13 14.28 - 3108.76 75.52 - 10283

goc 0 0.01 0.02 0.04 0.08 0.13
(2.9 - 134.03) (5.3 - 336.77) (5.5 - 635.63) (6.17 - 1027.83) (7.4 - 1529.7) (8.83 - 2113.57)

shϕ′ 0.64 1.86 5.11 15.44 32.13 57.11
(12.33 - 162.27) (17.53 - 390.63) (23.2 - 717) (27.27 - 1143.6) (33.23 - 1672.23) (39.37 - 2297.2)

shY′ 0 0.01 0.03 0.05 0.08 -
(2.93 - 134.3) (5.43 - 337.43) (5.63 - 637.2) (6.57 - 1032.03) (7.43 - 1530.03)

k = 7 P 1.42 3.02 121.89 157.18 480.38 -
0.27 - 7.87 0.6 - 25.63 0.91 - 3133.83 11.26 - 1532.2 11.46 - 7599.19

Pϕ′ 0.88 2.58 17.96 34.65 73.99 341.13
0.52 - 2.51 1.51 - 8.36 4.39 - 320.91 14.72 - 158.46 26.6 - 526.27 41.68 - 3632.88

PY′ 0.85 2.26 77.66 99.63 277.83 -
0.14 - 3.06 0.33 - 22.98 0.46 - 1958.95 1.53 - 875.78 9.75 - 3608.48

Table 6: Synthesis of the numerical results for 8 objectives and k-centra criterion. Execution times are indicated in seconds.
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5.3. Tests with arbitrary weights

We present here the results obtained when the weights are arbitrary. In this subsection, we study two particular
cases of the OWA operator, namely the Hurwicz criterion and the k-trimmed criterion. The graph instances are defined
similarly to the previous subsection, with 3 and 5 objectives. The notation conventions are the same as in the previous
subsection. Note that the generalized optimality conditions are not valid anymore in this case, and are of course
disabled in the numerical tests.

We recall that, for a vector y, the Hurwicz criterion is defined as αmaxi yi + (1 − α) mini yi. In the numerical tests
performed, parameter α varies from 0.4 to 0.8. Tables 7 and 8 summarize the results obtained.

n 10 20 30 40 45 50
shϕ′ 0.13 4.36 39.4 - - -

(0 - 0.02) (0 - 0) (0 - 0)
shY′ 0.01 0.04 0.12 0.29 0.42 0.57

(0.16 - 12.9) (0 - 1.06) (0 - 0) (0 - 0) (0 - 0) (0 - 0)
α = 0.4 P 0.3 3.82 25.16 221.99 296.19 613.27

0.04 - 1.18 0.49 - 8.68 8.55 - 164.58 25.62 - 4526.81 32.31 - 3239.19 68.83 - 4407.86
Pϕ′ 0.43 8.18 64.26 - - -

0.16 - 1.35 3.82 - 14.59 39.21 - 203.13
PY′ 0.16 3.94 24.96 219 282.75 616.22

0.02 - 0.82 0.62 - 8.89 8.76 - 159.35 26.76 - 4433.47 31.96 - 2995.53 69.35 - 4488.94

shϕ′ 0.1 3.01 26.77 133.38 - -
(0.44 - 12.64) (0 - 36.34) (0 - 33.5) (0 - 24.33)

shY′ 0 0.03 0.11 0.28 - -
(1.96 - 23.4) (0.08 - 81.64) (0 - 109.27) (0 - 112.47)

α = 0.6 P 0.2 2.16 16.32 188.25 - -
0.02 - 0.72 0.41 - 5.62 1.29 - 167.94 14.74 - 1287.06

Pϕ′ 0.24 4.98 40.97 332.09 - -
0.09 - 0.86 2.67 - 11.09 24.95 - 148.47 122.18 - 1505.85

PY′ 0.06 1.53 19.33 188.19 - -
0.02 - 0.44 0.12 - 3.94 1.99 - 183.77 11.96 - 1519.72

shϕ′ 0.07 1.39 10.61 49.06 93.5 169.5
(5.84 - 29.38) (12.86 - 154.62) (19.4 - 377.63) (27.33 - 702.3) (31.27 - 893.4) (32.97 - 1125.87)

shY′ 0 0.03 0.09 0.21 0.31 0.43
(2.68 - 24.28) (5.8 - 134.34) (10.37 - 357.53) (13.7 - 657.43) (13.83 - 802.6) (11.47 - 905.17)

α = 0.8 P 0.17 5.78 27.32 57.12 243.09 1195.13
0.03 - 0.6 0.3 - 69.02 0.67 - 433.42 4.29 - 290.64 5.22 - 4415.44 5.42 - 15903.6

Pϕ′ 0.11 1.58 12.49 52.66 101.91 173.31
0.05 - 0.33 1.19 - 3.52 9.66 - 49.89 44.95 - 105.42 85.84 - 230.68 149.67 - 280.22

PY′ 0.09 2.28 9.68 14.22 232.46 706.79
0.01 - 0.49 0.06 - 27.97 0.15 - 141.73 0.69 - 82.01 0.88 - 5522.99 1.4 - 15271.3

Table 7: Synthesis of the numerical results for 3 objectives and Hurwicz criterion. Execution times are indicated in seconds.

By observing these tables, it appears that the value of parameter α has opposite impacts on the two phases of the
resolution procedures:

• when the number n of vertices increases, the resolution time of the MIP increases with the following sequence
of values: α = 0.4, 0.8, 0.6;

• the shaving is more efficient (in terms of number of colored edges) when α increases.

Let us elaborate on this latter point. Primitive shϕ′ is all the more so efficient than the bound provided by ϕ′ is tight.
A prerequisite in this aim is that

∑
i λi = 1 in ϕ′, i.e., the weights are normalized. However, it can happen that no set

of weights sum up to 1 in Λ (as defined by the constraints in Equation 4 of Section 4.3). Interestingly, when using
the Hurwicz criterion, it is possible to simply detect if such a set of normalized weights exists. Let us show that it
exists if and only if α ≥ (p − 1)/p. Assume first that condition α ≥ (p − 1)/p holds. By setting λi = 1/p for all i, we
have

∑
i∈I λi = |I|/p ≤ (p − 1)/p for |I| ≤ p − 1. Furthermore, by definition of the weights in the Hurwicz criterion,
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n 20 30 40 50 60
shϕ′ 0.26 1.44 5.92 18.99 50.66

(0 - 0) (0 - 0) (0 - 0) (0 - 0) (0 - 0)
shY′ 0.01 0.02 0.05 0.1 0.18

(0 - 1.37) (0 - 0.77) (0 - 0) (0 - 0) (0 - 0)
α = 0.4 P 1.19 4.56 18 123.93 460.94

0.26 - 2.34 2.35 - 10.1 6.45 - 50.76 21.67 - 323.57 40.96 - 4131.31
Pϕ′ 1.45 6.05 23.88 143.39 511.73

0.5 - 2.59 3.64 - 11.84 11.51 - 57.04 38.79 - 352.73 86.94 - 4174.91
PY′ 1.14 4.55 18.14 124.62 461.06

0.28 - 2.25 2.2 - 10.11 6.59 - 45.25 21.54 - 335.79 40.47 - 4092.85

shϕ′ 0.25 1.43 5.73 17.42 -
(0 - 0) (0 - 0) (0 - 0) (0 - 0)

shY′ 0.01 0.02 0.05 0.1 -
(0 - 1.4) (0 - 1.43) (0 - 0) (0 - 0)

α = 0.6 P 1.83 8.91 46.24 367.3 -
0.88 - 3.39 1.92 - 41.7 7.92 - 155.77 26.34 - 2374.14

Pϕ′ 2.09 10.32 51.95 384.77 -
1.06 - 3.37 3.1 - 44.26 13.31 - 163.56 41.71 - 2404.13

PY′ 1.69 9.13 46.12 368.01 -
0.58 - 2.79 1.61 - 43.76 7.73 - 155.16 25.96 - 2394.34

shϕ′ 0.2 1 3.7 10.84 26.61
(0.93 - 17.7) (2.2 - 54.03) (2 - 104.33) (3.03 - 188.3) (4.46 - 300.13)

shY′ 0.01 0.02 0.04 0.08 0.14
(0.67 - 16.4) (2.13 - 51.73) (1.9 - 98.37) (2.97 - 174.43) (4.2 - 278.97)

α = 0.8 P 1.74 28.07 70.52 297.75 1725.29
0.58 - 4.3 1.54 - 104.74 6.53 - 211.65 9.67 - 3664.45 6.38 - 16778.8

Pϕ′ 1.52 18.62 53.44 217.57 866.861
0.51 - 3.36 1.16 - 60.74 7.14 - 184.8 23.27 - 1972.08 25.15 - 9426.5

PY′ 1.49 18.41 51.73 225.35 1586.19
0.5 - 3.05 0.45 - 90.47 4.06 - 225.98 14.53 - 1978.86 2.59 - 29575.1

Table 8: Synthesis of the numerical results for 5 objectives and Hurwicz criterion. Execution times are indicated in seconds.

∑|I|
i=1 wi = α for 1 ≤ |I| ≤ p − 1. Consequently, for 1 ≤ |I| ≤ p − 1, we have

∑
i∈I λi ≤

∑|I|
i=1 wi since α ≥ (p − 1)/p.

Constraint
∑

i∈I λi ≤ 1 obviously holds for I = {1, . . . , p}, which allows to conclude that normalized weights λi = 1/p
satisfy all the constraints in Equation 4. Conversely, assume now that α < (p − 1)/p. For weights λ in Λ, one has
in particular

∑
i∈I λi ≤

∑|I|
i=1 wi = α < (p − 1)/p for |I| = p − 1. It implies that

∑
I:|I|=p−1

∑
i∈I λi < p(p − 1)/p, i.e.,

(p − 1)
∑p

i=1 λi < p − 1, which yields
∑p

i=1 λi < 1. Hence if α < (p − 1)/p, there is no normalized weights in Λ.
Condition α ≥ (p − 1)/p is therefore necessary and sufficient for the existence of normalized weights in Λ. Coming
back to the interpretation of the numerical results, it means that the shaving will be more efficient for α ≥ 0.66 if
p = 3, and for α ≥ 0.8 if p = 5. This is consistent with what can be observed in the tables: the number of colored
edges is much more important for α = 0.8 (which is greater or equal than the required value, both for p = 3 and p = 5)
than for the other values.

Let us now comment on the results of the tests carried out on the k-trimmed criterion (as defined in Section 2.2).
Note that primitive shϕ′ is useless here since all weights in ϕ′ should be set to 0 to satisfy the constraints in Equation 4.
Consequently, only primitive shY ′ has been enabled in the tests. Even with this latter primitive, the number of colored
edges is very low. It can be indeed easily shown that if the k-trimmed criterion is used, then the bound obtained by
relaxation of the image set is equal to OWA(b1, . . . , bp), where bi denotes the optimal value on objective i. In a shaving
procedure, this bound is of course quite loose since it is over-optimistic. This is confirmed by the numerical tests,
summarized in Tables 9 and 10, where we can see that the number of colored edges is almost 0. One can conclude
that for this criterion, other preprocessing procedures should be found to reduce the size of the instance.
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n 10 20 30 35 40 45
shY′ 0.01 0.04 0.12 0.19 0.29 0.41

(0.13 - 4.1) (0 - 0) (0 - 0) (0 - 0) (0 - 0) (0 - 0)
k = 1 P 0.17 4.39 23.8 70.45 186.3 484.95

0.05 - 0.41 0.87 - 12.85 3 - 235.7 14.9 - 660.15 13.61 - 2346 40.93 - 6223.8
PY′ 0.14 4.42 23.82 70.6 186.47 485.82

0.01 - 0.4 0.85 - 12.92 3.06 - 235.91 14.96 - 660.52 14.03 - 2340.87 41.50 - 6226.8

Table 9: Synthesis of the numerical results for 3 objectives and k-trimmed criterion. Execution times are indicated in seconds.

n 20 30 40 50 60
shY′ 0.01 0.05 0.10 0.17 0.28

(0 - 0) (0 - 0) (0 - 0) (0 - 0) (0 - 0)
k = 1 P 1.45 101.15 1159.53 733.14 378.87

0.46 - 2.41 6.82 - 2187 9.48 - 12874.1 28.71 - 15268.7 45.27 - 1504.7
PY′ 1.45 101.77 1120.3 732.07 378.96

0.5 - 2.38 6.76 - 2209.26 9.55 - 13655.3 29 - 15239.2 45.94 - 1502.62

shϕ′ 0.61 20.92 71.39 208.18 495.74
(0 - 0) (0 - 0) (0 - 0) (0 - 0) (0 - 0)

k = 2 P 2.5 467.84 168.41 190.68 829.43
1.24 - 5.22 8.56 - 9778.22 19.59 - 1028.96 48.74 - 1215.18 83.05 - 6406.81

PY′ 2.49 433.69 168.85 190.9 828.14
1.2 - 5.4 8.7 - 8719.89 19.65 - 1038.66 48.72 - 1214.38 83.23 - 6383.18

Table 10: Synthesis of the numerical results for 5 objectives and k-trimmed criterion. Execution times are indicated in seconds.

6. Conclusion

In this paper we have proposed MIP formulations and preprocessing methods to solve the OWA-optimal spanning
tree problem. The validity of the MIP formulations depends on the weights used in the OWA operator. One is valid
only when the weights are decreasing and the other one is valid whatever are the weights, but its resolution is more
time consuming. We have shown that, when the weights are decreasing, the use of generalized optimality conditions,
as well as shaving procedures, makes it possible to considerably reduce the size of the problem, and therefore speeds
up the resolution. However, when the weights are arbitrary, the efficiency of the preprocessing procedures strongly
depends on the type of used criterion: the shaving procedures enable to reduce the size of the instance prior to its
resolution for some subclasses of the Hurwicz criterion, but are useless for the k-trimmed criterion.

Despite a greater resolution time than in the decreasing case, the second MIP formulation proposed here is a first
step towards tackling the arbitrary case. A challenging task for future works would be to investigate new preprocessing
methods for this case. Another interesting research direction would be to study some interesting variations of OWA,
namely the non-monotonic OWA operator [50] (where negative weights are allowed) and the weighted OWA operator
[46] (where importance weights specific to each objective are allowed in addition to the weights of the OWA operator).
These research tracks are especially important because the search for a single best compromise solution is nearly the
only operational approach when there are more than three objectives and the problem does not fit into the dynamic
programming framework.
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