
5 (2014) 1–5 1

Real-Time, Scalable, Content-based Twitter
users recommendation
Julien Subercaze a, Christophe Gravier a and Frédérique Laforest a

a Laboratoire LT2C, Equipe Satin, Telecom Saint-Etienne, 25 rue du docteur Remy Annino, 42000
Saint-Etienne, France
E-mail: first.last@telecom-st-etienne.fr

Abstract.
Real-time recommendation of Twitter users based on the content of their profiles is a very challenging task.

Traditional IR methods such as TF-IDF fail to handle efficiently large datasets. In this paper we present a scalable
approach that allows real time recommendation of users based on their tweets. Our model builds a graph of terms,
driven by the fact that users sharing similar interests will share similar terms. We show how this model can be
encoded as a compact binary footprint, that allows very fast comparison and ranking, taking full advantage of
modern CPU architectures. We validate our approach through an empirical evaluation against the Apache Lucene’s
implementation of TF-IDF. We show that our approach is in average two hundred times faster than standard
optimized implementation of TF-IDF with a precision of 58 %.

Keywords: Twitter recommendation, Binary Footprint, Large scale approach, Information Retrieval, Real-Time
recommendation

1. Introduction

Microblogging websites such as Twitter produce
tremendous amounts of data each second. For in-
stance, Twitter was known to publish an average of
140 millions tweets per day as of march 20111. In
a single year, this number has increased up to 340
millions tweets2. In this context, we address the
problem of building a “good” user profile model,
in order to exploit it in applications such as recom-
mending users to users. We expect a “good” user
profile model that maximizes the following char-
acteristics :

– Distance-preserving : The distance between
users in the user profile space should preserve
the interesets proximity perceived by users
with their peers as much as possible.

1http://blog.twitter.com/2011/03/numbers.html
2http://blog.twitter.com/2012/03/

twitter-turns-six.html

– Explanability : Recommender systems should
be able to produce human-understandable
justifications of recommendations.

– Extensibility : The set of users and their in-
terests evolve with time. However, it should
be possible to update the model without com-
plete reprocessing.

– Scalability : Algorithms to compute and com-
pare user profiles should present a complexity
as low as possible.

– Real-Time : The profile must be often up-
dated, there its computation must be as fast
as possible. These algorithms should also
be easily parallelized, to take advantage of
the advent of Map/Reduce [9] and related
paradigms.

In this paper we present a new approach to cre-
ate and compare profiles of social network users.
The solution exploits user-generated contents. In
this model, we generate a binary footprint – a hash
– of the user profile that preserves the distance

/14/$ c© 2014

2 J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation

between users profiles in the binary space. Using a
binary footprint provides both scalability and par-
allelization for computing and comparing user pro-
files. Computing Hamming distance between two
hashes is a very fast operation that is computed
at the processor level 3 on commodity machines.
Moreover, computing newcomers profiles does not
require to recompute others’ profiles.
The paper is organized as follows. Section 2
presents related works on building user profiles.
Section 3 describes the core of our proposition,
which is a complete processing of user-generated
contents resulting in building and comparing user
profiles. Details on how we deal with finding rep-
resentative data structures in the user profile is
provided in section 3.1. In Section 4, we present
architecture design and implementation details of
the storage and retrieval database used to perform
top-k retrieval on hashed profiles. We apply this
approach on a Twitter dataset that we crawled,
and compete with other content-based techniques,
taken from the field of Information Retrieval. Ex-
perimental results validate the quality and the
real-time property of our approach in section 6.
Section 7 concludes and provides hints for further
investigations.

2. On building social user profiles

Twitter analysis has been applied for folk-
sonomies homogenisation [45], tag recommenda-
tion [37,44] or as a corpus for opinion mining
and sentiment analysis [30,14]. It is often used as
a datasource for recommender systems. Among
these systems a distinction is done between user
recommendations and user-generated content rec-
ommendations. User-generated content recom-
mendations concern tweets or external content
sources suggestions to users whereas users recom-
mender systems suggest users to follow as an out-
put. Both rely on a digital representation of each
user’s features, which is usually called the user’s
profile. The field of recommender systems blos-
somed with the advent of Web-scale data analy-
sis, especially with applications in Web search and
social networks. While it has grown so as to be

3Recent processors with the SSE4 instruction set allow
the computation of hamming distance in two operations,
XOR and POPCNT

now considered as a new data science by itself, we
tried to meekly cover how building user’s profile
is performed in the myriad of existing works. User
profile can also be used in personalization systems
[11,7]. Exhaustive literature reviews with better
coverage can be found in [1], [18], and [24]. To
our knowledge, user recommender systems fall in
the following schools of thought: Social Network
Analysis, Collaborative Filtering, Semantic-based
models, and Content-based models. They can also
combine these approaches for building hybrid rec-
ommender systems. Our proposal (see Section 3)
belongsto the content-based model category.

2.1. Social Graphs

A possible approach to build user profiles is to
consider information from the social network of
the user. The assumption is that the proximity
of users in a social graph conveys the distance
between users’ interests, hence the user recom-
mendation scheme. The proximity between users
mainly relies on concepts such as graph density
and centrality in order to identify key users in the
social graph. In these works, the problem is not
taken as ranking all possible friends to a given
user. Instead, it most frequently aims at finding
clusters of users (sometimes referred as communi-
ties) in the social graph. Recommended users are
then picked within the user’s cluster. For instance,
in [8], the authors introduced a users segmenta-
tions method using the Gaussian Mixture Model
(GMM). In [19], the authors look for hubs and au-
thorities in the network and then identify possi-
ble overlapping and dense communities in the net-
work.

The major issues with social networks were
stressed by Social Network Analysis studies [43].
They demonstrate that content and user interac-
tivity prevail over the social graph of the user.
Moreover, note that most of the algorithms ap-
plied to social graphs are NP-hard problems, and
even applying heuristics or approximations are at
best in polynomial time.

2.2. Collaborative Filtering

Collaborative Filtering is a very popular re-
search area for recommender systems. It builds
recommendations based on past item-user inter-
actions, previous ratings of items by users. It is

J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation 3

primarily used in item recommender systems [36],
as competitions are organized around large pub-
licly available datasets, like the Netflix dataset [4].
They can also be used for user to user and item
to item recommender systems. State of the art im-
plementations mainly rely on Matrix Factorization
methods [21].
Collaborative filtering methods are known to

provide good results given enough data. They suf-
fer from the infamous sparse data and cold start
problems. Computation is also at stake when the
matrix is in a order of magnitude of billions of lines
and columns. However, given both users and items
are projected in a feature space, they can provide
some justifications for the recommendation they
made, for instance by illustrating the recommen-
dation with close users-items interactions in the
feature space [21]. Collaborative Filtering can be
improved using demographic data [41].

2.3. Semantic-based models

Semantic-based models exploit external databases
in order to enrich user profiles, especially linked
data. In [28], the authors presents Flink, a system
that builds user profiles out of users web pages,
emails, and even FOAF profiles. FOAF is a cor-
nerstone for these approaches, since it is the de
facto standard for modeling user profiles in the Se-
mantic Web. This category of user profiles usually
complement Collaborative Filtering, as they ad-
dress the cold start issue. Nonetheless, they does
not scale well, because reasoning over logic frag-
ments involved in the Semantic Web is, even for
minimalist fragments like [29] in polynomial time,
and at worst NEXPTIME [39]. Regarding the user
recommendation process that follows user profile
construction, [38] proposed the use of semantic
technologies for better people recommendation in
a system called Social Adviser. The authors intro-
duced linked data (DBPedia, a semantized version
of Wikipedia) in the content extraction process.
They have also defined specific scores to measure
expertise. Even if no performance analysis is pro-
vided, [17] showed that executing SPARQL queries
over the Web of data takes at least 20 seconds even
with all data locally retrieved in advance, which
discards de facto such an approach for real-time
purpose.

2.4. Content-based models

Content-based models aim at modeling users
with predefined features. For instance, users can
present geolocation, gender, age. . . , while items
could have features such as metadata, topics, hash-
tags, etc. There are many possible features and
ways to combine them, thus leading to as many
different models. For instance, [25] builds user pro-
files out of folksonomies. From the user personomy,
a bipartite graph is built and a greedy algorithm
looks for clusters of tags, and most frequent tags
in the cluster serve as a signature of this cluster.

A large spectrum of works tries to leverage the
textual information that were produced or rated
by the user. Our proposal that follows in Section 3
falls in this category. Early popular approaches
rely on Vector Space Models (VSM) [35]. VSM
uses frequency measures in text corpus in order to
leverage semantic information. Lingras used mod-
ified Kohonen self-organizing maps to cluster web
users [23], which can be lately used for recomman-
dation purpose.

Frequencies encompass [40] :

– frequencies of terms in documents, for mod-
eling user interests based on their choice of
words.

– frequencies of terms in the context of a given
term for word sense disambiguation.

– frequencies of word pairs with other word
pairs, in order to model latent word pairs se-
mantic relatedness.

Most of these techniques use bags of words to char-
acterize users or documents [34,15]. As the bag of
words approach has shown its limitations, machine
learning techniques have been developed to go be-
yond this representation. The most popular are
continuous Conditional Random Fields (CRF) [22]
and Latent Dirichlet Association [5] (LDA). Both
techniques have been used to represent documents
[42,32] and LDA has also been used for topic mod-
eling in social network [33]. The main drawback of
these machine learning techniques is the learning
part, which is prohibitively extensive for real-time
processing. Wallach [42] provides mean execution
time for LDA. Results show that each iteration
(around 200 are required) takes between 2 and 15
seconds. Although presenting computational issue,
these approaches extract knowledge automatically,

4 J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation

Distance-Preserving Extensibility Scalability Parallelizable Explanations

Social Graphs − + −− − +
Collaborative Filtering + − + ++ +
Semantic-based + − −− − +
Content-based + − −− ++ −
Hybrid ++ −− −− + −−

Table 1
Pro/cons of differents schools of trends for building user
profiles as an input to recommender systems.

thus avoiding the hurdle to create ad hoc ontolo-
gies like in semantic-based approaches.

2.5. Hybrid methods

Several works tried to combine the aforemen-
tioned approaches. For instance, [20] combines So-
cial graph with Collaborative Filtering. They pro-
pose Referral Web, a Web-scale system for search-
ing social networks for users and items at both
coarse and fine grain. In [10], the authors propose a
combination of collaborative filtering and content-
based methods for item recommendation. Another
combination is Content-based mixed with Collab-
orative Filtering as proposed by [27] for improved
recommendations. In [16], Twitter users are rec-
ommended some followers using content and Col-
laborative Filtering approaches. Hybrid systems
are gaining momentum since they have proven to
beat single approach baseline in large and popu-
lar dataset. In lessons learnt from the Netflix price
in [3], the authors stress the importance of using
a variety of models that complement the short-
comings of each others. This is however beyond
the scope of this paper. We focus on a proposal
falling into the Content-based category, and ex-
pect that improving one of these categories would
improve the overall performance of hybrid recom-
mender systems. We provide a synoptic view of the
different schools of trends on building user profile
in Table 1, in the light of the criteria presented in
Section 1 that we want to maximise when building
a user profile.
As a conclusion, the real time processing of tex-

tual data cannot be handled efficiently with the
use of external data sources or with machine learn-
ing techniques.

In this paper we developed a document centric
approach, with the use of statistics and graph tech-
niques. Given shortcoming stressed in this section
and gathered in Table 1, the aim is to keep the ad-
vantages of Content-based approaches but provide
them extensibility and scalability using heuristics
and hash functions. This approach is described in
the next section.

3. HashGraph - Binary user profiles

Our approach called HashGraph is inspired by
the paper of Matsuo & Ishizuka [26] on keyword
extraction. In this article the authors present a
method to extract keywords from a single docu-
ment using statistical information. In a first step
their algorithm computes the co-occurency ma-
trix of the terms in each sentence of the docu-
ment. Then they apply the following procedure
"Co-occurrences of a term and frequent terms are
counted. If a term appears selectively with a par-
ticular subset of frequent terms, the term is likely
to have an important meaning. The degree of
bias of the co-occurrence distribution is given by
the χ2-measure." The χ2-measure is later used in
their algorithm to extract relevant keywords or
keyphrases, the other words of interest being dis-
carded.

We adapt the approach of Matsuo & Ishizuka
for user profile extraction on twitter. A document
is the set of users’ tweets. In our approach we aim
at keeping all relevant words in the users’ pro-
files, with corresponding weights. We adapt the
approach by skipping the χ2 value computation
which is highly computationnaly expensive. And
we replace this method by a clustering by a strong
component detection from the graph of terms.

J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation 5

This computation can be done efficiently in linear-
time.
The main steps for Twitter user recommenda-

tion based on content, using our HashGraph ap-
proach, are the following:

1. Grab text from user tweets so as to build a
document representing the user

2. Preprocess the document
3. Build the graph of terms
4. Compute the hash of the profile
5. Identify the k nearest neighbors and recom-

mend them to the end user

Figure 1 (inspired by [46] to compare key-
word extraction processes) summarizes this pro-
cess. The whole process must be computable in
real-time, so as to react "instantaneously" to the
evolution of users tweets topics.
Some of these steps do not deserve much atten-

tion. In the following we focus on two main ac-
tions. The first action is to transform a document
containing a sequence of short text messages into
a graph of terms. We present the method for this
transformation in section 3.1. Since we focus on
a real time algorithm, we discuss the complexity
of the algorithms used. The second action con-
cerns hashing user profiles and computing a dis-
tance between hashed profiles. It is the object of
section 3.2.
We define an undirected weighted graph of

terms G =< V,E > where V is the set of vertices
(i.e. the terms) and E is the set of edges. E is an
application from V to V . To each e ∈ E, a weight
w is associated :w ∈ <, where w is the proximity
between the two terms.

3.1. User profile as graphs of terms

We process the tweets using standard text anal-
ysis steps. Instead of sentences split, our algorithm
considers a tweet as a sentence, i.e. all the words
in a tweet are co-occurring, even if they belong
to two different sentences in the same tweet. The
idea being to consider a tweet as a unity in terms
of performative speech act. The terms are then
stemmed using a standard Porter-stemming algo-
rithm. From the set of terms, we restrict the set
of candidate terms for building the graphs to the
lemmatized tokens and extracted n-grams minus
the stopwords. Part of speech tagging is used to
extract only nouns, verbs and adjectives from the

tweets. Afterwards we build the co-occurrence ma-
trix of the terms based on a tweet split. Table 2
presents an example of a co-occurrence matrix.

Once the co-occurrence matrix is built, we
transform it into a graph representation. Sev-
eral approaches are possible. The naive approach
would consider the co-occurrence matrix as an ad-
jency matrix of the graph. We have decided to
consider rows of the matrix as an occurence prob-
ability distribution and to compare distributions
of terms using statistical divergence measure.

a b c d e Total
a 3 4 2 1 10
b 3 0 0 2 5
c 4 0 4 0 8
d 2 0 4 6 12
e 1 2 0 6 9

Table 2
Co-Occurrence matrix example for terms a,b,c,d and e

If we normalize the values of each row in the
matrix so that the sum is equal to one and assum-
ing that terms are independently occurring, we can
consider the rows of the co-occurrence matrix to
be a distribution probability. This means that for
row of term a, each cell represents the probability
that term a co-occurs with another one. Table 3
presents the normalized values for the first row.

a b c d e Total
frequency 3 4 2 1 10
probability 0.3 0.4 0.2 0.1 1

Table 3
Co-occurence frequency and probability for the term a

For instance probability of co-occurrence of a
and c is 0.3. To determine wether two terms be-
long to a same topic, it is possible to evaluate the
distance of their co-occurrence probability distri-
bution. Several statistical measures provide either
divergence or metrics, we used the square root of
the Jensen-Shannon divergence.

Very different terms have a low Jensen-Shannon
divergence. They are not of interest in our ap-
proach, thus we set a threshold to select the in-
teresting value. A commonly adopted threshold
is 0.95 × log(2) [26]. We ran several tests on our

6 J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation

Twitter username :

How many friends :

@user

k

Search friends

Tweet querier@user

Twitter API

@
us

er

{tw
eets}

Text preprocessing
(Stopwords, POS)

Co-occurencer

{tweets}
Graph Builder
(Jensen-Shannon

divergence
threshold s = 0.3)

3
a b c d

a
b

6
7

9
5
 2

c
d

a,b,c,d : terms from cleaned tweets

co-occurence matrix

a

c

b

d

0.3

0.6 0.7

0.9

in-memory
graph model

Graph
Signature

SimHash())

node N bits hash depending on method
a
b
c

1100101010001...................... 01101111
0100100010111...................... 11000000
0000011110100...................... 00101011

(result of Simhash() applied to
values of a,b,c)

1110101.... 0101011

Hash of the graph
ArgMax

(top-k users
closest to @user)

k

1110101.... 0101011

possible friends
dataset

25.000 users
1 million of tweets
user pro�les : precomputed hashes

R = {user} / |R| ≤ k

You may want to follow :

@user1 Tweets Follow !

@user2 Tweets Follow !

@userk Tweets Follow !

....

WI
attendee

Querying
using in-house API

Step 1

Step 2

Fig. 1. Successive steps of the algorithm.

dataset and agreed with this value. We then build
the graph of the terms using the selected values.
The results for the co-occurrence matrix of our ex-
ample are depicted in figure 2.

a b

c d

e

0.86

0.26

0.72

0.44

0.77

0.21

0.40

0.45

0.81

0.69

Fig. 2. Graph of terms example using table 2 co-occurrence
matrix

Computing the divergence between two dis-
crete probability distributions of N events requires
N×(N−1)

2 operations for comparison between rows
times N − 1 comparisons between each pi and qi.
This complexity seems prohibitive but in fact co-
occurrence matrices are very sparse; consequently

the number of operations is drastically reduced.
Analysis from the dataset are presented in Table
4. In the average only 7.5% of the values are de-
fined in the matrix. This seems logical since not
few terms co-occur with other terms. We observe
that users with few tweets (≤ 25) have more dense
matrix than users that have much more tweeted.
This means that when the matrices are dense, their
size is very small, thus the total computation time
remains low. We also noticed that users that tweet
very much (≥ 400) and that have abnormal small
and dense matrices are users that generate au-
tomatically their content such as services provid-
ing regularly news from their website using a few
templates to generate their tweets. For example a
web dictionary that would tweet "‘The word FOO
has been defined, check out http://mydict/FOO"’
each time a new word is defined, it would be af-
fected a small and dense matrix. Consequently one
could use the deviation to the average of the co-
occurrence matrix in order to detect spam and au-
tomatically generated content.

Definition 1 (Jensen-Shannon Divergence) For two
discrete probabilities P and Q, the Jensen-Shannon

J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation 7

divergence is given by the following formula :

JSD(P ||Q) = log(2)+ 1
2(D(P ||M)+D(P ||M))

where M = 1
2 (P + Q). and D is the Kullback-

Leibler divergence. The Jensen-Shannon diver-
gence is comprised between 0 and 1 : 0 ≤ JSD(P ||Q) ≤
1.

Corollary 1 (Metric) The square root of the Jensen-
Shannon Divergence is a metric [13].

Optimization To speed-up the graph computa-
tion, it is possible to take advantage of the fact
that the square root of the JS divergence is a met-
ric (Corollary 1). Considering geometrically the re-
lations between three points a, b, c where the dis-
tance between a and b and between b and c are
known, it is possible to obtain an upper bound
for the distance between a and c. Since the square
root of Jensen-Shannon is a metric, it verifies the
triangle inequality i.e. |a, c| ≤ |a, b| + |b, c|. Con-
sidering the fact that we discard distances inferior
to a given threshold, we can use the upper bound
from the triangle inequality to know without cal-
culating if the distance will be sufficient. If the up-
per bound is smaller than the threshold, then cal-
culating the distance would be superfluous. In the
worst case, if all the distances are over the thresh-
old then the gain is null. In the best case, the two
third of the distances helped to avoid the compu-
tation of the last third. Thus the maximum reduc-
tion is of N/3 operations. In practice, we observed
a gain around 8%, which is not to be neglected
when dealing with large amount of data.

3.2. Hashing user profiles and distance between
profiles

Using the technique presented before, each user
can have his/her profile modeled as an undi-
rected weighted graph, whose vertices are terms
extracted from the user’s tweets. We then require
to compute a compact footprint of this graph,

Sparsity Average 0.075
Sparsity standard derivation 0.15

Table 4
Sparsity of the co-occurrence matrix - Based on our tweets
dataset

that can be used for both storage and comparison.
We have investigated different options to encode
a graph as a bit array, so that the Hamming dis-
tance could be used as a similarity metric between
user profiles, and can also be highly prone to be
inserted in a Map/Reduce implementation [9].

We found a representative hash function of our
user profile modeled as a graph a terms. An im-
portant review and some approaches on hashing
graphs can be found in [31]. [6] proposed SimHash,
a hash function for generating a footprint out of
a graph. SimHash can be applied to any kind of
resource (document, images . . .), and in our case
a graph.

In SimHash, the resource, usually a document,
is splitted into token, possibly weighted. Each to-
ken is then represented as its hash value, as the re-
sult of a traditional cryptographic function applied
to the token, which is originally a string. Then,
a vector V, of length of the desired hash size, is
initialized to 0. For each hash value for the set of
tokens, the ith element of V is decreased by the
corresponding token’s weight if the ith bit of the
hash value is 0. Otherwise, the ith element of V
is increased by the corresponding token’s weight.
Figure 3 depicts an example of SimHash for three
tokens. SimHash works well even for small finger-
prints [6], and was historically applied to the de-
tection of near-duplicates of web crawl graphs.

We use SimHash to compute binary user pro-
files by hashing graph of terms with the following
settings:

– As SimHash features : the set of edges and
vertices of the graph of terms.

– As Simhash edges weights : the normalized
Jensen-Shannon divergence values, which is
the edge’s weight.

Nodes and edges must be manipulated as a bit
array in SimHash. The hash values, depending on
the hash function used are very compact. For ex-
ample, with the MD5 algorithm, user profiles are
128 bits long, thus allowing to store 64 millions
profiles in 1GB. Using MD5, it allows us to man-
age 820 billions profiles with a collision probability
around 10−15. We tested several hash functions,
as presented in our evaluation in the next section.

Finding users to recommend is thus solved as
getting the top-k closest hashed profiles using a
Hamming distance, which has the property to be
rapidly computed and easily parallelizable.

8 J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation

Token Weight Hash
a 3 1 0 1 1 0 1
b 2 0 1 1 0 0 1
c 1 1 0 0 1 1 1

=⇒

Token Weight Hash
a 3 3 -3 3 3 -3 3
b 2 -2 2 2 -2 -2 2
c 1 1 -1 -1 1 1 1

⇓

Token Weight Hash
a 3 3 -3 3 3 -3 3
b 2 -2 2 2 -2 -2 2
c 1 1 -1 -1 1 1 1

total 2 -2 4 2 -4 6
hash 1 0 1 1 0 1

Fig. 3. SimHash example for tokens {a,b,c} with respective weights {3,2,1}.Each token is assigned its hash values, then 0
bits are replaced by -1, then multplied by the weight of the token, and a final sum is computed

4. Hash Database

Retrieving top-k related profiles efficiently is the
key to obtain great performance on the overall
system. In this section we detail the architecture
design and implementation details of the internal
database.
The database stores key/value pairs, where the

key is the hash of the profile and the value if
the Twitter username related to the hash. The
database offers two methods:

Push(hash/username) this methods adds a new
pair into the database.

TopK(hash,k) this methods retrieves the top-k
profiles for a given hash. This hash is called
the query.

To compute the top-k method, the system must
scan the entire database to compute distances
between the query and all the elements in the
database. To perform this operation efficiently, we
store the hashes into a flat array of N -bits objects
– N is the number of bits of a hash. Each hash
is identified by its index in the array and Twit-
ter username are stored in a dictionary that maps
username to index in the array. Using a flat ar-
ray to store hashes allows to take advantage of lo-
cality of reference while scanning the data. This
enables the hardware prefetcher to perform opti-
mally, fetching in advances the next hashes to store

them in the CPU cache [12]. For large number of
hashes, we can split the array to parallelize the
operation.

After the distance computation, the top-k values
are retained, these values are the indices of the
k closest hashes in terms of Hamming distance.
Finally, the list of top-k usernames is built looking
up the dictionary.

4.1. Storing distance

Computing the distance between two hashes is
a very fast operation using modern computers in-
trinsics. For each comparison query/i-th hash, the
result is a pair of key/value, where the key is the
distance and the value is the index of the hash in
the database. A naive approach is to store these
key/value and to extract the top-k once the com-
putation of distance between query and hashes is
terminated.

To improve performance, we propose an alter-
native design. Our idea is based upon a practical
observation: On one hand, the number of bits N
of a single hash is small (i.e. ≤ 1024), therefore
the distance between two requires log2(N) to be
stored. On modern 64-bit architecture, most of the
bits would be unused: log2(1024) = 10. On the
other hand, the database is unlikely to store 264=
18 quintillion profiles. Since there are only 7 bil-
lion people on the planet (even with multiple ac-

J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation 9

1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0
}

Query

1 1 1 0 0 1 0 0 1 0 1 0 1 0 1 1
}

82817th hash

XOR

Distance = 50 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1

distance=5 addressing, 82817

Fig. 4. Storing address and distance in a single word. The query hash and the 82817th hash are xored to compute the
Hamming distance. The final result containing the distance and the address is stored into a single 32-bit words. For readability
reasons, the example is given with 16-bit hashes and 32-bit words.

counts). For instance, on 1024-bit hashes, we can
use 10 bits to store the distance between hashes
and the rest 54 bits to store the index of documents
– 254 = 18 million billions, is largely sufficient as
an adress space.
Thus, we split the 64-bit of a single word into

two parts : log2(N) most significant bits to store
the distance and the remaining A = 64− log2(N)
as an address space.
Figure 4 shows an example of such a storage of

distance/adressing into a single word.

4.2. Older vs Newer first

While comparing distance for top-k retrieval us-
ing our single word storage system, we introduced
de facto a secondary order. The first ordering takes
place on distance, which is stored on the most sig-
nificant bits. The second ordering is on the index
of the nodes. For instance, we continue the exam-
ple presented in Figure 4. Let admit the 82818th
hash also has a Hamming distance of 5 and there
are already k values into the top-k datastructure
and 5 is the highest distance among these values.
When the distance with the 82818th is computed,
the result of the comparison distance will be higher
than the one of the previous hash, due to the in-
dex. As a consequence, this approach will favor (at
equal distance) older results.
To circumvent this issue and to offer the choice

to favor the newer result, we introduce a modifica-
tion into the storage system. So that the last shall
be the first, we change the encoding of the index.

We use the two’s complementary of the bitarray
representing the adress. Thus, small number be-
come large and vice versa. To compute this com-
plementary value, we compute a AND operation be-
tween the adress and a mask with the A least sig-
nificant digits set to 1.

4.3. Top-k datastructure

We consider two methods for the top-k retrieval.
The first method is store all the distances be-
tween the query and the hashes into a list, to sort
this list and retain the k first values. The second
method uses a Min-Max Heap [2]. This structure is
a double-ended priority queue. It allows to find the
min and max value in constant time, while insert
and delete min/max are performed in logarithmic
time.

4.4. Field testing

To determine the performance of our system,
we evaluated our hash database with both top-
k datastructure. The database is implemented in
Java, we used Google Guava’s double-ended prior-
ity queue implementation 4.

Array list based structure was implemented by
us. To harness the performance of the structure,
we proceed to a battery of tests . For each test, we

4http://docs.guava-libraries.googlecode.
com/git/javadoc/com/google/common/collect/
MinMaxPriorityQueue.html

10 J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation

0.20.40.60.81

·106

200

4000

100

Items
K

T
im

e(
m
s)

(a) Array List

0.20.40.60.81

·106

200

4000

500

1,000

Items
K

T
im

e(
m
s)

(b) MinMax Heap

Fig. 5. Comparison of top-k datastructure performance on 128-bit hashes

populate the database with n items – ranging from
1000 to 1 million. We query 10 times the database
for top-k values on against a random query. The
paramater k varies from 5 to 500.
The results of the tests are depicted in Figure

5. The value of k has naturally no influence on
the array list approach. The influence on the Min-
Max Heap is more important, especially when the
number of items is large. On pure running time, to
our surprise, the simplest solution, the array list,
with the worst theoretical complexity, consistently
presents the best performance. It outperforms the
Min-Max Heap by a factor 10 for 1 million items.

5. Implementation

We implemented our prototype in the Java
language. To represent the binary signatures we
extended the BitSet class to fix the length of
the signature. Computing the Hamming distance
for large dataset on modern processors can be
achieved using very fast processor intrinsics.
To compute the Hamming distance between two

binaries signatures, one simply XOR the two bitsets
and count the bits set to one in the resulting bitset.
In the CPU instruction set Streaming SIMD Ex-

tensions 4.2 5, the instruction POPCNT allows to
count the number of bits set to one in a word.
All the tests conducted in this paper were done

5http://software.intel.com/sites/landingpage/IntrinsicsGuide/

on a Intel core i7-3720QM implementing SSE 4.2.
We ensured that the assembly generated by the
Hotspot JVM used intrinsics for Hamming dis-
tance computation.

6. Experimental results

6.1. Building dataset

Twitter users share messages called tweets that
are limited to 140 characters. Using the public API
of Twitter it is possible to retrieve tweets of any
user that has not set its profile private (which is
in practice very rare). A users’s sequence of tweets
is commonly called the user’s timeline. To create
a user’s profile, one could choose either to retrieve
all the tweets from the timeline or to select a sub-
set from this timeline. A common intuition is that
all the tweets, especially the very old ones may not
be of great interest, then selecting a subset would
be appropriate. To ensure our choice, and in order
to determine the most interesting subset, we con-
ducted some tests on our dataset. In case of an-
alyzing a subset, we then have to determine how
to limit this subset : should it be time limited or
bounded by a number of tweets.

We first crawled up to 1K tweets for 5K users.
We then analyzed how many tweets users actu-
ally wrote, and their distribution among time. Ta-
ble 5 presents some basic analysis of the collected
dataset.

J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation 11

Average tweets per user ≈ 120
Standard deviation of tweets per user ≈ 212
Average interval between two tweets ≈ 6 days

Standard deviation between two tweets ≈ 240 days

Table 5
Tweets distribution

Distribution over time is biased by numbers of
accounts that produced a few tweets at account
creation and later remain unused. However the dis-
tribution over time is not a very precise indica-
tor. There is a very broad range of usage patterns.
One may tweet regularly whereas one other may
tweet once in a while. Therefore it is very difficult
to setup a relevant time window.
The average tweets number per user is supris-

ingly low on the sample, however the standard de-
viation being higher than the mean is an indicator
of high volatility of the measure.
Figure 6 presents the distribution of users whose

number of tweets is comprised into intervals. The
distribution of the users appears to be a Maxwell-
Boltzmann distribution. This similarity is con-
firmed by looking at the cumulative distribution
depicted in Figure 7. The cumulative distribution
is indeed a square root distribution (Table 7).

Fig. 6. Repartition of users into tweets intervals

The spatial distribution of the graphs in a scat-
ter plot is given in Figure 8.
The volatility of the results shows that once

again it is hard to decide whether we should limit
the subset on a temporal or on a numerical basis.
Since a decision had to be made, our choice went
to a numerical basis, for the simplicity and stabil-
ity of data harvest. From the cumulative results,
we were able to select the number of tweets per

Fig. 7. Percentage of users having less than a given number
of tweets

Fig. 8. Distribution of the users’ terms graphs

user to extract, in order to cover the largest set
of users. Technically the Twitter API provides 200
tweets per page. That’s why we splitted into in-
terval of 200 tweets – we present the distribution
in table 6.;

Limits Percentage of users

200 81,6%
400 92,48%
600 95,43%
800 96,25%

Table 6
Percentage of users having less than a given number of
tweets

Requests to the Twitter API are limited and
time-costly. Since the gain between 600 and 800 is
less than 1%, we decided to set the limit at 600
tweets per user, which seemed to us to be an ac-
ceptable trade-off.

We then gathered about 1 million tweets for
around 25K users. The tweets are stored on a three

12 J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation

machines Cassandra-cluster6. Due to the current
Twitter’s terms of services we are unfortunately
not able to publicly provide this dataset.

6.2. Runtime and Quality

We compared our approach against standard
Vector Space Model approach. For this purpose,
we implemented our solution in Java without any
particular optimisation. As a baseline we used the
Lucene7 based TF/IDF vectors with the cosine
similarity.
Although containing only 25K Twitter users,

our dataset contain more than one million terms
in the Lucene index, therefore the curse of dimen-
sion would have disastrous consequence on cosine
similarity computation with such high dimensional
vectors. Therefore, we precomputed TF/IDF vec-
tors for various number of frequent terms, we
also precomputed hashes using our approach with
three cryptographic hash methods : MD5, SHA-
256 and SHA-512. Precomputation time are de-
picted in figure 10. The difference of precomputa-
tion time for 25K users between TF/IDF and our
approach HashGraph (20 seconds vs 110 seconds)
could be overcomed by implementation optimisa-
tion. One should not forget that we compare an
optimized, in-production solution (Lucene) with a
research prototype. This difference should not ob-
scure that the average time required to precom-
pute a binary user profile is only 5 milliseconds
and could be reduced with an optimized imple-
mentation.
The running times for the four methods are

shown in figure 9. The x axis shows the number
of distance comparisons performed. The slight de-
crease at the beginning of the HashGraph curves is
counter-intuitive and is to our opinion, to be at-
tributed to the Java JIT compiler warm up phe-
nomenon.
The HashGraph algorithm clearly outperforms

the cosine similarity by three orders of magnitude.
For instance, to compute 10 millions comparisons
between profiles, the cosine similarity requires 150
seconds, while HashGraphMD5 requires only 253
milliseconds. As one would expect from simple
complexity analysis, the running time grows lin-

6http://cassandra.apache.org/
7http://lucene.apache.org/

early in the number of comparison for both meth-
ods.

The computation time for comparisons does not
grow linearly for 128, 256 and 512 bits. This is
mainly due to prefetching and caching effects of
the processor. Since we traverse linearly memory
blocks containing the binary footprints, the mem-
ory access pattern is easy to detect for the proces-
sor, thus enhancing global performance.

0 0.2 0.4 0.6 0.8 1 1.2
·107

102

103

104

105

Comparisons

C
om

pu
ta
tio

n
T
im

e
(m

s)

TF/IDF1K
TF/IDF10K

HashGraphMD5
HashGraphSHA-256
HashGraphSHA-512

Fig. 9. User profiles distance : running time of TF/IDF and
HashGraph

To determine the quality of our approach
against the baseline, we use the standard root-
mean-square error (RMSE) on pairwise distances
between users on the dataset. The distance be-
tween two users ui, uj in the baseline is the stan-
dard cosine similarity denoted cos(ui, uj). Let vi,
vj being two TF/IDF vectors representing users
ui and uj . The similarity is defined as follows :

sim(ui, uj) = vi × vj

||vi||.||vj ||

The distance between two hashes is the normal-
ized version of the standard hamming distance.

We computed the precision on the set of users
using the following RMSE :

1−

√√√√
N∑

i=0

N∑

j=i

(sim(ui, uj)− hamming(ui, uj))2

J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation 13

T
F/

ID
F
1K

T
F/

ID
F
50
K

H
as
hG

ra
ph

M
D
5

H
as
hG

ra
ph

SH
A
25
6

H
as
hG

ra
ph

SH
A
51
2

104.5

105

C
om

pu
ta
tio

n
T
im

e
(m

s)

Fig. 10. Precomputation time

103 104 105

0.4

0.45

0.5

0.55

0.6

Frequent terms in the TF/IDF

Pr
ec
isi
on

HashGraphMD5
HashGraphSHA256
HashGraphSHA512

Fig. 11. Precision (1-RMSE) of the different HashGraph
functions against TD/IDF with various frequent terms

The obtained precision, regardless of the num-
ber of frequent terms used in the cosine similar-
ity distance is greater than 0.5. It also appears
that the choice of hash function in simhash does
not have much influence on the precision. Since
MD5 provides the most compact representation
with 128 bits, it will be our method of choice.

7. Conclusion

In this paper we presented HashGraph, a global
system for real-time Twitter user recommanda-
tion. We built compact binary user profile us-
ing tweet contents. For this purpose, we used the
graph derived from the terms cooccurrence matrix
as input for SimHash. We use a dedicated opti-
mized hash database to perform efficient top-k re-
trieval. The computed precision in this paper al-
lows us to conclude that the results obtained with
HashGraph are coherent with state of the art con-
tent based user profile. Our system is orders of
magnitude faster than the baseline, and is suitable
for real-time recommendation.

Further research will aim to determine the per-
ceived quality of recommandation through user
evaluation, as well as enhancing the descriptive
power of our approach by focusing on the design
of a dedicated family of hash functions.that should
provide better semantic distance preservation than
the currently used cryptographic functions.

References

[1] Gediminas Adomavicius and Alexander Tuzhilin. To-
ward the next generation of recommender systems: A
survey of the state-of-the-art and possible extensions.
Knowledge and Data Engineering, IEEE Transactions
on, 17(6):734–749, 2005.

[2] M. D. Atkinson, J.-R. Sack, N. Santoro, and
T. Strothotte. Min-max heaps and generalized prior-
ity queues. Commun. ACM, 29(10):996–1000, October
1986.

[3] Robert M. Bell and Yehuda Koren. Lessons from
the netflix prize challenge. SIGKDD Explor. Newsl.,
9(2):75–79, December 2007.

[4] James Bennett, Stan Lanning, and Netflix Netflix. The
netflix prize. In In KDD Cup and Workshop in con-
junction with KDD, 2007.

[5] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent dirich-
let allocation. The Journal of Machine Learning Re-
search, 3:993–1022, 2003.

[6] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. Approximation
Algorithms for Combinatorial Optimization, pages
139–152, 2000.

[7] Chih-Ming Chen. Incremental personalized web page
mining utilizing self-organizing hcmac neural network.
Web Intelligence and Agent Systems, 2(1):21–38, 2004.

[8] Lin Chen, Richi Nayak, Sangeetha Kutty, and Yue Xu.
Users segmentations for recommendation. In Proceed-
ings of the 28th Annual ACM Symposium on Applied
Computing. ACM, 2013.

14 J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation

[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: sim-
plified data processing on large clusters. In Proceedings
of the 6th conference on Symposium on Operating Sys-
tems Design & Implementation - Volume 6, OSDI’04,
pages 10–10, Berkeley, CA, USA, 2004. USENIX As-
sociation.

[10] Souvik Debnath, Niloy Ganguly, and Pabitra Mitra.
Feature weighting in content based recommendation
system using social network analysis. In Proceedings
of the 17th international conference on World Wide
Web, pages 1041–1042. ACM, 2008.

[11] Alberto Díaz and Pablo Gervás. Personalisation in
news delivery systems: Item summarization and multi-
tier item selection using relevance feedback. Web In-
telligence and Agent Systems, 3(3):135–154, 2005.

[12] Ulrich Drepper. What every programmer should know
about memory. Red Hat, Inc, 11, 2007.

[13] D.M. Endres and J.E. Schindelin. A new metric for
probability distributions. Information Theory, IEEE
Transactions on, 49(7):1858–1860, 2003.

[14] A Go, L Huang, and R Bhayani. Twitter sentiment
analysis. Entropy, 2009(June):17, 2009.

[15] J. Hannon, M. Bennett, and B. Smyth. Recommending
twitter users to follow using content and collaborative
filtering approaches. In Proceedings of the 4th ACM
conference on Recommender systems, pages 199–206.
ACM, 2010.

[16] John Hannon, Mike Bennett, and Barry Smyth. Rec-
ommending twitter users to follow using content and
collaborative filtering approaches. In Proceedings of
the 4th ACM conference on Recommender systems,
RecSys ’10, pages 199–206, New York, NY, USA, 2010.
ACM.

[17] O. Hartig, C. Bizer, and J.C. Freytag. Executing
sparql queries over the web of linked data. The Se-
mantic Web-ISWC 2009, pages 293–309, 2009.

[18] Jonathan L. Herlocker, Joseph A. Konstan, Loren G.
Terveen, and John T. Riedl. Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, January 2004.

[19] Akshay Java, Xiaodan Song, Tim Finin, and Belle
Tseng. Why we twitter: understanding microblogging
usage and communities. In Proceedings of the 9th
WebKDD and 1st SNA-KDD 2007 workshop on Web
mining and social network analysis, WebKDD/SNA-
KDD ’07, pages 56–65, NY, USA, 2007. ACM.

[20] Henry Kautz, Bart Selman, and Mehul Shah. Refer-
ral web: combining social networks and collaborative
filtering. Communications of the ACM, 40(3):63–65,
1997.

[21] Yehuda Koren, Robert Bell, and Chris Volinsky. Ma-
trix factorization techniques for recommender systems.
Computer, 42(8):30–37, August 2009.

[22] J Lafferty, A McCallum, and F Pereira. Conditional
Random Fields: Probabilistic Models for Segmenting
and Labeling Sequence Data, pages 282–289. Morgan
Kaufmann, San Francisco, CA, 2001.

[23] Pawan Lingras, Mofreh Hogo, and Miroslav Snorek.
Interval set clustering of web users using modified ko-
honen self-organizing maps based on the properties
of rough sets. Web Intelligence and Agent Systems,

2(3):217–225, 2004.
[24] Pasquale Lops, Marco Gemmis, and Giovanni Semer-

aro. Content-based Recommender Systems: State of
the Art and Trends Recommender Systems Handbook.
In Francesco Ricci, Lior Rokach, Bracha Shapira, and
Paul B. Kantor, editors, Recommender Systems Hand-
book, chapter 3, pages 73–105. Springer US, Boston,
MA, 2011.

[25] Ching man Au Yeung, Nicholas Gibbins, and Nigel
Shadbolt. A study of user profile generation from folk-
sonomies. In Peter Dolog, Markus KrÃűtzsch, Sebas-
tian Schaffert, and Denny Vrandecic, editors, SWKM,
volume 356 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008.

[26] Y. Matsuo and M. Ishizuka. Keyword extraction from
a single document using word co-occurrence statistical
information. International Journal on Artificial Intel-
ligence Tools, 13(1):157–170, 2004.

[27] Prem Melville, Raymod J. Mooney, and Ramadass Na-
garajan. Content-boosted collaborative filtering for
improved recommendations. In Eighteenth national
conference on Artificial intelligence, pages 187–192,
Menlo Park, CA, USA, 2002. AAAI.

[28] Peter Mika. Flink: Semantic web technology for the
extraction and analysis of social networks. Web Se-
mantics: Science, Services and Agents on the World
Wide Web, 3(2):211–223, 2005.

[29] Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez.
Minimal deductive systems for rdf. In The Seman-
tic Web: Research and Applications, pages 53–67.
Springer, 2007.

[30] A. Pak and P. Paroubek. Twitter as a corpus for sen-
timent analysis and opinion mining. Proceedings of
LREC 2010, 2010.

[31] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina.
Web graph similarity for anomaly detection. Jour-
nal of Internet Services and Applications, 1(1):19–30,
2010.

[32] F. Peng and A. McCallum. Information extraction
from research papers using conditional random fields.
Information processing & management, 42(4):963–
979, 2006.

[33] M. Pennacchiotti and S. Gurumurthy. Investigating
topic models for social media user recommendation.
In Proceedings of the 20th international conference
companion on World wide web, pages 101–102. ACM,
2011.

[34] O. Phelan, K. McCarthy, and B. Smyth. Using twit-
ter to recommend real-time topical news. In Proceed-
ings of the third ACM conference on Recommender
systems, pages 385–388. ACM, 2009.

[35] Gerard Salton, Anita Wong, and Chung-Shu Yang. A
vector space model for automatic indexing. Commu-
nications of the ACM, 18(11):613–620, 1975.

[36] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and
Shilad Sen. The adaptive web. chapter Collabora-
tive filtering recommender systems, pages 291–324.
Springer-Verlag, Berlin, Heidelberg, 2007.

[37] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.C. Lee,
and C.L. Giles. Real-time automatic tag recommenda-
tion. In Proceedings of the 31st annual international

J. Subercaze et al. / Real-Time Content-based and scalable Twitter users recommendation 15

ACM SIGIR conference on Research and development
in information retrieval, pages 515–522. ACM, 2008.

[38] Johann Stan, Viet-Hung Do, and Pierre Maret. Se-
mantic user interaction profiles for better people rec-
ommendation. In ASONAM, pages 434–437, 2011.

[39] Herman J ter Horst. Completeness, decidability and
complexity of entailment for rdf schema and a seman-
tic extension involving the owl vocabulary. Web Se-
mantics: Science, Services and Agents on the World
Wide Web, 3(2):79–115, 2005.

[40] Peter D. Turney and Patrick Pantel. From frequency
to meaning: vector space models of semantics. Jour-
nal of Artificial Intelligence Research, 37(1):141–188,
January 2010.

[41] Manolis Vozalis and Konstantinos G Margaritis. On
the enhancement of collaborative filtering by demo-
graphic data. Web Intelligence and Agent Systems,
4(2):117–138, 2006.

[42] H.M. Wallach. Topic modeling: beyond bag-of-words.
In Proceedings of the 23rd international conference on
Machine learning, pages 977–984. ACM, 2006.

[43] Christo Wilson, Bryce Boe, Alessandra Sala, Kr-
ishna P.N. Puttaswamy, and Ben Y. Zhao. User inter-

actions in social networks and their implications. In
Proceedings of the 4th ACM European conference on
Computer systems, EuroSys ’09, pages 205–218, New
York, NY, USA, 2009. ACM.

[44] W. Wu, B. Zhang, and M. Ostendorf. Automatic
generation of personalized annotation tags for twitter
users. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
689–692. Association for Computational Linguistics,
2010.

[45] E. Zangerle, W. Gassler, and G. Specht. Using tag
recommendations to homogenize folksonomies in mi-
croblogging environments. Social Informatics, pages
113–126, 2011.

[46] T. Zesch and I. Gurevych. Approximate matching for
evaluating keyphrase extraction. In Proceedings of the
7th International Conference on Recent Advances in
Natural Language Processing, pages 484–489. Citeseer,
2009.

