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Abstract

The statistical analysis of massive and complex data sets will require
the development of algorithms that depend on distributed computing
and collaborative inference. Inspired by this, we propose a collab-
orative framework that aims to estimate the unknown mean θ of a
random variable X. In the model we present, a certain number of
calculation units, distributed across a communication network repre-
sented by a graph, participate in the estimation of θ by sequentially
receiving independent data from X while exchanging messages via a
stochastic matrix A defined over the graph. We give precise conditions
on the matrix A under which the statistical precision of the individual
units is comparable to that of a (gold standard) virtual centralized es-
timate, even though each unit does not have access to all of the data.
We show in particular the fundamental role played by both the non-
trivial eigenvalues of A and the Ramanujan class of expander graphs,
which provide remarkable performance for moderate algorithmic cost.

Index Terms — Distributed computing, collaborative estimation, sto-
chastic matrix, graph theory, complexity, Ramanujan graph.
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1 Introduction

A promising way to overcome computational problems associated with infer-
ence and prediction in large-scale settings is to take advantage of distributed
and collaborative algorithms, whereby several processors perform computa-
tions and exchange messages with the end-goal of minimizing a certain cost
function. For instance, in modern data analysis one is frequently faced with
problems where the sample size is too large for a single computer or standard
computing resources. Distributed processing of such large data sets is often
regarded as a possible solution to data overload, although designing and an-
alyzing algorithms in this setting is challenging. Indeed, good distributed
and collaborative architectures should maintain the desired statistical ac-
curacy of their centralized counterpart, while retaining sufficient flexibility
and avoiding communication bottlenecks which may excessively slow down
computations. The literature is too vast to permit anything like a fair sum-
mary within the confines of a short introduction—the papers by Duchi et al.
(2012), Jordan (2013), Zhang et al. (2013), and references therein contain a
sample of relevant work.

Similarly, the advent of sensor, wireless and peer-to-peer networks in sci-
ence and technology necessitates the design of distributed and information-
exchange algorithms (Boyd et al., 2006; Predd et al., 2009). Such networks
are designed to perform inference and prediction tasks for the environments
they are sensing. Nonetheless, they are typically characterized by constraints
on energy, bandwidth and/or privacy, which limit the sensors’ ability to
share data with each other or with a hub for centralized processing. For
example, in a hospital network, the aim is to make safer decisions by shar-
ing information between therapeutic services. However, a simple exchange
of database entries containing patient details can pose information privacy
risks. At the same time, a large percentage of medical data may require
exchanging high-resolution images, the centralized processing of which may
be computationally prohibitive. Overall, such constraints call for the design
of communication-constrained distributed procedures, where each node ex-
changes information with only a few of its neighbors at each time instance.
The goal in this setting is to distribute the learning task in a computationally
efficient way, and make sure that the statistical performance of the network
matches that of the centralized version.

The foregoing observations have motivated the development and analysis
of many local message-passing algorithms for distributed and collaborative
inference, optimization and learning. Roughly speaking, message-passing
procedures are those that use only local communication to approximately
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achieve the same end as global (i.e., centralized) algorithms, which require
sending raw data to a central processing facility. Message-passing algorithms
are thought to be efficient by virtue of their exploitation of local communi-
cation. They have been successfully involved in kernel linear least-squares
regression estimation (Predd et al., 2009), support vector machines (Forero
et al., 2010), sparse L1 regression (Mateos et al., 2010), gradient-type opti-
mization (Tsitsiklis et al., 1986; Bertsekas and Tsitsiklis, 1997), and various
online inference and learning tasks (Bianchi et al., 2011a,b, 2013). An im-
portant research effort has also been devoted to so-called averaging and con-
sensus problems, where a set of autonomous agents—which may be sensors
or nodes of a computer network—compute the average of their opinions in
the presence of restricted communication capabilities and try to agree on a
collective decision (e.g., Blondel et al., 2005; Olshevsky and Tsitsiklis, 2011).

However, despite their rising success and impact in machine learning, little
is known regarding the statistical properties of message-passing algorithms.
The statistical performance of collaborative computing has so far been stud-
ied in terms of consensus (i.e., whether all nodes give the same result), with
perhaps mean convergence rates (e.g., Olshevsky and Tsitsiklis, 2011; Duchi
et al., 2012; Zhang et al., 2013). While it is therefore proved that using a
network, even sparse (i.e., with few connections), does not degrade the rate
of convergence, the problem of whether it is optimal to do this remains unan-
swered, including for the most basic statistics. For example, which network
properties guarantee collaborative calculation performances equal to those
of a hypothetical centralized system? The goal of this article is to give a
more precise answer to this fundamental question. In order to present in the
clearest way possible the properties such a network must have, we undertake
this study for the most simple statistic possible: the mean.

In the model we consider, there are a number of computing agents (also
known as nodes or processors) that sequentially estimate the mean of a
random variable by regularly updating an estimate stored in their memory.
Meanwhile, they exchange messages, thus informing each other about the
results of their latest computations. Agents that receive messages use them
to directly update the value in their memory by forming a convex combina-
tion. We focus primarily on the properties that the communication process
must satisfy to ensure that the statistical precision of a single processor—that
only sees part of the data—is similar to that of an inaccessible centralized
intelligence that could tackle the whole data set at once. The literature is
surprisingly quiet on this question, which we believe is of fundamental im-
portance if we want to provide concrete tradeoffs between communication
constraints and statistical accuracy.
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This paper makes several important contributions. First, in Section 2 we
introduce communication network models and define a performance ratio
allowing us to quantify the statistical quality of a network. In Section 3 we
analyze the asymptotic behavior of this performance ratio as the number
of data items t received online sequentially per node becomes large, and
give precise conditions on communication matrices A so that this ratio is
asymptotically optimal. Section 4 goes one step further, connecting the rate
of convergence of the ratio with the behavior of the eigenvalues of A. In
Section 5 we present the remarkable Ramanujan expander graphs and analyze
the tradeoff between statistical efficiency and communication complexity for
these graphs with a series of simulation studies. Lastly, Section 6 provides
several elements for analysis of more complicated asynchronous models with
delays. For clarity, proofs are gathered in Section 7.

2 The model

Let X be a square-integrable real-valued random variable, with EX = θ and
Var(X) = σ2. We consider a set {1, . . . , N} of computing entities (N ≥ 2)
that collectively participate in the estimation of θ. In this distributed model,
agent i sequentially receives an i.i.d. sequence X

(i)
1 , . . . , X

(i)
t , . . . , distributed

as the prototype X, and forms, at each time t, an estimate of θ. It is assumed
throughout that theX

(i)
t are independent when both t ≥ 1 and i ∈ {1, . . . , N}

vary.

In the absence of communication between agents, the natural estimate held
by agent i at time t is the empirical mean

X̄
(i)
t =

1

t

t∑
k=1

X
(i)
k .

Equivalently, processor i is initialized with X
(i)
1 and performs its estimation

via the iteration

X̄
(i)
t+1 =

tX̄
(i)
t +X

(i)
t+1

t+ 1
, t ≥ 1.

Let > denote transposition and assume that vectors are in column format.
Letting Xt = (X

(1)
t , . . . , X

(N)
t )> and X̄t = (X̄

(1)
t , . . . , X̄

(N)
t )>, we see that

X̄t+1 =
tX̄t + Xt+1

t+ 1
, t ≥ 1. (2.1)
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In a more complicated collaborative setting, besides its own measurements
and computations, each agent may also receive messages from other proces-
sors and combine this information with its own conclusions. At its core, this
message-passing process can be modeled by a directed graph G = (V ,E )
with vertex set V = {1, . . . , N} and edge set E . This graph represents
the way agents communicate, with an edge from j to i (in that order) if j
sends information to i. Furthermore, we have an N × N stochastic matrix
A = (aij)1≤i,j≤N (i.e., aij ≥ 0 and for each i,

∑N
j=1 aij = 1) with associ-

ated graph G , i.e., aij > 0 if and only if (j, i) ∈ E . The matrix A accounts
for the way agents incorporate information during the collaborative process.
Denoting by θ̂t = (θ̂

(1)
t , . . . , θ̂

(N)
t )> the collection of estimates held by the N

agents over time, the computation/combining mechanism is assumed to be
as follows:

θ̂t+1 =
t

t+ 1
Aθ̂t +

1

t+ 1
Xt+1, t ≥ 1,

with θ̂1 = (X
(1)
1 , . . . , X

(N)
1 )>. Thus, each individual estimate θ̂

(i)
t+1 is a convex

combination of the estimates θ̂
(j)
t held by the agents over the network at time

t, augmented by the new observation X
(i)
t+1.

The matrix A models the way processors exchange messages and collaborate,
ranging from A = IN (the N × N identity matrix, i.e., no communication)
to A = 11>/N (where 1 = (1, . . . , 1)>, i.e., full communication). We note in
particular that the choice A = IN gives back iteration (2.1) with θ̂t = X̄t.
We also note that, given a graph G , various choices are possible for A. Thus,
aside from a convenient way to represent a communication channel over which
agents can retrieve information from each other, the matrix A can be seen
as a “tuning parameter” on G to improve the statistical performance of θ̂t,
as we shall see later. Important examples for A include the choices

A1 =
1

2



1 1
1 0 1

1 0 1
...

...
...

...
...

...
...

...
...

1 0 1
1 0 1

1 1


(2.2)
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and

A2 =
1

3



2 1
1 1 1

1 1 1
...

...
...

...
...

...
...

...
...

1 1 1
1 1 1

1 2


(2.3)

(unmarked entries are zero). It is easy to verify that for all t ≥ 1,

θ̂t =
1

t

t−1∑
k=0

AkXt−k. (2.4)

Thus, denoting by ‖ · ‖ the Euclidean norm (for vector or matrices), we may
write, for all t ≥ 1,

E‖θ̂t − θ1‖2 =
1

t2
E
∥∥∥∥ t−1∑
k=0

Ak(Xt−k − θ1)

∥∥∥∥2

(since Ak is a stochastic matrix)

=
1

t2

t∑
k=1

E
∥∥At−k(Xk − θ1)

∥∥2
,

by independence of X1, . . . ,Xt. It follows that

E‖θ̂t − θ1‖2 ≤ E‖X1 − θ1‖2 × 1

t2

t−1∑
k=0

‖Ak‖2

≤ E‖X1 − θ1‖2 × N

t
.

In the last inequality, we used the fact that Ak is a stochastic matrix and thus
‖Ak‖2 ≤ N for all k ≥ 0. We can merely conclude that E‖θ̂t − θ1‖2 → 0 as

t → ∞ (mean-squared error consistency), and so θ̂
(i)
t → θ in probability for

each i ∈ {1, . . . , N}. Put differently, the agents asymptotically agree on the
(true) value of the parameter, independently of the choice of the (stochastic)
matrix A—this property is often called consensus in the distributed opti-
mization literature (see, e.g., Bertsekas and Tsitsiklis, 1997).

The consensus property, although interesting, does not say anything about
the positive (or negative) impact of the graph on the comparative perfor-
mances of estimates with respect to a centralized version. To clarify this
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remark, assume that there exists a centralized intelligence that could tackle
all data X

(1)
1 , . . . , X

(1)
t , . . . , X

(N)
1 , . . . , X

(N)
t at time t, and take advantage of

these samples to assess the value of the parameter θ. In this ideal framework,
the natural estimate of θ is the global empirical mean

X̄Nt =
1

Nt

N∑
i=1

t∑
k=1

X
(i)
k ,

which is clearly the best we can hope for with the data at hand. However, this
estimate is to be considered as an unattainable “gold standard” (or oracle),
insofar as it uses the whole (N × t)-sample. In other words, its evaluation
requires sending all examples to a centralized processing facility, which is
precisely what we want to avoid.

Thus, a natural question arises: can the message-passing process be tapped to
ensure that the individual estimates θ̂

(i)
t achieve statistical accuracy “close”

to that of the gold standard X̄Nt? Figure 1 illustrates this pertinent question.
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t

Message-passing (A = A2)
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X̄
( i )
t , i = 1: 5

X̄5t

θ̂
( i )
t , i = 1 : 5

X̄5t

Figure 1: Convergence of individual nodes’ estimates with and without
message-passing.

In the trials shown, i.i.d. uniform random variables on [0, 1] are delivered
online to N = 5 nodes, one to each at each time t. With message-passing
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(here, A = A2), each node aggregates the new data point with data it has seen
previously and messages received from its nearest neighbors in the network.
We see that all of the five nodes’ updates seem to converge with a performance
comparable to that of the (unseen) global estimate X̄Nt to the mean 0.5.
In contrast, in the absence of message-passing (A = I5), individual nodes’
estimates do still converge to 0.5, but at a slower rate.

To deal with this question of statistical accuracy satisfactorily, we first need
a criterion to compare the performance of θ̂t with that of X̄Nt. Perhaps the
most natural one is the following ratio, which depends upon the matrix A:

τt(A) =
E
∥∥(X̄Nt − θ)1

∥∥2

E‖θ̂t − θ1‖2
, t ≥ 1.

The more this ratio is close to 1, the more the collaborative algorithm is
statistically efficient, in the sense that its performance compares favorably
to that of the centralized gold standard. In the remainder of the paper, we
call τt(A) the performance ratio at time t.

Of particular interest in our approach is the stochastic matrix A, which
plays a crucial role in the analysis. Roughly, a good choice for A is one for
which τt(A) is not too far from 1, while ensuring that communication over
the network is not prohibitively expensive. Although there are several ways
to measure “complexity” of the message-passing process, we have in mind a
setting where the communication load is well-balanced between agents, in the
sense that no node should play a dominant role. To formalize this idea, we
define the communication-complexity index C (A) as the maximal indegree
of the edges of the graph G associated with A, i.e., the maximal number of
edges pointing to a node in G (by convention, self-loops are counted twice
when G is undirected). Essentially, A is communication-efficient when C (A)
is small with respect to N or, more generally, when C (A) = O(1) as N
becomes large.

To provide some context, C (A) measures in a certain sense the “local” aspect
of message exchanges induced by A. We have in mind node connection set-
ups where C (A) is small, perhaps due to energy or bandwidth constraints
in the system’s architecture, or when for privacy reasons data must not be
sent to a central node. Indeed, a large C (A) roughly means that one or
several nodes play centralized roles—precisely what we are trying to avoid.
Furthermore, the decentralized networks we are interested in can be seen as
being more autonomous than high-C (A) ones, in the sense that having few
network connections means less things that can potentially break, as well
as improved robustness due to the fact that the loss of one node does not
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lead to destruction of the whole system. As examples, the matrices A1 and
A2 defined earlier have C (A1) = 3 and C (A2) = 4, respectively, while the
stochastic matrix A3 below has C (A3) = N + 1:

A3 =
1

N


1 1 1 · · · 1 1 1
1 N − 1
1 N − 1
...

...
...

...
...

...
...

1 N − 1

 . (2.5)

Thus, from a network complexity point of view, A1 and A2 are preferable to
A3 where node 1 has the flavor of a central command center.

Now, having defined τt(A) and C (A), it is natural to suspect that there will
be some kind of tradeoff between implementing a low-complexity message-
passing algorithm (i.e., C (A) small) and achieving good asymptotic perfor-
mance (i.e., τt(A) ≈ 1 for large t). Our main goal in the next few sections is to
probe this intuition by analyzing the asymptotic behavior of τt(A) as t→∞
under various assumptions on A. We start by proving that τt(A) ≤ 1 for all
t ≥ 1, and give precise conditions on the matrix A under which τt(A) → 1.
Thus, thanks to the benefit of inter-agent communication, the statistical ac-
curacy of individual estimates may be asymptotically comparable to that of
the gold standard, despite the fact that none of the agents in the network
have access to all of the data. Indeed, as we shall see, this stunning result is
possible even for low-C (A) matrices. The take-home message here is that the
communication process, once cleverly designed, may “boost” the individual
estimates, even in the presence of severe communication constraints. We also
provide an asymptotic development of τt(A), which offers valuable informa-
tion on the optimal way to design the communication network in terms of
the eigenvalues of A.

3 Convergence of the performance ratio

Recall that a stochastic square matrix A = (aij)1≤i,j≤N is irreducible if for
every pair of indices i and j, there exists a nonnegative integer k such that
(Ak)ij is not equal to 0. The matrix is said to be reducible if it is not
irreducible.

Proposition 3.1. We have 1
N
≤ τt(A) ≤ 1 for all t ≥ 1. In addition, if A

is reducible, then

τt(A) ≤ 1− 1

N + 1
, t ≥ 1.
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It is apparent from the proof of the proposition (all proofs are found in Section
7) that the lower bound 1/N for τt(A) is achieved by taking A = IN , which
is clearly the worst choice in terms of communication. This proposition also
shows that the irreducibility of A is a necessary condition for the collaborative
algorithm to be statistically efficient, for otherwise there exists ε ∈ (0, 1) such
that τt(A) ≤ 1− ε for all t ≥ 1.

We recall from the theory of Markov chains (e.g., Grimmett and Stirzaker,
2001) that for a fixed agent i ∈ {1, . . . , N}, the period of i is the greatest
common divisor of all positive integers k such that (Ak)ii > 0. When A is
irreducible, the period of every state is the same and is called the period
of A. The following lemma describes the asymptotic behavior of τt(A) as t
tends to infinity.

Lemma 3.1. Assume that A is irreducible, and let d be its period. Then
there exist projectors Q1, . . . , Qd such that

τt(A)→ 1∑d
`=1 ‖Q`‖2

as t→∞.

The projectors Q1, . . . , Qd in Lemma 3.1 originate from the decomposition

Ak =
d∑
`=1

λk`Q` +
∑
γ∈Γ

γkQγ(k),

where λ1 = 1, . . . , λd are the (distinct) eigenvalues of A of unit modulus, Γ the
set of eigenvalues of A of modulus strictly smaller than 1, and Qγ(k) certain
N × N matrices (see Theorem 7.1 in the proofs section). In particular, we
see that τt(A)→ 1 as t→∞ if and only if

∑d
`=1 ‖Q`‖2 = 1. It turns out that

this condition is satisfied if and only if A is irreducible, aperiodic (i.e., d = 1),
and bistochastic, i.e.,

∑N
i=1 aij =

∑N
j=1 aij = 1 for all (i, j) ∈ {1, . . . , N}2.

This important result is encapsulated in the next theorem.

Theorem 3.1. We have τt(A)→ 1 as t→∞ if and only if A is irreducible,
aperiodic, and bistochastic.

Theorem 3.1 offers necessary and sufficient conditions for the communication
matrix A to be asymptotically statistically efficient. Put differently, under
the conditions of the theorem, the message-passing process conveys sufficient
information to local computations to make individual estimates as accurate
as the gold standard for large t. In the context of multi-agent coordination,
an example of such a communication network is the so-called (time-invariant)
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equal neighbor model (Tsitsiklis et al., 1986; Olshevsky and Tsitsiklis, 2011),
in which

aij =

{
1/|N (i)| if j ∈ N (i)

0 otherwise,

where
N (i) =

{
j ∈ {1, . . . , N} : aij > 0

}
is the set of agents whose value is taken into account by i, and |N (i)| its
cardinality. Clearly, the communication matrix A is stochastic, and also
bistochastic as soon as A is symmetric (bidirectional model). Assuming in
addition that the directed graph G associated with A is strongly connected
means that A is irreducible. Moreover, if aii > 0 for some i ∈ {1, . . . , N},
then A is also aperiodic, so the conditions of Theorem 3.1 are fulfilled.

It is interesting to note that there exist low-C (A) matrices that meet the
requirements of Theorem 3.1. This is for instance the case of matrices A1 and
A2 in (2.2) and (2.3), which are irreducible, aperiodic and bistochastic, and
satisfy C (A) ≤ 4. Also note that the matrix A3 in (2.5), though irreducible,
aperiodic and bistochastic, should be avoided because C (A3) = N + 1.

We stress that the irreducibility and aperiodicity conditions are inherent
properties of the graph G , not A, insofar as these conditions do not depend
upon the actual values of the nonzero entries of A. This is different for the
bistochasticity condition, which requires knowledge of the coefficients of A.
In fact, as observed by Sinkhorn and Knopp (1967), it is not always possible
to associate such a bistochastic matrix with a given directed graph G . To
be more precise, consider G = (gij)1≤i,j≤N , the transpose of the adjacency
matrix of the graph G —that is, gij ∈ {0, 1} and gij = 1 ⇔ (j, i) ∈ E .
Then G is said to have total support if, for every positive element gij, there

exists a permutation σ of {1, . . . , N} such that j = σ(i) and
∏N

k=1 gkσ(k) > 0.
The main theorem of Sinkhorn and Knopp (1967) asserts that there exists a
bistochastic matrix A of the form A = D1GD2, where D1 and D2 are N ×N
diagonal matrices with positive diagonals, if and only if G has total support.
The algorithm to induce A from G is called the Sinkhorn-Knopp algorithm.
It does this by generating a sequence of matrices whose rows and columns
are normalized alternately. It is known that the convergence of the algorithm
is linear and upper bounds have been given for its rate of convergence (e.g.,
Knight, 2008).

Nevertheless, if for some reason we face a situation where it is impossible
to associate a bistochastic matrix with the graph G , Proposition 3.2 below
shows that it is still possible to obtain information about the performance
ratio, provided A is irreducible and aperiodic.
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Proposition 3.2. Assume that A is irreducible and aperiodic. Then

τt(A)→ 1

N‖µ‖2
as t→∞,

where µ is the stationary distribution of A.

To illustrate this result, take N = 2 and consider the graph G with (sym-
metric) adjacency matrix 11> (i.e., full communication). Various stochastic
matrices may be associated with G , each with a certain statistical perfor-
mance. For α > 1 a given parameter, we may choose for example

Hα =
1

α

(
1 α− 1
1 α− 1

)
.

When α = 2, we have τt(H2) → 1 by Theorem 3.1. More generally, using
Proposition 3.2, it is an easy exercise to prove that, as t→∞,

τt(Hα)→ α2

2 + 2(α− 1)2
.

We see that the statistical performance of the local estimates deteriorates as
α becomes large, for in this case τt(Hα) gets closer and closer to 1/2. This
toy model exemplifies the role the stochastic matrix is playing as a “tuning
parameter” to improve the performance of the distributed estimate.

4 Convergence rates

Theorem 3.1 gives precise conditions ensuring τt(A) = 1 + o(1), but does not
say anything about the rate (i.e., the behavior of the second-order term) at
which this convergence occurs. It turns out that a much more informative
limit may be obtained at the price of the mild additional assumption that
the stochastic matrix A is symmetric (and hence bistochastic).

Theorem 4.1. Assume that A is irreducible, aperiodic, and symmetric. Let
1 > γ2 ≥ · · · ≥ γN > −1 be the eigenvalues of A different from 1. Then

τt(A) =
1

1 + 1
t

∑N
`=2

1−γ2t`
1−γ2`

.

In addition, setting

S (A) =
N∑
`=2

1

1− γ2
`

and Γ(A) = max
2≤`≤N

|γ`|,

12



we have, for all t ≥ 1,

1− S (A)

t
≤ τt(A) ≤ 1− S (A)

t
+ Γ2t(A)

S (A)

t
+
(S (A)

t

)2

.

Clearly, we thus have

t
(
1− τt(A)

)
→ S (A) as t→∞.

The take-home message is that the smaller the coefficient S (A), the better
the matrix A performs from a statistical point of view. In this respect, we
note that S (A) ≥ N − 1 (uniformly over the set of stochastic, irreducible,
aperiodic, and symmetric matrices). Consider the full-communication matrix

A0 =
1

N
11>, (4.1)

which models a saturated communication network in which each agent shares
its information with all others. The associated communication topology,
which has C (A0) = N + 1, is roughly equivalent to a centralized algorithm
and, as such, is considered inefficient from a computational point of view. On
the other hand, intuitively, the amount of statistical information propagating
through the network is large so S (A0) should be small. Indeed, it is easy
to see that in this case, γ` = 0 for all ` ∈ {2, . . . , N} and S (A0) = N − 1.
Therefore, although complex in terms of communication, A0 is statistically
optimal.

For a comparative study of statistical performance and communication com-
plexity of matrices, let us consider the sparser graph associated with the
tridiagonal matrix A1 defined in (2.2). With this choice, γ` = cos (`−1)π

N

(Fiedler, 1972), so that

S (A1) =
N−1∑
`=1

1

1− cos2 `π
N

=
N2

6
+ O(N) as N →∞. (4.2)

Thus, we lose a power of N but now have lower communication complexity
C (A1) = 3.

Let us now consider the tridiagonal matrix A2 defined in (2.3). Noticing that

3A2 = 2A1 + IN , we deduce that for the matrix A2, γ` = 1
3

+ 2
3

cos (`−1)π
N

,
2 ≤ ` ≤ N . Thus, as N →∞,

S (A2) =
N2

9
+ O(N). (4.3)
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By comparing (4.2) and (4.3), we can conclude that the matrices A1 and
A2, which are both low-C (A), are also nearly equivalent from a statistical
efficiency point of view. A2 is nevertheless preferable to A1, which has a
larger constant in front of the N2. This slight difference may be due to
the fact that most of the diagonal elements of A1 are zero, so that agents
i ∈ {2, . . . , N − 1} do not integrate their current value in the next iteration,
as happens for A2. Furthermore, for large N , the performance of A1 and
A2 are expected to dramatically deteriorate in comparison with those of A0,
since S (A1) and S (A2) are proportional to N2, while S (A0) is proportional
to N .

Figure 2 shows the evolution of τt(A) for N fixed and t increasing for the
matrices A = A0, A1, A2 as well as the identity IN .
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Figure 2: Evolution of τt(Ai) with t for different values of N , for A = A0,
A1, A2 and IN .

As expected, we see convergence of τt(Ai) to 1, with degraded performance
as the number of agents N increases. Also, we see that the lack of message-
passing for IN means it is statistically inefficient, with constant τt(IN) = 1/N
for all t.

The discussion and plots above highlight the crucial influence of S (A) on
the performance of the communication network. Indeed, Theorem 4.1 shows
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that the optimal order for S (A) is N , and that this scaling is achieved by
the computationally-inefficient choice A0—see (4.1). Thus, a natural ques-
tion to ask is whether there exist communication networks that have S (A)
proportional to N and, simultaneously, C (A) constant or small with respect
to N . These two conditions, which are in a sense contradictory, impose that
the absolute values of the non-trivial eigenvalues γ` stay far from 1, while
the maximal indegree of the graph G remains moderate. It turns out that
these requirements are satisfied by so-called Ramanujan graphs, which are
presented in the next section.

5 Ramanujan graphs

In this section, we consider undirected graphs G = (V ,E ) that are also d-
regular, in the sense that all vertices have the same degree d; that is each
vertex is incident to exactly d edges. Recall that in this definition, self-loops
are counted twice and multiple edges are allowed. However, in what follows,
we restrict ourselves to graphs without self-loops and multiple edges. In
this setting, the natural (bistochastic) communication matrix A associated
with G is A = 1

d
G, where G = (gij)1≤i,j≤N is the adjacency matrix of G

(gij ∈ {0, 1} and gij = 1⇔ (i, j) ∈ E ). Note that C (A) = d.

The matrix G is symmetric and we let d = µ1 ≥ µ2 ≥ · · · ≥ µN ≥ −d
be its (real) eigenvalues. Similarly, we let 1 = γ1 ≥ γ2 ≥ · · · ≥ γN ≥ −1
be the eigenvalues of A, with the straightforward correspondence γi = µi/d.
We note that A is irreducible (or, equivalently, that G is connected) if and
only if d > µ2 (see, e.g., Shlomo et al., 2006, Section 2.3). In addition, A
is aperiodic as soon as µN > −d. According to the Alon-Boppana theorem
(Nilli, 1991) one has, for every d-regular graph,

µ2 ≥ 2
√
d− 1− oN(1),

where the oN(1) term is a quantity that tends to zero for every fixed d as
N →∞. Moreover, a d-regular graph G is called Ramanujan if

max
(
|µ`| : µ` < d

)
≤ 2
√
d− 1.

In view of the above, a Ramanujan graph is optimal, at least as far as the
spectral gap measure of expansion is concerned. Ramanujan graphs fall in
the category of so-called expander graphs, which have the apparently contra-
dictory features of being both highly connected and at the same time sparse
(for a review, see Shlomo et al., 2006).
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Although the existence of Ramanujan graphs for any degree larger than or
equal to 3 has been recently established by Marcus et al. (2015), their explicit
construction remains difficult to use in practice. However, a conjecture by
Alon (1986), proved by Friedman (2008) (see also Bordenave, 2015) asserts
that most d-regular graphs are Ramanujan, in the sense that for every ε > 0,

P
(

max
(
|µ2|, |µN |

)
≥ 2
√
d− 1 + ε

)
→ 0 as N →∞,

or equivalently, in terms of the eigenvalues of A,

P
(

max
(
|γ2|, |γN |

)
≥ 2
√
d− 1

d
+ ε
)
→ 0 as N →∞.

In both results, the limit is along any sequence going to infinity with Nd even,
and the probability is with respect to random graphs uniformly sampled in
the family of d-regular graphs with vertex set V = {1, . . . , N}.

In order to generate a random irreducible, aperiodic d-regular Ramanujan
graph, we can first generate a random d-regular graph using an improved
version of the standard pairing algorithm, proposed by Steger and Wormald
(1999). We retain it if it passes the tests of being irreducible, aperiodic
and Ramanujan as described above. Otherwise, we continue to generate a
d-regular graph until all these conditions are satisfied. Figure 3 gives an
example of a 3-regular Ramanujan graph with N = 16 vertices, generated in
this way.

Figure 3: Randomly-generated 3-regular Ramanujan graph with N = 16
vertices.

Now, given an irreducible and aperiodic communication matrix A associated
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with a d-regular Ramanujan graph G , we have, whenever d ≥ 3,

S (A) ≤ N − 1

1− 4(d−1)
d2

.

Thus, recalling that S (A) ≥ N −1, we see that S (A) scales optimally as N
while having C (A) = d (fixed). This remarkable superefficiency property can
be compared with the full-communication matrix A0, which has S (A0) =
N − 1 but inadmissible complexity C (A0) = N + 1.

The statistical efficiency of these graphs is further highlighted in Figure 4.
It shows results for 3- and 5-regular Ramanujan-type matrices (A3 and A5)
as well as the previous results for non-Ramanujan-type matrices A0, A1 and
A2 (see Figure 2).
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Figure 4: Evolution of τt(Ai) with t for different values of N , for A = A0, A1,
A2 as before with the addition of 3- and 5-regular Ramanujan-type matrices
A3 and A5.

We see that A3 is already close to the statistical performance of A0, the
saturated network, and for all intents and purposes A5 is essentially as good
as A0, even when there are N = 1000 nodes; i.e., the statistical performance
of the 5-regular Ramanujan graph is barely distinguishable from that of the
totally connected graph! Nevertheless, we must not forget that the possibility
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of building such efficient networks in real-world situations will ultimately
depend on the specific application, and may not always be possible.

Next, assuming that the Ramanujan-type matrix A is irreducible and ape-
riodic, it is apparent that there is a compromise to be made between the
communication complexity of the algorithm (as measured by the degree in-
dex C (A) = d) and its statistical performance (as measured by the coefficient
S (A)). Clearly, the two are in conflict. Upon this a question arises: is it
possible to reach a compromise in the range of statistical performances S (A)
while varying the communication complexity between d = 3 and d = N? The
answer is affirmative, as shown in the following simulation exercise.

We fix N = 200 and then for each d = 3, . . . , N :

(i) Generate a matrix Ad associated with a d-regular Ramanujan graph as
before.

(ii) Compute the (non-unitary) eigenvalues γ
(d)
2 , . . . , γ

(d)
N of the matrix Ad

and evaluate the sum

S (Ad) =
N∑
`=2

1

1−
(
γ

(d)
`

)2 .

(iii) Plot S (Ad) and βC (Ad) = βd as well as penalized sums S (Ad) +
βC (Ad) for β ∈ {1/2, 1, 2, 4}, where β represents an explicit cost in-
curred when increasing the number of connections between nodes.

Results are shown in Figure 5, where d? refers to the d for which the penalized
sum S (Ad) + βC (Ad) is minimized. We observe that S (Ad) is decreasing
whereas C (Ad) increases linearly. The tradeoff between statistical efficiency
and communication complexity can be seen as minimizing their penalized
sum, where β for example represents a monetary cost incurred by adding
new network connections between nodes. We see that the optimal d? and
thus the number of node connections decreases as the cost of adding new
ones increases.

Next, let us investigate the tradeoffs involved in the case where we have a
large but fixed total number T of data to be streamed to N nodes, each
receiving one new data value from time t = 1 to time t = T/N . In this
context, the natural question to ask is how many nodes should we choose,
and how much communication should we allow between them in order to
get “very good” results for a “low” cost? Here a low cost comes from both
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Figure 5: Statistical efficiency vs communication complexity tradeoff for
four different node communication penalties β. d? is the d which minimizes
S (Ad) + βC (Ad).

limiting the number of nodes as well as the number of connections between
them.

In the same set-up for Ad defined above, one way to look at this is to ask,
for each N , what is the smallest d ∈ {3, . . . , N} and therefore the smallest
communication cost C (Ad) = d for which the performance ratio τt(Ad) is at
least 0.99 after receiving all the data, i.e., when t = T/N? Then, as there
is also a cost associated with increasing N , minimizing C (Ad?)/N (where
d? is this smallest d chosen) should help us choose the number of nodes N
and the amount of connection C (Ad?) between them. The result of this is
shown in Figure 6 for T = 100 million data points. The minimum is found
at (N, d?) = (710, 3), suggesting that with 100 million data points, one can
get excellent performance results (τt(Ad?) ≥ 0.99) for a low cost with around
700 nodes, each connected only to three other nodes! Increasing N further
raises the cost necessary to obtain the same performance, both due to the
price of adding more nodes, as well as requiring more connections between
them: d? must increase to 4, 5, and so on.
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Figure 6: Minimizing the number of nodes N and the level of communication
d required between nodes to obtain a performance ratio τt(Ad) ≥ 0.99 given
a large fixed quantity of data T .

6 Asynchronous models

The models considered so far assume that messages from one agent to an-
other are immediately delivered. However, a distributed environment may
be subject to communication delays, for instance when some processors com-
pute faster than others or when latency and finite bandwidth issues perturb
message transmission. In the presence of such communication delays, it is
conceivable that an agent will end up averaging its own value with an out-
dated value from another processor. Situations of this type fall within the
framework of distributed asynchronous computation (Tsitsiklis et al., 1986;
Bertsekas and Tsitsiklis, 1997). In the present section, we have in mind a
model where agents do not have to wait at predetermined moments for pre-
determined messages to become available. We thus allow some agents to
compute faster and execute more iterations than others and allow communi-
cation delays to be substantial.

Communication delays are incorporated into our model as follows. For B a
nonnegative integer, we assume that the last instant before t where agent j
sent a message to agent i is t−Bij, where Bij ∈ {0, . . . , B}. Put differently,
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recalling that θ̂
(i)
t is the estimate held by agent i at time t, we have

θ̂
(i)
t+1 =

1

t+ 1

N∑
j=1

aij(t−Bij)θ̂
(j)
t−Bij +

1

t+ 1
X

(i)
t+1, t ≥ 1. (6.1)

Thus, at time t, when agent i uses the value of another agent j, this value is
not necessarily the most recent one θ̂

(j)
t , but rather an outdated one θ̂

(j)
t−Bij ,

where Bij represents the communication delay. The time instants t−Bij are
deterministic and, in any case, 0 ≤ Bij ≤ B, i.e., we assume that delays are
bounded. Notice that some of the values t− Bij in (6.1) may be negative—

in this case, by convention we set θ̂
(j)
t−Bij = 0. Our goal is to establish a

counterpart to Theorem 3.1 in the presence of communication delays. As
usual, we set θ̂t = (θ̂

(1)
t , . . . , θ̂

(N)
t )>.

Let κ(t) be the smallest ` such that for all (k0, . . . , k`) ∈ {1, . . . , N}`+1 sat-
isfying

∏`
j=1 akj−1kj > 0, we have

t− `−
∑̀
j=1

Bkj−1kj ≤ B.

Observe that t−`−
∑`

j=1Bkj−1kj is the last time before t when a message was
sent from agent k0 to agent k` via k1, . . . , k`−1. Accordingly, κ(t) is nothing
but the smallest number of transitions needed to return at a time instant
earlier than B, whatever the path. We note that κ(t) is roughly of order t,
since

1

B + 1
≤ lim inf

t→∞

κ(t)

t
≤ lim sup

t→∞

κ(t)

t
≤ 1.

From now on, it is assumed that A = A1, i.e., the irreducible, aperiodic,
and symmetric matrix defined in (2.2). Besides its simplicity, this choice is
motivated by the fact that A1 is communication-efficient while its associated
performance obeys

τt(A) ≈ 1− N2

6t

for large t and N . The main result of the section now follows.

Theorem 6.1. Assume that X is bounded and let A = A1 be defined as in
(2.2). Then, as t→∞,

E
∥∥∥∥ t

κ(t)
θ̂t − θ1

∥∥∥∥2

= O

(
1

t

)
.
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The advantages one hopes to gain from asynchronism are twofold. First, a
reduction of the synchronization penalty and a potential speed advantage
over synchronous algorithms, perhaps at the expense of higher communica-
tion complexity. Second, a greater implementation flexibility and tolerance
to system failure and uncertainty. On the other hand, the powerful result
of Theorem 6.1 comes at the price of assumptions on the transmission net-
work, which essentially demand that communication delays Bij are time-
independent. In fact, we find that the introduction of delays considerably
complicates the consistency analysis of τt(A) even for the simple case of the
empirical mean. This unexpected mathematical burden is due to the fact
that the introduction of delays makes the analysis of the variance of the
estimates quite complicated.

7 Proofs

We start this section by recalling the following important theorem, whose
proof can be found for example in Foata and Fuchs (2004, Theorems 6.8.3
and 6.8.4). Here and elsewhere, A stands for the stochastic communication
matrix.

Theorem 7.1. Let λ1, . . . , λd be the eigenvalues of A of unit modulus (with
λ1 = 1) and Γ be the set of eigenvalues of A of modulus strictly smaller than
1.

(i) There exist projectors Q1, . . . , Qd such that, for all k ≥ N ,

Ak =
d∑
`=1

λk`Q` +
∑
γ∈Γ

γkQγ(k),

where the matrices {Qγ(k) : k ≥ N, γ ∈ Γ} satisfy Qγ(k)Qγ′(k
′) =

Qγ(k + k′) if γ = γ′, and 0 otherwise. In addition, for all γ ∈ Γ,
limk→∞ γ

kQγ(k) = 0.

(ii) The sequence (Ak)k≥0 converges in the Cesàro sense to Q1, i.e.,

1

t

t∑
k=0

Ak → Q1 as t→∞.
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7.1 Proof of Proposition 3.1

According to (2.4), since Ak is a stochastic matrix, we have

θ̂t − θ1 =
1

t

t−1∑
k=0

Ak(Xt−k − θ1).

Therefore, it may be assumed, without loss of generality, that θ = 0. Thus,

τt(A) =
E
∥∥X̄Nt1

∥∥2

E‖θ̂t‖2
.

Next, let Ak = (a
(k)
ij )1≤i,j≤N . Then, for each i ∈ {1, . . . , N},

θ̂
(i)
t =

1

t

t−1∑
k=0

N∑
j=1

a
(k)
ij X

(j)
t−k, t ≥ 1.

By independence of the samples,

E
(
θ̂

(i)
t

)2
=
σ2

t2

t−1∑
k=0

N∑
j=1

(
a

(k)
ij

)2
.

Upon noting that E(X̄Nt)
2 = σ2

Nt
, we get

τt(A) =
NE
(
X̄Nt

)2

E
(
θ̂

(1)
t

)2
+ · · ·+ E

(
θ̂

(N)
t

)2

=
t∑t−1

k=0 ‖Ak‖2
.

Since each Ak is a stochastic matrix, ‖Ak‖2 ≤ N and, by the Cauchy-Schwarz
inequality, ‖Ak‖ ≥ 1. Thus, 1

N
≤ τt(A) ≤ 1, the lower bound being achieved

when A is the identity matrix.

Let us now assume that A is reducible, and let C ( {1, . . . , N} be a recur-
rence class. Arguing as above, we obtain that for all i ∈ C,

E
(
θ̂

(i)
t

)2
=
σ2

t2

t−1∑
k=0

N∑
j=1

(
a

(k)
ij

)2 ≥ σ2

t2

t−1∑
k=0

∑
j∈C

(
a

(k)
ij

)2
.
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Since C is a recurrence class, the restriction of A to entries in C is a stochastic
matrix as well. Thus, setting N1 = |C|, by the Cauchy-Schwarz inequality,

E
(
θ̂

(i)
t

)2 ≥

{
σ2

tN1
if i ∈ C

σ2

tN
otherwise.

To conclude,

τt(A) =
σ2/t∑

i∈C E
(
θ̂

(i)
t

)2
+
∑

i/∈C E
(
θ̂

(i)
t

)2

≤ 1

1 + (N −N1)/N

≤ N

N + 1
,

since N −N1 ≥ 1.

7.2 Proof of Lemma 3.1

As in the previous proof, we assume that θ = 0. Recall that

θ̂t =
1

t

t−1∑
k=0

AkXt−k, t ≥ 1.

Thus, for all t ≥ 1,

E‖θ̂t‖2 =
1

t2
E
∥∥∥∥ t−1∑
k=0

AkXt−k

∥∥∥∥2

=
1

t2

t−1∑
k=0

E‖AkXt−k‖2

(by independence of X1, . . . ,Xt)

=
1

t2
EX>1

( t−1∑
k=0

(Ak)>Ak
)

X1.

Denote by λ1 = 1, . . . , λd the eigenvalues of A of modulus 1, and let Γ be
the set of eigenvalues γ of A of modulus strictly smaller than 1. According
to Theorem 7.1, there exist projectors Q1, . . . , Qd and matrices Qγ(k) such
that for all k ≥ N ,

Ak =
d∑
`=1

λk`Q` +
∑
γ∈Γ

γkQγ(k).
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Therefore,

t−1∑
k=0

(Ak)>Ak =
t−1∑
k=0

(Āk)>Ak

=
t−1∑
k=0

( d∑
`=1

λ̄k` Q̄` +
∑
γ∈Γ

γ̄kQ̄γ(k)

)>( d∑
j=1

λkjQj +
∑
γ∈Γ

γkQγ(k)

)

=
t−1∑
k=0

d∑
`,j=1

λ̄k`λ
k
j Q̄
>
` Qj + o(t).

Here, we have used Cesàro’s lemma combined with the fact that for any
γ ∈ Γ, limk→∞ γ

kQγ(k) = 0 (Theorem 7.1).

Since A is irreducible, according to the Perron-Frobenius theorem (e.g., Grim-

mett and Stirzaker, 2001, page 240), we have that λ` = e
2πi(`−1)

d , 1 ≤ ` ≤ d.
Accordingly,

λ̄`λj = e
2πi(j−`)

d = 1⇔ j = `.

Thus,
t−1∑
k=0

(Ak)>Ak = t
d∑
`=1

Q̄>` Q` + O(1) + o(t).

Letting Q =
∑d

`=1 Q̄
>
` Q`, we obtain

tE‖θ̂t‖2 = EX>1 QX1 + EX>1

(
1

t

t−1∑
k=0

(Ak)>Ak −Q
)

X1 (7.1)

= EX>1 QX1 + o(1)

=
d∑
`=1

E‖Q`X1‖2 + o(1).

Denoting by Q`,ij the (i, j)-entry of Q`, we conclude

tE‖θ̂t‖2 =
d∑
`=1

E
N∑
i=1

( N∑
j=1

Q`,ijX
(j)
1

)2

+ o(1)

= σ2

d∑
`=1

N∑
i,j=1

Q2
`,ij + o(1)

(by independence of X
(1)
1 , . . . , X

(N)
1 )

= σ2

d∑
`=1

‖Q`‖2 + o(1).
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Lastly, recalling that E‖X̄Nt1‖2 = σ2

t
, we obtain

τt(A) =
1∑d

`=1 ‖Q`‖2 + o(1)
=

1∑d
`=1 ‖Q`‖2

+ o(1).

7.3 Proof of Theorem 3.1

Sufficiency. Assume that A is irreducible, aperiodic, and bistochastic. The
first two conditions imply that 1 is the unique eigenvalue ofA of unit modulus.
Therefore, according to Lemma 3.1, we only need to prove that the projector
Q1 satisfies ‖Q1‖ = 1.

Since A is bistochastic, its stationary distribution is the uniform distribution
on {1, . . . , N}. Moreover, since A is irreducible and aperiodic, we have, as
k →∞,

Ak → 1

N

1 1 . . . 1
...

...
...

...
1 1 . . . 1

 .

By comparing this limit with that of the second statement of Theorem 7.1,
we conclude by Cesàro’s lemma that

Q1 =
1

N

1 1 . . . 1
...

...
...

...
1 1 . . . 1

 .

This implies in particular that ‖Q1‖ = 1.

Necessity. Assume that τt(A) tends to 1 as t → ∞. According to Propo-
sition 3.1, A is irreducible. Thus, by Lemma 3.1, we have

∑d
`=1 ‖Q`‖2 = 1.

Observe, since each Q` is a projector, that ‖Q`‖ ≥ 1. Therefore, the iden-
tity

∑d
`=1 ‖Q`‖2 = 1 implies d = 1 and ‖Q1‖ = 1. We conclude that A is

aperiodic.

Then, since A is irreducible and aperiodic, we have, as k →∞,

Ak →

µ
...
µ

 ,

where µ is the stationary distribution of A, represented as a row vector.
Comparing once again this limit with the second statement of Theorem 7.1,
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we see that

Q1 =

µ
...
µ

 .

Thus, ‖Q1‖2 = N‖µ‖2 = 1. In particular, letting µ = (µ1, . . . , µN), we have

N

N∑
i=1

µ2
i =

N∑
i=1

µi.

This is an equality case in the Cauchy-Schwarz inequality, from which we
deduce that µ is the uniform distribution on {1, . . . , N}. Since µ is the
stationary distribution of A, this implies that A is bistochastic.

7.4 Proof of Proposition 3.2

If A is irreducible and aperiodic, then by Lemma 3.1, τt(A) → 1
‖Q1‖2 as

t→∞. But, as k →∞,

Ak →

µ
...
µ

 ,

where the stationary distribution µ of A is represented as a row vector. By
the second statement of Theorem 7.1, we conclude that ‖Q1‖2 = N‖µ‖2.

7.5 Proof of Theorem 4.1

Without loss of generality, assume that θ = 0. Since A is irreducible and
aperiodic, the matrix Q in the proof of Lemma 3.1 is Q = Q>1 Q1. Moreover,
since A is also bistochastic, we have already seen that as k →∞,

Ak → 1

N

1 1 . . . 1
...

...
...

...
1 1 . . . 1

 . (7.2)

However, by the second statement of Theorem 7.1, the above matrix is equal
to Q1. Thus, the projector Q1 is symmetric, which implies Q = Q1.
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Next, we deduce from (7.1) that

τt(A) =
σ2

EX>1 QX1 + EX>1
(

1
t

∑t−1
k=0(Ak)>Ak −Q

)
X1

=
σ2

σ2 + EX>1
(

1
t

∑t−1
k=0A

2k −Q
)
X1

, (7.3)

by symmetry of A and the fact that EX>1 QX1 = σ2. The symmetric matrix
A can be put into the form

A = UDU>,

where U is a unitary matrix with real entries (so, U> = U−1) and D =
diag(1, γ2, . . . , γN), with 1 > γ2 ≥ · · · ≥ γN > −1. Therefore, as k →∞,

1

t

t−1∑
k=0

A2k = U

(
1

t

t−1∑
k=0

D2k

)
U> → U


1 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0

U>.

However, by (7.2) and Cesàro’s lemma,

1

t

t−1∑
k=0

A2k → Q as k →∞.

It follows that Q = UMU>, where

M =


1 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0

 .

Thus,

1

t

t−1∑
k=0

A2k −Q = U

(
1

t

t−1∑
k=0

D2k −M
)
U>

= U

(
1

t

t−1∑
k=0

diag
(
0, γ2k

2 , . . . , γ
2k
N

))
U>

= Udiag

(
0,

1

t

1− γ2t
2

1− γ2
2

, . . . ,
1

t

1− γ2k
N

1− γ2
N

)
U>.

28



Next, set

α` =
1

t

1− γ2t
`

1− γ2
`

, 2 ≤ ` ≤ N,

and let U = (uij)1≤i,j≤N . With this notation, the (i, j)-entry of the matrix
1
t

∑t−1
k=0A

2k −Q is
N∑
`=2

ui`α`uj`.

Hence,

X>1

(
1

t

t−1∑
k=0

A2k −Q
)

X1 =
N∑
i=1

X
(i)
1

N∑
j=1

( N∑
`=2

ui`α`uj`

)
X

(j)
1 .

Thus,

EX>1

(
1

t

t−1∑
k=0

A2k −Q
)

X1 = σ2

N∑
i=1

N∑
`=2

ui`α`ui`

= σ2

N∑
i=1

N∑
`=2

α`u
2
i`

= σ2

N∑
`=2

α`

=
σ2

t

N∑
`=2

1− γ2t
`

1− γ2
`

.

We conclude from (7.3) that

τt(A) =
1

1 + 1
t

∑N
`=2

1−γ2t`
1−γ2`

.

This shows the first statement of the theorem. Using the inequality 1
1+x
≥

1− x, valid for all x ≥ 0, we have

τt(A) ≥ 1− 1

t

N∑
`=2

1− γ2t
`

1− γ2
`

≥ 1− S (A)

t
.
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Finally, evoking the inequality 1
1+x
≤ 1 − x + x2, valid for all x ≥ 0, we

conclude

τt(A) ≤ 1− 1

t

N∑
`=2

1− γ2t
`

1− γ2
`

+

(
1

t

N∑
`=2

1− γ2t
`

1− γ2
`

)2

≤ 1− S (A)

t
+ Γ2t(A)

S (A)

t
+
(S (A)

t

)2

.

7.6 Proof of Theorem 6.1

From now on, we fix k0 ∈ {1, . . . , N} and let Z
(i)
t = tθ̂

(i)
t for any i ∈

{1, . . . , N}. Thus, for all t ≥ 1,

Z
(k0)
t =

N∑
k=1

ak0kZ
(k)
t−Bk0k−1 +X

(k0)
t ,

and

Z
(k0)
t =

N∑
k1,k2=1

ak0k1ak1k2Z
(k2)
t−Bk0k1−Bk1k2−2 +

N∑
k1=1

ak0k1X
(k1)
t−Bk0k1−1 +X

(k0)
t . (7.4)

Our first task is to iterate this formula. To do so, we need additional notation.
For ` a positive integer and k ∈ {1, . . . , N}, let K`(k) be the set of vectors in
{1, . . . , N}`+1 of the form (k0, k1, . . . , k`−1, k) such that w(K`(k)) > 0, where

w
(
K`(k)

)
= ak0k1ak1k2 . . . ak`−2k`−1

ak`−1k.

In particular, by our choice of A, we have w(K`(k)) = 2−` for any k. Next,
we set

∆
(
K`(k)

)
= `+Bk0k1 +Bk1k2 + · · ·+Bk`−2k`−1

+Bk`−1k.

When ` = 0, then by convention K0(k) = (k0), w(K0(k)) = 1 if k = k0 and
0 otherwise, and ∆(K0(k)) = 0.

We are now ready to iterate (7.4). To do so, observe that

Z
(k0)
t =

N∑
k=1

∑
Kκ(t)(k)

w
(
Kκ(t)(k)

)
Z

(k)

t−∆(Kκ(t)(k))

+

κ(t)−1∑
`=0

N∑
k=1

∑
K`(k)

w
(
K`(k)

)
X

(k)

t−∆(K`(k))

def
= R1

t +R2
t . (7.5)
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By the definition of κ(t), for all k ∈ {1, . . . , N}, t−∆(Kκ(t)(k)) ≤ B. Since
X is bounded, we deduce that there exists C > 0 such that

|R1
t | ≤ C

N∑
k=1

∑
Kκ(t)(k)

w
(
Kκ(t)(k)

)
.

This implies that |R1
t | ≤ C. To see this, note that Aκ(t) is a stochastic matrix

and that for all k ∈ {1, . . . , N},∑
Kκ(t)(k)

w
(
Kκ(t)(k)

)
= (Aκ(t))k0k.

The analysis of the term R2
t is more delicate. The difficulty arises from

the fact that this term is not a sum of independent random variables, and
therefore its components must be grouped. Since each Bij is smaller than B
and ∆(K`(k)) = x implies x ≥ `, we obtain

R2
t =

κ(t)−1∑
`=0

N∑
k=1

(B+1)`∑
x=0

∑
K`(k):∆(K`(k))=x

w
(
K`(k)

)
X

(k)
t−x

=

(B+1)(κ(t)−1)∑
x=0

N∑
k=1

x∑
`=bx/(B+1)c+1

∑
K`(k):∆(K`(k))=x

w
(
K`(k)

)
X

(k)
t−x

(b·c is the floor function). By independence of the X
(i)
j , we get

Var(R2
t ) = σ2

(B+1)(κ(t)−1)∑
x=0

N∑
k=1

( x∑
`=bx/(B+1)c+1

∑
K`(k):∆(K`(k))=x

w
(
K`(k)

))2

.

Recalling that w(K`(k)) = 2−`, we obtain

Var(R2
t ) = σ2

(B+1)(κ(t)−1)∑
x=0

N∑
k=1

( x∑
`=bx/(B+1)c+1

1

2`

∣∣∣K`(k) : ∆
(
K`(k)

)
= x

∣∣∣)2

.

Next, consider the Markov chain (Yn)n≥0 with transition matrix A such that
Y0 = k0. Observe that

P
(
Y` = k,

∑̀
j=1

BYj−1Yj = x− `
)

=
1

2`

∣∣∣K`(k) : ∆
(
K`(k)

)
= x

∣∣∣.
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Moreover, for fixed x, the events{∑̀
j=1

BYj−1Yj = x− `
}
,
⌊ x

B + 1

⌋
+ 1 ≤ ` ≤ x,

are disjoint since the Bij are nonnegative. Thus,

x∑
`=bx/(B+1)c+1

1

2`

∣∣∣K`(k) : ∆
(
K`(k)

)
= x

∣∣∣ ≤ 1,

and so,

Var(R2
t ) ≤ σ2

(B+1)(κ(t)−1)∑
x=0

N∑
k=1

1 = σ2N
(
(B + 1)κ(t)−B

)
. (7.6)

The expectation of R2
t is easier to compute. Indeed, since each A` is a

stochastic matrix,

ER2
t = θ

κ(t)−1∑
`=0

N∑
k=1

∑
K`(k)

w
(
K`(k)

)
= θ

κ(t)−1∑
`=0

N∑
k=1

(A`)k0k = θκ(t).

Combining (7.5), (7.6), and the fact that |R1
t | ≤ C, we obtain

E
(

t

κ(t)
θ̂

(k0)
t − θ

)2

= E
(
R1
t

κ(t)
+

R2
t

κ(t)
− θ
)2

= E
(
R2
t − ER2

t

κ(t)
+

R1
t

κ(t)

)2

= O

(
1

κ(t)

)
.

The result follows from the identity 1/κ(t) = O(1/t).
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P. Bianchi, S. Clémençon, J. Jakubowicz, and G. Morral. On-line learn-
ing gossip algorithm in multi-agent systems with local decision rules. In
Proceedings of the 2013 IEEE International Conference on Big Data, 2013.

V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis. Convergent
in multiagent coordination, consensus, and flocking. In Proceedings of
the Joint 44th IEEE Conference on Decision and Control and European
Control Conference, 2005.

C. Bordenave. A new proof of Friedman’s second eigenvalue theorem and its
extension to random lifts. arXiv:1502.04482v1, 2015.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algo-
rithms. IEEE Transactions on Information Theory, 52:2508–2530, 2006.

J.C. Duchi, A. Agarwal, and M.J. Wainwright. Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Transac-
tions on Automatic Control, 57:592–606, 2012.

M. Fiedler. Bounds for eigenvalues of doubly stochastic matrices. Linear
Algebra and Its Applications, 5:299–310, 1972.

D. Foata and A. Fuchs. Processus Stochastiques : Processus de Poisson,
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