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Ipas : Interactive Phenomenological Animation of the Sea
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Technopole Brest Iroise - Parvis Blaise Pascal, CS 73862, F-29238 Brest cedex 3, FRANCE

ABSTRACT
No current real time animation model of the sea simultaneously holds
account of a heterogeneous water plane up to 10 km2 with the local
effects of breakings, winds, currents and shallow waters on wave groups,
and this on all the wavelength scales, phenomena however essential so
that maritime simulation could have meaning for sailors and remains
physically believable for the eyes of oceanographers.
We propose a new approach for the real time simulation of the sea: in-
stead of numerically solving Navier-Stokes equations on a grid of points,
we use oceanographical results both from theory and experiments for
modeling autonomous entities, interacting in a multi agent system with-
out any predefined grid. Our model ipas (Interactive Phenomenological
Animation of the Sea) includes entities such as wave groups, active and
passive breakings, local winds, shallow waters and currents. Some of
the whole set of interactions are modeled.

KEY WORDS : wave field animation; phenomenological simu-
lation; multi agent system; wave groups; breakings; interactions.

INTRODUCTION
The interactive animation of the sea in real time constitutes a
strategic stake in many application related to various sea trades.
Indeed, more and more often, specialists in navigation, shipbuild-
ing, offshore, maritime safety, nautical competition..., have re-
course to simulation and virtual reality.
Sailors use specific vocabulary to describe the sea as a hetero-
geneous water plane on which they observe localized phenomena
(figure 1). These phenomena are modeled by oceanographers, who
view the sea as a complex system where many models are super-
imposed (figure 2). A model for interactive animation of the sea,

sailor’s word observable phenomena characteristics

meteorology synoptic wind, fronts, Beaufort’s
scale (Mayençon, 1992).

direction, speed, oscilla-
tions.

micro-
meteorology

local wind rise (convective cell, land-
scape), local sea state (irrisation,
breaking, foam, spray).

position, extent, direc-
tion, speed, duration.

swell
wave groups generated by synoptic
wind far from observation area.

direction, height, period,
crest width, wavelength,
number of waves.

wind sea wave group, sea state development,
steepness in function of synoptic
fetch and duration.

age, direction, wave-
length, height and period
of main waves.

current
steady breakings, group height and
frequency modification, small wave
translation, current threads and
counter-current, wakes.

localization, direction,
speed, inversion time and
rotation orientation.

bathymetry wave steepness, breakings, group re-
fraction, current modification.

localization, shape, tide
dependent water depth.

This table summarizes the main maritime terms for water plane description.
Each term corresponds to the designation of a phenomenon taking part in
the choices of the strategies of trajectories according to the ship used. A
simulator of sea, to be usable by sailors, must represent dynamically, in
real time and in an interactive way, the whole of the phenomena described
by this specific vocabulary.
Fig. 1. Sea state sailors’ vocabulary

on the one hand should propose the mediation of a maritime lan-
guage for the interactive specification of a heterogeneous water
plane, and on the other hand should respect oceanographical laws
as well as possible, while knowing virtual reality constraints.
However, no current real-time interactive animation model of the
sea surface (Gonzato and Saëc, 2000; Thon et al., 2000; Jensen
and Golias, 2001; Premože and Ashikmin, 2001; Tessendorf, 2001;
Hinsinger et al., 2002; Cieutat et al., 2003; Loviscach, 2003) si-
multaneously holds account of a heterogeneous water plane up to
10 km2 with the local effects of breakings, winds, currents and shal-
low waters on wave groups, and this for all the wavelength scales,
phenomena however essential so that maritime simulation could
have meaning for the sailors and remains physically believable for
the eyes of oceanographers.

phenomenon oceanographical modeling parameters

wave group

Wave group with a finite extent (Longuet-
Higgins, 1957; Sawnhey, 1962; Longuet-
Higgins, 1986). They propagate along rays
(Komen and Hasselmann, 1994).
Wavelet analysis using Morlet 2D (Arneodo
et al., 1995; Chapron et al., 1995; Donelan
and Drennan, 1996).

age, spectrum,
main number
of waves, mean
wave-vector, mean
position, group
velocity, extent.

breaking

Active breaking: breaking criterium (Dun-
can, 1981; Rapp and Melville, 1990; Longuet-
Higgins, 1994; Griffin et al., 1996), breaking
activity (Phillips, 1985; Melville and Matusov,
2002).
Fossil foam: foam field and turbulent patch
decay (Monahan and Zietlow, 1969; Banner
et al., 1989; Chang and Liu, 1998; Reul and
Chapron, 2004).

wave steepness,
velocity at the
wave crest, length
of breaking front,
duration of active
breaking, total
action, foam-layer
thickness, relax-
ation duration

group-
group

interaction

Resonance: four-wave interaction (Benney
and Saffman, 1966; Hasselmann et al., 1973;
Janssen, 2003).
Kinematics: interaction through breakings
(Banner and Phillips, 1974).

interacting group
wave-numbers, fre-
quencies and am-
plitudes.

group-
breaking

interaction

Action transfers from group to breaking and
dissipation of short waves by turbulences
(Longuet-Higgins, 1969; Whitham, 1974).
Growth of crest length (Banner and Tian,
1998), increasing number of waves and wave-
length (Donelan and Yuan, 1994).

particle/crest
speed, foam-
layer thickness,
frequency down-
shifting.

group-wind
interaction

Action transfers from wind to sea (Miles,
1957; Phillips, 1958; Janssen, 1994; Liu et al.,
1995).
Empirical results (Sverdrup and Munk, 1947;
Snyder and Cox, 1966; Barnett and Wilker-
son, 1967; Mollo-Christensen and Ramamon-
jiarisoa, 1982; Pierson et al., 1992; Drennan
and Donelan, 1996).

wind field, group
wavenumber,
steepness, crest
advance.

group-
current

interaction

Conservation of wave crests and action
(Bretherton and Garrett, 1969; Phillips,
1977).
Refraction and enlargement of groups by cur-
rent gradients.

current field, group
wave-numbers and
frequencies, wave
local amplitudes
and phases.

group-
depth

interaction

Conservation of wave crests and energy.
Dispersive refraction and enlargement of
groups (Willebrand, 1975; WAMDI-group,
1988).

depth map, group
wave-numbers and
frequencies, wave
local amplitudes
and phases.

This table summarizes the way in which the principal phenomena used by
the sailors are modeled in physical oceanography.
Fig. 2. Physical modeling of sea state phenomena
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We propose a new approach for the real time simulation of the sea:
instead of numerically solving Navier-Stokes equations based on
a grid of points, we use oceanographical results both from theory
and experiments for modeling autonomous entities which inter-
act in a multi agent system, without the need for a grid. This
article emphasizes the oceanographical aspects of our model and
does not describe either the interactive mediation of a maritime
language to specify a heterogeneous water plane, or graphical rep-
resentation, or computing solutions about the O(n2) complexity
of interactions underlying any multi agent system, where n is the
number of interacting agents.
In the next section, we expose the principle of autonomy which
guides our approach and give main characteristics of our model
ipas (Interactive Phenomenological Animation of the Sea). Then
we follow by specifying the wave group and breaking agents and
their interactions with each other and other agents. Finally, we
conclude about this multi agent approach for the phenomenologi-
cal animation of the sea and give some perspectives.

AUTONOMY REDUCES MODELING COMPLEXITY
Modeling complex system (Waldrop, 1992) like a heterogeneous
water plane, with asynchronous information about the state of its
different parts, might be observed by the principle of autonomy
(Varela, 1979). By applying this principle to sea state modeling,
we obtain a multi agent system named ipas where each agent is
considered as an autonomous entity (Brooks, 1991) interacting
with its environment via interaction mediators.

Principle of Autonomy
The model autonomisation by need relates to the instantaneous
holding account of changes in environment, by the organizations
as by the mechanisms (Tisseau and Harrouet, 2003). The phys-
ical modeling of mechanisms generally goes through the resolu-
tion of differential equation systems; as is the case for the sea
with the Navier-Stokes equations (Chen et al., 1999; Grilli et al.,
2001). This resolution requires the knowledge of boundary con-
ditions (Liakos, 1999) which force the movement but, in reality,
these conditions continuously change, and their causes could be
known or not (interactions, disturbances, environment modifica-
tions). The model must thus be able to perceive these changes to
adapt its behavior during its execution. This is all the more true
when a human is in the loop because, via his avatar, he can cause
initially unforeseeable modifications. For example, how to predict
the trajectory followed by such or such sailing ship controlled by a
human operator on the virtual water plane? The autonomisation
by need of a model contributes to reinforce the feeling of reality.
The sea surface model retained consists of a whole of autonomous
reactive entities interacting in a Multi Agent System (MAS) (Fer-
ber, 1997). An agent is an autonomous reactive entity, having
sensorimotor capacities, and communicating with the environment
(Ferber, 1995). These agents are located in the environment where
they evolve/move according to their behavioral model which de-
fines their capacities of perception, action and decision according
to internal characteristics and interactions with the environment.
We use oceanographical results both from theory and experiments
for modeling interacting agents. Like any modeling, the MAS ap-
proach simplifies the studied phenomenon. But, by distributing
control on the level of each agent, it allows to mainly respect its
complexity, while authorizing a diversity of the components, a di-
versity of the structures and a diversity of the interactions brought
into play.

Ipas: a Multi Agent System
Our model ipas (Interactive Phenomenological Animation of the
Sea) includes primitive physical agents such as wave groups, active
and passive breakings, synoptic and local winds, bathymetry and
currents. These agents assume the physical believability of the
virtual environment and their modeling is inspired by the oceano-
graphical description of entities responsible for sea states (figure
2). Other agents realize the mediation of maritime language, for
friendly interactive water plane specification (figure 1); these high
level agents are for example: swell, wind-sea or rogue wave for
wave generators, convective cell or cumulus road for winds, cur-
rents and bathymetry editors.
Physical agents are situated at the surface of the environment
and can perceive properties of the environment via interaction
mediators. An interaction mediator is any position ~x0 on the
water plane (altitude z = 0) associated with specific attributes.

Every cycle, each agent records its interaction mediators where
it needs information according to its behavior and can act on its
environment by updating some attributes of mediators situated in
its neighborhood, depending on its abilities. For example, wind,
current and bathymetry agents are able to update respectively
wind speed vector ~Walt.10 m, current vector ~U, depth p and depth
gradient ~∇(p) of a mediator at any position ~x0 of the water plane.
To date, physical agent models in ipas are declined in an oceano-
graphical model for wave groups and breakings, and a descriptive
model for winds, currents and bathymetry. Some of the whole of
interactions are modeled in ipas (figure 3): action towards wave
groups from other groups, breakings, winds, bathymetry and cur-
rents, and action toward breakings from wave groups, winds and
currents.

x
↙

y
Group Breaking Winds Current Depth

Group action.
wave,
action.

creation,
energy.

wave,
action,
transport.

wave,
energy.

Breaking
creation,
action. action. action.

transport.

indirect
via
groups

Winds
Current
Depth

These agents are modeled by a descriptive way.
We choose not to model the reactions of these agents.

In a multi agent system, the modeling of an interaction between agent A
and agent B, unlike the physical notion of interaction, needs to specify both
directions (Ferber and Müller, 1996): what does A do to B (action) and
what does B do to A (reaction). The upper table, where “x type agents
act on y type agents” should be read, presents interactions modeled in
ipas. Their nature is specified: by wave we mean the modification of wave
group parameters, by action an energy transfer mechanism from groups
and winds to breakings or from groups, breakings and current to groups
implying the modification of wave frequency and amplitude for groups, or
an energy transfer mechanism from passive breaking to active breaking for
turbulence accumulation, by energy an energy transfer without frequency
modification, by transport any phenomenon of position modification other
than wave group propagation, and by creation the x type agent ability to
generate y type agents.
Fig. 3. Interactions modeled in ipas

Thus, by distributing the sea state complexity at the level of quite
simple autonomous entities interacting in a multi agent system,
our model for the animation of the sea offers physical believability
for the animation up to 50 000 particles, anywhere on a heteroge-
neous 10 km2 water plane at 10 fps, with a normal pc.
The next two sections describe physical agents in ipas and their
interactions between each other and other agents.

PHYSICAL AGENTS
Ipas is peopled by two types of agent, whose modeling is inspired
from oceanographical work: wave group agent and breaking agent.
This section details the characteristics of these two agents.

Wave Group Agent
The wave group agent is our main primitive for the phenomeno-
logical simulation of the sea. It includes physical notions like finite
extent envelope, mean position ~X, mean wave-vector ~K and mean
pulsation Ω governed by eikonal equations (Komen and Hassel-
mann, 1994): d ~X

dt
= ∇kΩ and

d ~K

dt
= −∇xΩ (1)

Inspired by the use of 2D Morlet’s wavelet for fractal analysis of
sea states (figure 4), we have reified this wavelet in a dynamical
wavelet that we call a wave train. This wave train is related to
these mean characteristics and extent. We enrich this model by
adding local disturbances in phase and amplitude, then use it to
animate water particles in a Gerstner way (Gerstner, 1804), pre-
senting high nonlinear behavior even for a single wave group.

Graph of 2D Morlet’s wavelet
(Grossmann and Morlet, 1984): a
sinusoid enveloped by Gaussian.
The non isotropic aspect of this
wavelet makes it possible to ap-
prehend wave orientation (Arneodo
et al., 1995). It is the wavelet used
in oceanography for the fractal
analysis of the sea surface (Chapron
et al., 1995; Peng et al., 1995;
Donelan and Drennan, 1996).

2D Morlet’s wavelet is described by the following equation:

Ψ(x) = ei~k0·~xe−~x′·A·~x + Corr (2)
Parameter ~k0 characterizes wavenumber and orientation of the sinu-

soidal wave. A is a positive definite matrix specifying the elliptic shape
of the Gaussian envelope. Corr assumes energetic finitude: Ψ(0)=0.

Fig. 4. 2D Morlet’s wavelet
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The behavior of a wave group is characterized by a wave train
which controls it, by disturbances in phase and amplitude attached
to crests and by competences on interaction mediators. We will
see in the next section how it modifies its behavioral parameters
according to interaction with other agents.

Wave Train

We do not consider the 2D Morlet’s wavelet as a mathematical
tool, but as a reification of the physical wave group notion, whose
envelope moves at the group speed and whose phase progresses at
the phase speed (figure 5).

gCgC

l/2

L/2

group front

c

crest

crest

crest

crest

group back (a)

gC

c

a

L/2

H

crestcrest

crestcrest

group back group front

(b)
A wave group agent is controlled by a dynamical 2D Morlet’s wavelet whose
envelope moves at the group speed and whose phase progresses at the phase
speed: it is a reification of the physical concept of wave group. We call this
dynamical wavelet: a wave train. Waves move in open sea twice as quickly
as the group. When a wave enters the train, its amplitude is weak bus very
attenuated by the envelope. On the first half of the train, it gains energy
and its amplitude increases. On the second half, it loses some energy and
its amplitude decreases. Top view (a): the wave train is seen as a rhombus
Γ (the Gaussian envelope is truncated when amplitude becomes very low).
Side view (b): the wave amplitude evolves in a Gaussian envelope.
Fig. 5. The wave train controlling a wave group agent

A wave train (or dynamical wavelet) is characterized by its size
(L, l), its wave-vector ~K, its pulsation Ω, its phase χ, its number
N of waves with the positions of their crests: χ=π mod(2π), its crest
profile P crests, its phase speed c=Ω/K, its center position ~X on the
sea, its group speed ~Cg, its amplitude H/2 at the center and its age
α=(t−t0)+α0. All these characteristics are functions of the history
of the group which it controls, according to its interactions with
the environment and their initial values given in infinite depth
without current: ((L0,l0), ~K∞,Ω0,N0,χ0,P crests

0 ,c0, ~X0, ~Cg0 ,H0,α0).
To respect the finite extent of the envelope, we truncate the dy-
namical wavelet by a rhombus Γ (figure 5(a)). The size of a wave
train depends on its mean wave-vector ~K and its number N of
waves; the length L of the envelope is equal to N times the mean
wavelength λ = 2π/K so that it could contain N waves and its
width l must be higher than N − 1 times the wavelength λ, in
order to observe the concept of crest:

l ≥ (N − 1)λ =
2(N − 1)π

K
and L = Nλ =

2Nπ

K
(3)

The axes of the Gaussian lens envelope are defined by the eigenvec-
tors of the matrix A [equation (2)]. The positive definite matrix A
characterizing the distribution of the amplitudes in the envelope
is related to the width l and the length L of the wave train. The
first(resp. second) eigenvector of A is collinear(resp. orthogonal) to
~K and is inversely proportional with L2(resp. l2):

A =
�

cos θ − sin θ

sin θ cos θ

�
·
 �

4
L

�2
0

0
�

4
l

�2 ! · � cos θ sin θ

− sin θ cos θ

�
(4)

where θ is the direction of the mean wave-vector ~K. Then, for a
wave group situated in ~X, the local amplitude follows:

a(~u, t) =

���� H(~u,t)
2

· e−~u′·A·~u if ~x0 = ~u + ~X ∈ Γ

0 if ~x0 = ~u + ~X 6∈ Γ
(5)

where H is the height without envelope and ~u = ~x0 − ~X the
mediator position relative to the wave train center position.
The envelope of the wave train moves at the group speed. In
deep water without currents, the eikonal equation (1) with the
dispersion relation for gravity waves: Ω2=gK, gives the following
expression for the group speed:

~Cg =
d ~X

dt
= ∇kΩ =

Ω ~K

2‖K‖2 =
~c

2
(6)

where ~c is phase speed (the mean speed of crests). In open sea
without currents, group speed is half crest speed.
The wave profile of a 2D Morlet’s wavelet is a straight line, but
sea wave crests can present other types of profile. We consider
that a single profile can be used to characterize all the crests of
one group (figure 6). This profile is defined by a spline P crests:�− l

2
, l

2

� → �−L
2
, L

2

�
v 7→ P crests

(v)
with

Z l
2

− l
2

P crests

(v) dv = 0 (7)

group envelope

crest profile
χ=π (2π)
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Here, a wave train is such
that K = 2π, the wavelength
is 1 m. Its envelope Γ is in
dash line. The wave train
has 5 waves in dash-dot lines
(1 to 5). Their crests, in
solid lines (1’ to 5’) have
all the same horizontal profile
P crests. This profile P crests

is generated here by a frac-
tional Brownian motion with
a Holder exponent 0.9.

Fig. 6. Wave crest horizontal profile

Such a profile is used to compute the phase χ, by translating the
reference position ~x0 along the wave-vector ~K with the algebraic
distance defined by P crests(v), v being the distance from x0 to the
line passing by ~X with direction ~K:

∀x0 ∈ Γ, χ(x0, t) = ~K ·
�
~x0 − P crests

(v)
~K
K

�
− Ωt + χ0

with v = (~x0 − ~X) · ~K∧~z
K

(8)

where ~z pointing to zenith and ‖~z‖ = 1.
Such a wave train mainly characterizes the influence zone and the
crest positions of the wave group attached to it. This influence
zone bringing mean wave parameters, propagates on the water
plane at the group speed. Added to this, we use local phase and
amplitude disturbances attached to crests.

Phase and Amplitude Disturbances

To be attached to crest, both phase and amplitude local distur-
bances are functions of χ(x0, t) [equation (8)]. They are used to
specify local effects such as those of winds, breakings, currents
and bathymetry on a group, but also unknown previous history
aspects of a group.
• Amplitude Disturbance δH. In the envelope equation (5) of a
wave train, the local height H(~u,t) is the sum of two terms: a global
one H and a local disturbance attached to the crests δH(χ(x0,t)):

H(~u, t) = H + δH(χ(~u + ~X, t)) (9)
with ‖δH‖<H, so that H(~u,t) is always positive. δH is linearly inter-
polated between control points situated at the crests of the waves.
Each crest is bringing a set of control points defining a spline
δH(χ=πmod(2π)). Each time a new wave enters the wave train, a set
of random positive values in ]0,H] for control points is associated
to this new crest. Then, δH evolves through time, depending on
group interactions with other agents.
• Phase Disturbance φ. Phase disturbance can be viewed as the
notion of instantaneous phase (Meyers et al., 1993). It is a modu-
lation of the phase χ depending on relative position to crests and
troughs. This modulation models crest advance, trough delay, the
local shape of waves and the speed of particles. Each position at
a crest (resp. trough) is associated with φmax, 0 ≤ φmax ≤ π/3
(resp. φmin, −π/3 ≤ φmin ≤ 0). The interpolation between crest
and trough follows a power function whose exponent ρ > 1 de-
pends on the front (ρfront) or back (ρback) of the crest.
When animating particles in aGerstnerway (next sub-subsection),
the value of exponents modifies wave shape and particle speed.
We choose ρback ∈]1, 3] and ρfront ∈]1, 9]. The effect of the expo-
nents is illustrated by the figure 7: bigger ρback increases amount
of water in the back; bigger ρfront increases vertical acceleration
and horizontal speed in the front, and shapes the wave until the
beginning of a plunging breaking shape. More precisely, inter-
polation between crests n,n+1 and trough n+1/2 follows equation:������������������

if − π + φ
[n]
max ≤ ξ < φ

[n+ 1
2 ]

min

φ(ξ) = (φ
[n]
max − φ

[n+ 1
2 ]

min )

 
ξ−φ

[n+ 1
2 ]

min

φ
[n]
max−φ

[n+ 1
2 ]

min −π

!ρ
[n]
front

+ φ
[n+ 1

2 ]

min

if φ
[n+ 1

2 ]

min ≤ ξ < π + φ
[n+1]
max

φ(ξ) = (φ
[n+1]
max − φ

[n+ 1
2 ]

min )

 
ξ−φ

[n+ 1
2 ]

min

π+φ
[n+1]
max −φ

[n+ 1
2 ]

min

!ρ
[n+1]
back

+ φ
[n+ 1

2 ]

min

(10)
where ξ=χ mod(2π) is between crest χcrest=π+φmax mod(2π) and trough
χtrough=φmin mod(2π). Front is characterized by −π+φmax≤ξ<φmin,
while back verifies φmin≤ξ<π+φmax. This definition of φ assumes
continuity of the phase disturbance at every π + φmax and φmin.
The choice of exponents ρ > 1 assumes that φ is differentiable in
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(a)

(b)

(c)

π)rad/2φ (
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hs > phase speed

hs < phase speed

horizontal speed
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particle position
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phase disturbance
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hs (m/s)

z (m)

x (m)

x (m)

power effect on phase disturbance

power effect on horizontal speed

power effect on wave shape

no disturbance

0.14

0

This wave is 1 m long and 18 cm
height. Crest advance is φmax = π/4,
and φmin = 0 [graph (a)]. In solid
line, no phase disturbance is used for
particle animation using phase χ in a
Gerstner model with circular orbits.
Two other lines represent the subtrac-
tion of the phase disturbance φ [equa-
tion (10)] to χ in the same Gerstner
model. In dash-dot, back exponent is
1.5 while front is 2.25. In dash-dot-
dot, back exponent is 3 while front is
9. Higher exponent increases parti-
cle speed near crests [graph (b)], then
the probability of plunging breakings
goes closer to one [graph (c)].

Fig. 7. Front and back nonlinear interpolation effects on waves

each φmin, but not at π + φmax. Then, we artificially modify φ′ in
each [π,π+φmax]mod(2π) following definition:

φ′(ξ) =�������
dφ
dξ

, if − π + φ
[n−1]
max < ξ < π

dφ
dξ

+ (φ′front − φ′back) sin2

�
π
2
· ξ − π

φ[n]
max

�
, if π ≤ ξ ≤ π + φ

[n]
max

where φ′front=
ρ
[n]
front(φ

[n]
max−φ

[n+ 1
2 ]

min )

φ
[n]
max−φ

[n+ 1
2 ]

min −π

and φ′back=
ρ
[n]
back(φ

[n]
max−φ

[n− 1
2 ]

min )

φ
[n]
max−φ

[n− 1
2 ]

min +π

(11)
This modification illustrated by figure 8 makes model more robust
for the detection of breaking events based on particle speed, such
as the duration of high horizontal speed near crests, linked to this
definition of φ′, is longer.
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Here, phase disturbance with φmax = π/3,
φmin = −π/4, ρback = 2 and ρfront = 4 is
plotted in solid line (relatively to a 1 m wave-
length wave whose height percentage is in dot
line). Dash line represents the exact φ differ-
ential calculus, while dash-dot line shows the
correction applied to φ′.

Fig. 8. Correction applied to the calculus of dφ
dξ

When a new crest appears at the back of a group, random phase
disturbance values are selected for control points defining a spline
along this crest and along next trough; for crests φrnd

max∈]0,π/8] and
for troughs φrnd

min∈[−π/8,0[. Then, φ evolves through time, depending
on group interactions with other agents.
This phase disturbance corresponds to a maximum. Then, it is
dotted by the Gaussian lens to obtain the modified phase χ[φ]:

χ[φ](~x0, t) = χ(~x0, t)− φ(χ(~x0,t)) · e−(~x0− ~X)′A(~x0− ~X) (12)

with χ(~x0,t) given by equation (8) and φ by equation (10). When
progressing into the group, a wave wins crest advance until it
reaches the middle of the group, then loses this advance as it is
progressing into the front part of the group (figure 9).
Thus, these amplitude and phase local disturbances control each
wave of a group adding nonlinear behaviors and can be used for
integrating wave history through its travel into the group.

Competences on Interaction Mediators

If an interaction mediator situated in the environment at ~x0 is
influenced by a group (~x0 ∈ Γ), such groups add their contributions
to four attributes of this mediator. These attributes are called:
dynamic position −→∆x, particle speed ~s, normal ~n and influencing
group list C. These competences are inspired from the Gerstner
model, imagining water particles as moving around circular orbits
in function of their phase. For a single infinite group without
disturbance in the Gerstner model of sea without any currents or
shallow water, −→∆x corresponds to particle position relatively to its
rest position ~x0, ~s is particle speed, ~n is the normal of sea surface
and C contains the name of this group. We assume that when
some group agents influence the same mediator, each contribution−→
∆x

+, ~s+, ~n+ is added linearly to −→∆x, ~s, ~n.
For a given group ( ~K,Ω,χ,φ, ~X,H,δH), its competences −→∆x

+, ~s+ and
~n+ on an interaction mediator at ~x0 follow equations:

−→
∆x

+
= a ·

h
eiχ[φ](~x0,t)

i
(−~z, ~K)

(13)

~s+ = −aΩ · �1− 2a
H

φ′(χ(~x0,t))
� · hieiχ[φ](~x0,t)

i
(−~z, ~K)

(14)
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Group characteristic view in a
vertical plane containing wave-
vector ~K and position ~X. Here,
K=2π rad m−1, Ω=7.85 rad s−1,
N=5, X=2.5 m and H=0.12 m (for
a wavelength λ=1 m).
Top graph φ: phase dis-
turbance dot the envelope,
with 0 ≤ φmax < π/3,
−π/6 < φmin ≤ 0, ρfront = 4
and ρback = 2.
Middle graph hs: horizontal
speed of particles only due to this
group using Gerstner model for
the animation of particles (parti-
cle is positioned on a elliptic orbit
using the disturbed phase χ[φ];
the dash line indicates the phase

speed c = Ω/K, as a possible criterium for breaking activity when hs > c.
Down graph z: particle position using Gerstner model; when a wave enters
the group, its phase disturbance and amplitude grow until their maximum
in the middle of the group, then decrease in the second part of the group.
Fig. 9. A wave group with its enveloped phase disturbance

~n+ = 1I�
1+aK·

�
1− 2a

H

�
dφ(ξ)

dξ

�
[χ(~x0,t)]

�
·ieiχ[φ](~x0,t)

�
( ~K,~z)

(15)

where a = a(~x0− ~X, t) is the local wave amplitude with its distur-
bance as defined by equations (5) and (9), χ the phase respecting
equation (8), χ[φ] the local modified phase [equation (12)], φ′ the
modified phase derivate [equation (11)] and ~z the normed vector
pointing to zenith. Notation [A](~v, ~w) represents, in the complex
plane associated to (~v, ~w), the vector ~u whose complex affix is
A ∈ lC: ~u = <(A)~v + =(A)~w. Notation 1I ~N represents ~N/‖ ~N‖.
• Dynamic position [equation (13)] is the application of Gerstner
model using disturbed phase for animating water particle resting
at ~x0; crests are defined by χφ( ~x0, t) = π mod(2π). When more
than one group influences this mediator: −→∆x =

P−→
∆x

+.
• Speed particle [equation (14)] results from weak ∂a(~u, t)/∂t hy-

pothesis: ~s+ = d
−→
∆x

+
/dt ≈ a(~u, t) · [i ∂χ[φ]( ~x0,t)

∂t
eiχ[φ]( ~x0,t)](−~z, ~K),

with ∂χ[φ]( ~x0, t)/∂t ≈ −Ω ·(1−(2a/H)φ′(χ( ~x0,t))). When more than

one group influences this mediator: ~s =
P

~s+.
• Normal [equation (15)] results from weak ∂a(~u, t)/∂x hypoth-
esis: the normal ~n+ due to a single group is then in the plane
containing vertical ~z and wave-vector ~K, and makes an angle
of +π/2 in the complex plane (−~z, ~K) with the vector of af-
fix 1+a∂eiχ[φ]( ~x0,t)/∂x0≈1+aK(1−(2a/H)φ′(χ( ~x0,t)))ieiχ[φ]( ~x0,t). When
more than one group influences this mediator, we can not just
vectorally add each 3D normals ~n+

1···N ; we have to respect the fol-
lowing equation resulting from linear considerations:
if ∀j ∈ [[1, N ]], ~n+

j · ~z 6= 0 (i.e: there is no horizontal normal),

~n = 1I���������
0B@ 1 0 0

0 1 0

0 0
1
N

1CA·� ~n+
1 · · · ~n+

N

�
·

0BBB@
1/|~n+

1 ·~z|
...

1/|~n+
N
·~z|

1CCCA
(16)

else, ~n = 1I�����P{j∈[[1,N]], ~n
+
j
·~z=0} ~n+

j

is the mean horizontal normal.

These group agent abilities are illustrated by figures 7, 9 and 10.
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Water particle animation
results from the applica-
tion of a Gerstner model
using disturbed phase.
Here, 100 particles with
~x0∈[0,1]×{0}×{0} are ani-
mated [equation (13)] by
a single group propagat-
ing in the direction of the
first co-ordinate. This
group is shaping a crest
(zoomed on right) with
wavelength λ=1 m, local
amplitude a=8 cm, phase
disturbances φ

[n]
max=π/4,

φ
[n±1/2]
min =0 and exponents

(ρback=1.5,ρfront=2.25) for (a) and (b), (ρback=2,ρfront=4) for (c) and (d). In
(a) and (b), wave shape shows a nearly breaking crest, confirmed by the
comparison between phase speed c = Ω/K and particle speed [equation
(14)] represented by arrows. In (c) and (d), wave shape shows an active
breaking crest, confirmed by the down orientation of normals [equation
(15)] on the front of the wave.
Fig. 10. Particle animation inspired by a Gerstner model
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Thus, we have shown the wave group agent used in ipas. A group
is controlled by a wave train carrying mean properties of the group
and transporting the envelope. Amplitude and phase disturbances
give control at the level of each wave and their parameters mod-
ify local wave shape. Particle animation relies on the application
of a Gerstner inspired model. Each group influencing an interac-
tion mediator can update dynamic position, particle speed, surface
normal and can add its name to the list of groups having a crest
near this mediator.

Breaking Agent
Oceanographers view two phenomena in breaking: one, active
breaking following the propagation of breaking fronts and the
other, passive breaking explaining foam and turbulence relaxation.
Breaking agents are responsible for the representation of both
these phenomena. A breaking agent is a set of particles gath-
ered in representatives by neighbourhood. Each representative
deals with an area element for simplifying calculcus. A represen-
tative has one or two particles including one known as principal.
Particles are associated to three specific states: active, passive
or unknown. These states correspond respectivly to belonging to
active front, relaxing foam and turbulences or waiting for more
information to decide its role in breaking.
We first describe how active breaking fronts are propagating by
recording interaction mediators. Then we specify the foam and
turbulence relaxation.

Active Breaking

Active breaking modelling needs to take into account breaking
activity and front propagation. The breaking agent decides its ac-
tivity in function of the information given by recorded mediators
positioned at the active or unknown particles of representatives.
The front propagation results from an exploration of the neigh-
borhood of active particles, by creating unknown particles. Let’s
specify activity and propagation calculus.
• Breaking activity. The breaking agent estimates its activity rate
β for a particle potentially belonging to the front, as defined by
the following (Reul and Chapron, 2004) inspired equations if there
is at least one crest close to this mediator, i.e. C 6= ∅:

∀j ∈ C,

��������
~Cj =

�
1− α( ~W,~cj)

�
· ~cj + α( ~W,~cj) · ( ~Cgj − ~cj)

with α( ~W,~c)=

��������
0 , if ( ~W−~c)·~c≤0

0 , if ( ~W−~c)·~n≤0
( ~W−~c)·~n
‖ ~W−~c‖ , otherwise.

(17)

λ =

��������
0 , if ∀j ∈ C, ~s · ~Cj ≤ C2

j�P
j∈C,~s·~Cj>C2

j
(~s · ~Cj − C2

j )λj

�
�P

j∈C,~s·~Cj>C2
j
(~s · ~Cj − C2

j )
� , otherwise.

(18)

β = 9.9× 10−2λ1/2 (19)

where ~W is wind speed, ~s particle speed, ~n surface normal, C the in-
dices of groups having a crest near this mediator, and for a group j:
~cj its phase speed, ~Cgj

its group speed and λj its wavelength. The
function α( ~W,~c) taking values in [0, 1] reflects the risk of air separa-
tion close to the crest, supporting an early surge (Liu et al., 1995).
The speed ~Cj [equation (17)] is then between group speed (α = 1)
and phase speed (α = 0). The wavelength λ [equation (18)] could
be imagined as an activity weighted average wavelengths of the
groups transferring activity to this breaking (Duncan, 1981). The
activity rate β [equation (19)] corresponds to foam thickness in-
creasing rate but also to the growth of breaking intensity (Melville
and Matusov, 2002).
If no group has a crest close to this mediator (C = ∅) or if ac-
tivity rate β given by equation (19) is null, the particle changes
to passive breaking mode if it was active or is destroyed if it
was unknown. If activity rate β is not null and if the particle
was unknown, it changes to active state and destroys the possi-
ble second particle, keeping the foam thickness if the destroyed
particle was passive; then becomes the principal particle of the
representative.
The breaking agent can update the breaking activity aspects of
interaction mediators. Any mediator situated inside the area of
a representative possessing an active particle has its activity
attribute set to true and the different group contributions (~s·~Cj−

C2
j )>0 are memorized in a special attribute: the list of active groups

for this part of the breaking front:

L = {j ∈ C / ~s · ~Cj − C2
j > 0} (20)

• Active front propagation. The set of active representatives (i.e:
having one active particle) form the active front of the breaking.
At each end of its life cycle, the breaking agent records interac-
tion mediators as unknown particles, close to active front in order
to determine front propagation. For each active representative
and for each group j ∈ C transferring activity to this representa-
tive, three interaction mediators are recorded. These three points
are generated at the estimated position of the crest of this group
∆t seconds later, where ∆t is the current duration of one life cy-
cle. The first point is the position of the active particle of the
representative translated by ∆t · (~cj + ~U), where ~cj is the phase
speed of the group j and ~U the local current given by the active
particle of this representative. The two others are on both sides
of this first point which is their middle and equidistant with dis-
tance tan 75o · ∆t · cj ≈ 4∆t · cj , assuming an exploration with
an aperture of 150o. Also, each active representative records a
mediator positioned at its active particle position with the list of
active groups and their contributions, in order to be able to deter-
mine the end of breaking activity and the effect on active groups.
Before recording this list of particles, it is simplified by keeping
only one unknown or active particle for each representative.
Thus, a breaking agent is constituted by a whole of representatives.
Some of them belong to active front. At the same time as active
breaking is propagating autonomously by following active front
thanks to information given by recorded mediators, the passive
phase settles.

Passive Breaking

Each representative initially receives during its active phase a cer-
tain foam thickness depending on the activity and age of the break-
ing front, inspired by (Reul and Chapron, 2004):

δ(t) =

Z t

t0

β(u) du , for t0 ≤ t ≤ t0 + τ (21)

where t0 is the beginning of active breaking and τ its duration.
If breaking begins at the moment t0 for an initial representative
a leaving the active front at the moment t1, it receives a foam
thickness δa(t)=

R t
t0

β(u) du, for t < t1. If the front remains active
at t > t1, a nearby representative b then enters the front at the
moment t1 and will leave it at the moment t2, it receives a foam
thickness δb(t)=δa(t1)+

R t
t1

β(u) du, for t1 < t < t2; and so on until
the breaking front activity stops, knowing that it is always the
active representatives which choose their neighbors, in order to
avoid conflicts.
As soon as a representative leaves the active front, it enters an
exponential relieving phase. Its foam thickness checks then, ac-
cording to (Reul and Chapron, 2004), the equation of relieving:

δ(t) = δmaxe
− t−(t0+τ)

τ′ , for t ≥ t0 + τ (22)

with t0 + τ the moment at which the representative leaves active
front with a foam thickness δmax (for the representative a: τ =
t1− t0 and δmax = δa(t1)), taking τ ′ ≈ 3.8 s for the lifespan of the
salted water bubbles (Monahan and Zietlow, 1969).
The breaking agent can update the foam and turbulence thickness
of interaction mediators. Any mediator situated inside the area of
a representative has its foam and turbulence thickness attribute
set to δ. When the foam thickness of a representative became
lower than a certain threshold, this representative destroys itself.
When a breaking agent is empty, it disappears.
Thus, a breaking agent is made up of representatives, which, af-
ter an active phase based on particle speed observation relative
to crest speeds, gradually release their foam and turbulences, by
respecting oceanographical hypothesis like breaking activity is a
function of the wavelength, influenced by wind stress over wave
group and like foam and turbulences are exponentially released.

INTERACTIONS
In ipas, physical agents interact via interaction mediators, respect-
ing oceanographical laws associated to maritime phenomena and
summarized in figure 2. We detail in this section interactions pre-
sented in figure 3. We first view interactions towards breaking
agents, then interactions towards wave group agents.

Paper No. 2004-JSC-386 Parenthoën Page: 5 of 8



Interactions Towards Breaking Agent
Breaking are propagating in an autonomous way in interaction
with groups and winds via recorded mediators, as specified by the
equations (17), (18) and (19) characterizing the quantity of action
provided to a breaking agent by groups and winds. We specify
here some of the other interactions defined in the table of figure
3; they are related to their creation and their transport.
The breaking birth is not spontaneous: it is decided by groups.
The current transports the particles of the representatives.

Creation by Groups

At each agent life cycle, a group creates new breaking in two man-
ners: either according to the Stokes’ limiting criterion (Longuet-
Higgins, 1969) according to its parameters, or on a slope criterion
(Bonmarin, 1989) according to normals provided by the mediators
recorded by the group.
• Stokes’ criterion. A group can create autonomously a breaking
if its mean steepness is too high. The Stokes’ criterion at group
center obeys the following equation (considering this group alone):

(H + δHmax)Ω
2 ≥ g (23)

where H + δHmax is the wave height maximum of the group at
moment t, without the Gaussian lens. If this criterion is checked,
a position ~x0 at a crest of the rear part of the group is drawn
by chance. If the local steepness δlocal is higher than 6% (Rapp
and Melville, 1990), a breaking agent is generated with one rep-
resentative containing a unique unknown particle: the interaction
mediator positioned in ~x0 +∆t ·~c, for anticipating crest movement
until the next cycle.
• Slope criterion. When a group reads the attributes of its
recorded mediators, it checks the slope using the surface normal
~n. We decide to define the slope criterion by the equation:

~n · ~z < 0.97 ≈ cos(14o) (24)

where ~z is the unitary vector pointing to zenith. This criterion
assumes slopes greater than 14o, according to experimental obser-
vations (Bonmarin, 1989; Rapp and Melville, 1990). If the slope
criterion is checked for a given mediator, the group agent cre-
ates a breaking agent with one representative containing a unique
unknown particle: this mediator with the same position. Indeed,
when the slope criterion is checked, there is greater chance to be
on the front part of the wave than on its back part.
Whatever the criterion checked, such a generated breaking agent
will then evolve autonomously according to its own behavior, in
particular, its manner of becoming indeed active or not.

Transport by Currents

The representatives are positioned by co-ordinates in a reference
mark related to the ground; the current effect is then onto parti-
cles belonging to representatives. Each representative records an
interaction mediator situated at its main particle position. This
mediator gives the local current value ~U. The particles of a repre-
sentative are then translated by ∆t · ~U. If such a translation puts
a particle outside the representative area, a new representative is
added and deals with this particle. If the breaking agent has al-
ready a representative at this position, this particle may become
one of the particles of this representative. In this last case, the
choice for main and second particle depends on the states of par-
ticles in competition: active, passive or unknown. When there is
only one active particle, its becomes the main one. When there
are two active particles, only one is kept: the one with the higher
activity; the other is destroyed.

Interactions Towards Wave Group Agent
The effects on the waves of phenomena related on winds, break-
ings, currents and depth are of capital importance for sailors. It
is thus advisable to represent them as correctly as possible, re-
specting real time constraints. We start by quickly presenting the
effects of bathymetry and current, then we will describe action
transfers with winds, breakings and other groups. In ipas, these
effects are superimposed.
All these interactions depend on the attribute values of five
recorded mediators LFRB and C, LleftFfrontRrightBback being a
rhombus included inside the group envelope Γ, with C as center.
The position of these mediators structure relative to the group
center X evolve randomly at each life cycle of the group agent.

Interactions with Bathymetry and Currents

The general idea is to modify the mean characteristics of the
wave train controlling a group, by respecting usual oceanograph-
ical modeling of wave-depth and wave-current interactions: crest
conservation, dispersion relation in shallow water and action con-
servation related to the corresponding sine wave specified by its
wavenumber ~K, pulsation Ω, phase χ and amplitude H/2 (Brether-
ton and Garrett, 1969; Phillips, 1977; Komen and Hasselmann,
1994), using short time windows and space average current and
depth given by mediators LFRB and C.
Differences between these mean characteristics and local values
of depth and currents will then modify the direction of propaga-
tion using lateral variations of depth and current which causes
an envelope and wave-vector rotation by analogy with the op-
erations of a tank (group refraction), the envelope width using
divergence or convergence of depth gradients and currents viewed
by the group while respecting action conservation, the crest profile
and the local distribution of phase and amplitude disturbances; in
particular, shallow water increases local trough delays until phase
disturbance has reached the minimum −π/3 and increases local
amplitude, while deep water does the opposite; for currents, a
current opposite to group propagation (resp. having the same di-
rection) increases (resp. decreases) phase disturbance exponents.

Action From Wind

Our modeling is based on (Sverdrup and Munk, 1947)’s measure-
ments (figure 11). Winds can create new groups randomly on the
water plane. The characteristics of these new groups are those of
the minimal one minute wind duration, and it takes one minute
for the height of such a group to reach H0 from 0. The number of
such generated groups at each cycle is such that every minute, the
whole surface of the water plane is covered by these new groups.
Once they are one minute old, these groups evolve autonomously.
Winds can also increase wave train height and modify crest ad-
vance or phase disturbance exponents, depending on wave train
position in the Sverdrup and Munk’s diagram relative to its age
and average wind speed (figure 11). Wind speed reference is the
projection of the wind vector ~W onto the group wave-vector ~K:
W̄ = ~W · ~K/K. For such wind speed W̄ , when W̄ > 2.5 ms−1

(else there is no interaction), the diagram gives a significant height
Hmax and a significant pulsation Ωmin = 2π/Pmax in function of
group age α. We distinguish two cases Ω > Ωmin or Ω ≤ Ωmin:
• If Ω > Ωmin, group height H is increased by ∆H, calculated pro-
portionally with cycle duration ∆t and max(Hmax−H; 0). We also
add to phase disturbance parameters φmax, ρfront, ρback local extra
advances δφwind

max of each crests and extra exponents δρwind
front, δρ

wind
back .

These modifications of phase disturbances are calculated propor-
tionally with P∞(W̄)−2π/Ω, where P∞(W̄) is the maximum period
reachable by waves stressed by a wind blowing at speed W̄ , while
respecting constrains:
0< φmax + δφ

wind
max ≤ π/3 , 1< ρfront + δρ

wind
front ≤ 9 , 1< ρback + δρ

wind
back ≤ 3

• If Ω ≤ Ωmin, possible height increase ∆H is computed pro-

portionally with ∆t and Hmax · e−γ(1/Ω−1/Ωmin)2 − H, where γ
defines Gaussian repartition of long wave heights around significa-
tive waves, while respecting ∆H ≥ 0.
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Opposite, diagram given by (Sverdrup
and Munk, 1947)’s work. It specifies
mean wave heights and periods in func-
tion of wind speed and duration. For a
given wave train determined by its age
α, onto which a synoptic wind blows at
one given speed W̄ , this diagram indi-
cates significant height H̄ and period P̄
that the wave train should reach. It
will then receive from wind an certain
amount of action proportionally with
∆t times the difference between current
and significant height/period by modi-
fying its mean height H, crests advance
φmax and exponents ρfront, ρback. This
modeling allows groups to reach signi-
ficative wave heights. However, this
does not modify wave period. Wave pe-
riod is adjusted indirectly though inter-
action towards groups from breakings.

Fig. 11. Significant heights and periods of wind sea waves

Thus, a group receives from wind an increase of action translated
in terms of height increase and phase disturbance modifications.
When a group is far from balance with wind, its height all the more
grows and phase disturbance modifications all the more increase
breaking probability.
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Action From Breakings and Other Groups

In spite of the complexity of physical phenomena brought into play
for the genesis and the evolution of sea states (Miles, 1957), be it
by breaking cinematic mechanisms (Banner and Phillips, 1974)
or by resonant coupling (Hasselmann, 1962; Benney and Saffman,
1966), all the models explain the progressive lengthening of waves
(Donelan and Yuan, 1994; Drennan and Donelan, 1996) and the
organization of groups (Banner and Tian, 1998) according to the
age of the wind sea (Janssen, 1994), in agreement with the sea
observation by the sailors.
In ipas, we have not implemented four wave interactions, as it can
be neglected for a water plane having a radius lower than 10 km;
we use a simple merge mechanism. The lengthening of waves will
be modeled by interaction between groups and breakings. We deal
with two types of action from a breaking towards groups, the first
is associated with active breaking and the second with passive
breaking; both of them propose lengthening and organization of
groups.
• Group merge. When a group i reads the C attributes of its five
recorded mediators, it computes the intersection of these five lists.
If it is not empty, for each group j belonging to this intersection,
if ~Ki ≈ ~Kj , then group i and j are merged into a new group k
progressively replacing both groups i and j, in Ni + Nj periods
duration: during the same time, groups i and j decrease their
heights, while group k increases its height. The merge respects
action conservation, crest positions and envelope extent as best as
possible.
• Active breaking and groups. When a breaking agent is active, it
records interaction mediators at the position of active particles,
with activity attribute set to true and the list of groups L [equa-
tion (20)] having activity for this breaking associated with their
contributions (~s·~Cj−C2

j ). When a group updates such an interac-
tion mediator n, it checks if it is one of the groups j ∈ Ln. If so,
it modifies its parameters taking into account its action transfer
to this breaking and possibly to other groups. This modification
process depends on the position of the crest p to which belongs
this particle n, relative to the center of the group j, according to
whether p is located in the front or back part of the group. If the
breaking crest p is in the front part, p progressively loses its lo-
cal positive random phase and amplitude disturbances, at a speed
proportional to its activity rate: rj

n =(~sn·~Cj−C2
j ). If the breaking

crest p is in the back part, the group j progressively decreases its
mean height Hj and its mean wavenumber Kj . The Hj decrease
speed τHj < 0 and the Kj decrease speed τKj < 0, for the whole
crests p ∈ groupj respect equations:

τHjp = −Λ(cj)

N

X
particlen∈p

rj
n(H0p

n −Hj
n) , τHj =

X
p∈groupj

τHjp (25)

τKjp =
2

N

τHjp

τ ′Hj

· g

c3
j

· mean
particlen∈p

(rj
n/cj) , τKj =

X
p∈groupj

τKjp (26)

where cj is phase speed, Hj
n the height of the wave at particle n

position at the beginning of breaking activity, H0p
n >Hj

n the max-
imum height of this wave when it will reach the middle of the
group, N the number of waves in the group, Λ [m−2s] the dis-
tribution of the average length of breaking fronts per unit area
per unit speed interval (Phillips, 1985), empirically modeled by:
Λ(c) = 3.3×10−4 (W/10)3 e−0.64c (Melville and Matusov, 2002),
and τ ′Hj an inner coefficient of the group regularly updated to fol-
low Sverdrup and Munk’s measurements, by increasing (resp. de-
creasing) it if group wavelength is too small (resp. long) compared to
the significative wavelength of such a group (figure 11). Equation
(26) comes from the dispersion relation Ω2=gK and phase speed
definition c=Ω/K giving: ∂K/∂c≈−2g/c3, while wanting to modify
K for bringing phase speed c closer to particle speed s, resulting
formula being parameterized by wind separation notion.
Applying equation (25) decreases group height Hj . If that leads
to Hj ≈ 0, breaking is so intensive, that this group is destroyed.
Applying then equation (26) modifies indirectly group length Lj

and corresponds to a certain amount of action. Group height Hj

is then corrected by action conservation. This action could also
be separated for each active particle n and for each active group
j ∈ Ln. For a given particle n, all of its active groups are concerned
with a certain amount of action, but the group i with the smallest

K influencing this mediator (even if i 6∈ Ln) receives the totality
of this action in the form of a wavelength increase, then updates
its mean height Hi to respect action conservation, Hi possibly has
been already updated by equation (25) and indirectly (26).
• Passive breaking. When a group reads its mediators LFRB
and C, attributes concerning passive breakings give foam and tur-
bulence thickness and whose passive breakings are under it. It
can then estimate passive breaking area S with an average foam
and turbulence thickness δ̄. Two types of modification occur: the
first is addressed to the local phase and amplitude disturbances
by decreasing their random part at a speed proportional with lo-
cal thickness δLFRB or C , for modeling the absorption of high fre-
quencies (WAMDI-group, 1988); the second is addressed to group
width l by increasing l at a speed proportional with foam and tur-
bulences average thickness δ̄ times the quotient of breaking area
S by group area L×l, for modeling width group increase (Banner
and Tian, 1998). Then, for a given group, when l exceeds 5L,
its number of waves N is incremented following a process of one
period duration. New length LN+1 is given by equation (3) and
new width lN+1 is lN times N/(N + 1). These modifications are
such that the total action of the group is conserved. The matrix A
characterizing the group envelope is modified progressively during
this period from its current value to its target value AN+1 given
by equation (4).
Thus, an active or passive breaking takes a certain quantity of
action to groups and modifies their wavelengths and widths with
the profit of sub-harmonics, while taking as a starting point ex-
perimental and theoretical work.

CONCLUSION & FORWARDS
We have proposed a multi agent approach for the real time simula-
tion of the sea, while respecting as best as possible oceanographical
knowledge. Our model ipas includes agents in interaction such as
wave groups, active and passive breakings, local winds, shallow wa-
ters and currents. We have modeled action towards wave groups
from breakings, winds, shallow waters and currents, and action
toward breakings from wave groups, winds and currents. These
interactions are computed in term of action or energy transfer,
wave parameters, breaking activity, transport, refraction and cre-
ation. Ipas can compute water particle movement at any position
on a 10 km2 water plane, up to fifty thousands particles in real
time (> 10 fps)1. Thus, ipas can help those who have recourse to
simulation and virtual reality.
A lot of work has to be done for the oceanographical validation
of ipas, using usual tools for sea states analysis. The simulation
method is very flexible, and to some extent, it seems that adequate
tuning might bring the results close to any theoretical model or
actual measurements at sea, without a great amount of dedicated
tuning. An extension of the model to the underwater phenomena
could be of great interest, as well as the addition of the not yet
modeled interactions.
Ipas may be the first prototype of rising generation models for
real time animation of the sea; they will have to be able to man-
age this complexity related to the diversity of the phenomena
(wave groups, active breakings, foam, winds, currents, shallow
waters. . . ), on the diversity of the interactions between these en-
tities, and on the diversity of the mechanical, visual and sound
effects associated.
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Bonmarin, P. (1989). Geometric properties of deep water breaking
waves. J. Fluid Mech., 209:405–433.

Bretherton, F. and Garrett, C. (1969). Wave trains in inhomogeneous
moving media. Proc. Roy. Soc. London, Ser. A, 302:529–554.

Brooks, R. (1991). Intelligence without representation. Artificial Intel-
ligence, 47:139–159.

Chang, K.-A. and Liu, P. (1998). Velocity, acceleration and vorticity
under a breaking wave. Phys. Fluid., 10(1):327–329.

Chapron, B., Liu, A., Peng, C., and Mollo-Christiensen, E. (1995).
Higher order spectral and scale analysis of surface height fluctuations.
Global Atmosphere and Ocean System, 3:151–173.

Chen, G., Kharif, C., Zaleski, S., and Li, J. (1999). Two-dimensional
Navier-Stokes simulation of breaking waves. Physic of Fluids, 11(1):121–
134.

Cieutat, J., Gonzato, J., and Guitton, P. (2003). A general ocean waves
model for ship design. In Virtual Concept, pages 187–194, Biarritz,
France. ESTIA.

Donelan, M. and Drennan, W. (1996). Nonstationary analysis of the di-
rectional properties of propagating waves. Journal of Physical Oceanog-
raphy, 26(9):1901–1914.

Donelan, M. and Yuan, Y. (1994). Dynamics and modelling of ocean
waves, chapter Physical description of wave evolution; wave dissipation
by surface processes, pages 143–155. Cambridge University Press.

Drennan, W. and Donelan, M. (1996). Nonlinear coalescing wave groups.
In Donelan, M., Hui, W., and Plant, W., editors, Symposium on The
Air Sea Interface, pages 127–132.

Duncan, J. (1981). An experimental investigation of breaking waves
produced by a towed hydrofoil. Proc. Roy. Soc. London, 337:331–348.

Ferber, J. (1995). Les systemes multi-agents, vers une intelligence col-
lective. InterEditions, Paris.
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