
HAL Id: hal-01170228
https://hal.science/hal-01170228

Submitted on 13 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multiobjective Branch-and-Bound Framework:
Application to the Biobjective Spanning Tree Problem

Francis Sourd, Olivier Spanjaard

To cite this version:
Francis Sourd, Olivier Spanjaard. A Multiobjective Branch-and-Bound Framework: Application to
the Biobjective Spanning Tree Problem. INFORMS Journal on Computing, 2008, 20 (3), pp.472-484.
�10.1287/ijoc.1070.0260�. �hal-01170228�

https://hal.science/hal-01170228
https://hal.archives-ouvertes.fr

A multi-objective branch-and-bound framework:
application to the bi-objective spanning tree problem

Francis Sourd, Olivier Spanjaard
Laboratoire d’Informatique de Paris 6 (LIP6-UPMC), Université Pierre et Marie Curie, 4 Place Jussieu,

F-75252 Paris Cedex 05, France {francis.sourd@lip6.fr, olivier.spanjaard@lip6.fr}

This paper focuses on a multi-objective derivation of branch-and-bound procedures. Such a

procedure aims to provide the set of Pareto optimal solutions of a multi-objective combina-

torial optimization problem. Unlike previous works on this issue, the bounding is performed

here via a set of points rather than a single ideal point. The main idea is that a node in

the search tree can be discarded if one can define a separating hypersurface in the objective

space between the set of feasible solutions in the subtree and the set of points corresponding

to potential Pareto optimal solutions. Numerical experiments on the bi-objective spanning

tree problem are provided that show the efficiency of the approach in a bi-objective setting.

Key words: multi-objective combinatorial optimization; branch-and-bound; bi-objective span-

ning tree problem

1. Introduction

Branch-and-bound methods (which belong to the class of implicit enumeration methods)

have proved to perform well on many combinatorial optimization problems, provided good

bounding functions are known. They have been designed under the assumption that the

quality of a solution is evaluated by a single objective function on a totally ordered scale.

However, many real world problems involve multiple, potentially conflicting, objectives. This

has led practioners to investigate problems where each solution x in the set X of feasible

solutions is evaluated by p objective functions f(x) = (f1(x), . . . , fp(x)) to minimize (without

loss of generality). A thorough presentation of the field can be found for instance in a

book by Ehrgott (2000). Most of the classical exact and approximate methods for single

objective discrete optimization have been revisited under multiple objectives, e.g. dynamic

programming (Daellenbach and De Kluyver, 1980), greedy algorithm (Serafini, 1986), many

heuristic and metaheuristic methods (Ehrgott and Gandibleux, 2004)... Quite surprisingly,

as emphasized by Ehrgott and Gandibleux (2000), branch-and-bound methods have not

1

been studied widely in this multi-objective setting. Actually, the few existing papers on

this topic concern mainly multi-objective integer linear programming (Bitran and Rivera,

1982; Kiziltan and Yucaoglu, 1983; Marcotte and Soland, 1986; Mavrotas and Diakoulaki,

1998). This type of method yet combines optimality of the returned solutions (like dynamic

programming or greedy algorithm when the problem fulfills the required properties) with

adaptability to a wide range of problems (like metaheuristics). An efficient multi-objective

branch-and-bound schema is therefore likely to be useful in many contexts.

In multi-objective combinatorial optimization problems, one has to find the Pareto front

of X , denoted by X ?. More precisely, one usually looks for one solution for each point in

Y?, where Y? = f(X ?) denotes the set of Pareto points in the objective space. Therefore,

instead of a single incumbent, one keeps, during the branch-and-bound algorithm, the set

UB of the best solutions found so far. To be efficient, the branch-and-bound procedure has

also to manage a lower bound of the sub-problems. In the literature, the proposed branch-

and-bound algorithms all use the ideal of a sub-problem (i.e., the point achieving on every

component the lowest value among solutions of the sub-problem) for that goal. The method-

ological contribution of this paper is to show that this approach can be greatly improved

by introducing the concept of separation between reachable and improving solutions. The

reachable solutions are the solutions that derive from the partial solution of the current node

of the branch-and-bound tree while the improving solutions are the solutions that are not

dominated by UB.

The second contribution of this paper is related to solving the bi-objective spanning

tree problem that is presented in detail in Section 3. We introduce new multi-objective

derivations of the well-known cut and cycle rules that are useful to identify some dominating

edges (that are made mandatory) and to remove some dominated ones from the input graph.

We also present dedicated data structures and algorithms to efficiently implement our multi-

objective branch-and-bound. Experimental tests show that the resulting algorithm is able

to solve instances with up to 400-500 nodes whereas previous algorithms could only solve

problems with at most 120 nodes (or even less).

In Section 2, we give a formal framework to design multi-objective branch-and-bound

procedures that mainly relies on a generalization of the lower bounding concept. Then,

in Section 3, we study more specifically the bi-objective spanning tree problem. Finally,

Section 4 is devoted to the numerical experimentations on that problem.

2

2. Multi-objective branch-and-bound

2.1. Preliminary definitions

A multi-objective branch-and-bound procedure aims to solve multi-objective combinatorial

optimization (MOCO) problems. We first recall some preliminary definitions concerning this

type of problems. They differ from the standard single-objective ones principally in their

cost structure, as solutions are valued by p-vectors instead of scalars. Hence, the comparison

of solutions reduces to the comparison of the corresponding vectors. In this framework, the

following notions prove useful:

Definition 1 The weak dominance relation on cost-vectors of Rp
+ is defined, for all u, v ∈

Rp
+ by:

u 4 v ⇐⇒ [∀i ∈ {1, . . . , p}, ui ≤ vi)]

The dominance relation on cost-vectors of Rp
+ is defined as the asymmetric part of 4:

u ≺ v ⇐⇒ [u 4 v and not(v 4 u)]

The strong dominance relation on cost-vectors of Rp is defined, for all u, v ∈ Rp, by:

u ≺≺ v ⇐⇒ [∀i ∈ {1, . . . , p}, ui < vi]

Definition 2 Within a set Y any element u is said to be dominated (resp. weakly domi-

nated) when v ≺ u (resp. v 4 u) for some v in Y, and non-dominated when there is no v

in Y such that v ≺ u. The set of non-dominated elements in Y, denoted by Y?, is called the

Pareto front of Y. The vector vI such that vIi = minv∈Y? vi for i = 1, . . . , p is called the ideal

point of Y, and the vector vN such that vNi = maxv∈Y? vi for i = 1, . . . , p is called the nadir

point of Y.

By abuse of language, when the cost of a solution is dominated by the cost of another

one, we say that the solution is dominated by the other one. Similarly, we use the term of

non-dominated solutions, as well as Pareto front of a set of solutions. The non-dominated

solutions that minimize a weighted sum of the objectives are called supported. A supported

solution is called extreme if its image is an extreme point of the convex hull of Y?.
We are now able to formulate a generic MOCO problem: given a set X of feasible solutions

evaluated by p objective functions f(x) = (f1(x), . . . , fp(x)), find a subset S ⊆ X such that

f(S) equals Y? = f(X ?) the set of Pareto points in the objective space.

3

2.2. The multi-objective branch-and-bound procedure

We now describe our multi-objective branch-and-bound (MOBB) procedure. Let us first re-

mark that single-objective branch-and-bound algorithms are notoriously more efficient when

a good solution is known even before starting the search. In the case of the multi-objective

branch-and-bound, having a good initial approximation of the Pareto front seems to be even

more important. Indeed, while the branching scheme of the single-objective branch-and-

bound method can usually be guided by a heuristic in order to quickly find a good feasible

solution, a similar heuristic used in the multi-objective context can lead to quickly find

some good solutions but is likely to have some difficulties to find some other Pareto optimal

points. In practice, it is worth considering any existing heuristic approach to compute this

approximate front (constructive methods, search for supported solutions, local search and

metaheuristics. . .). We will denote by UB (for Upper Bound) the set of non-dominated

costs (f1(x), . . . , fp(x)) of the solutions found by the algorithm. UB is clearly initialized

with the initial approximation of the Pareto front.

We recall that a branch-and-bound method explores an enumeration tree, i.e. a tree

such that the set of leaves represents the set of solutions of X . We call branching part

the way the set of solutions associated with a node of the tree is separated into a finite

number of subsets, and bounding part the way the quality of the best solutions in a subset

is optimistically evaluated. The MOBB method is identical to the classical branch-and-

bound in the branching part but differs in the bounding part. That is to say the branching

scheme must be able to enumerate in a search tree all the feasible —possibly Pareto optimal—

solutions of X . When a new feasible solution x is found at some node, its cost f(x) is included

in UB if it is not weakly dominated by any u ∈ UB. Conversely, all the costs u ∈ UB such

that f(x) ≺ u are removed from UB once f(x) is inserted. The pure enumerative approach,

that is an algorithm that enumerates all the elements of X , clearly finds all the Pareto front

but is computationally impracticable to solve problems of even moderate size.

The role of the bounding phase is to make the enumeration implicit, which means that,

at each node of the search, some computational effort is devoted to try to prove that all the

solutions enumerated in the subtree of the current node are unable to improve the current

UB. Figure 1 illustrates how the bounding procedure is generalized to the multi-objective

case (on the right part of the figure, there are two objective functions f1 and f2, and ci denotes

the cost w.r.t. fi). Let us denote by UB≺ the set of points in the objective space that are not

4

c2

c1

UB

Points in f(X (N))

UB≺

c1

h(v1, v2) = 0

Figure 1: Bounding phase

weakly dominated by any current point of UB, that is UB≺ = {v ∈ Rp|∀u ∈ UB, u 64 v}.
In the single-objective case, there is a single incumbent value UB and UB≺ = (−∞,UB).

Let us also denote by X (N), the set of feasible solutions which are enumerated in the subtree

of the current node N and let Y(N) be their values in the objective space.

The main point of the bounding procedure is that the current node N can be discarded if

we can find a separating hypersurface in the objective space between UB≺ and f(X (N)), that

is a continuous function h(v1, . . . , vp) such that h(f(x)) ≥ 0 for all x ∈ X (N) and h(v) < 0

for all v ∈ UB≺. This latter property ensures that, when a node N is discarded by this way,

for any solution x ∈ X (N) there exists u ∈ UB such that u 4 f(x). In other words, no new

non-dominated cost f(x) to be included in UB can be found for any solution x ∈ X (N).

Note that, if the equation h(v) = 0 implicitly defines a hypersurface of dimension p− 1, we

can write h(v) ≤ 0 instead of h(v) < 0. Without this assumption on h, the strict inequality

is necessary (think for example to the constant zero function for h). In the single-objective

case, the separating function is simply h(v) = v−LB(N) where LB(N) is a single-objective

lower bound for f(X (N)). Indeed, if LB(N) ≥ UB, then h(f(x)) = f(x)− LB(N) ≥ 0 for

all x ∈ X (N) and h(v) = v − LB(N) < UB − LB(N) ≤ 0 for all v ∈ UB≺. In the multi-

objective case, a linear function h cannot generally separate f(X (N)) from UB because UB

is far from being convex. A general family of good separating functions can be defined as

hΛ(v1, . . . , vp) = min
λ∈Λ

(〈λ, v〉 − LBλ(N))

where the λ ∈ Λ are weight vectors of the form (λ1, . . . , λp) ≥ 0, 〈., .〉 denotes the scalar

product and LBλ(N) ∈ R is a lower bound for 〈λ, f〉(X (N)). The value of hΛ(v) is positive

if v is included in YΛ(N) =
⋂
λ∈Λ Yλ(N), where Yλ(N) denotes the set {v ∈ Rp|〈λ, v〉 ≥

5

LBλ(N)}. YΛ(N) plays here the role of a relaxation of f(X (N)), the membership of which

can be guessed without enumerating the whole set of solutions in X (N). Furthermore, we

have that f(X (N)) ⊆ YΛ(N), which implies:

Lemma 1 If hΛ separates UB≺ from YΛ(N), then it also separates UB≺ from f(X (N)).

Proof. We only show that hΛ(f(x)) ≥ 0 for all x ∈ X (N) (the other part is immediate).

Consider x ∈ X (N). We have 〈λ, f(x)〉 ≥ LBλ(N) for all λ ∈ Λ since LBλ(N) is a lower

bound for 〈λ, f〉(X (N)). Hence, 〈λ, f(x)〉 − LBλ(N) ≥ 0 for all λ ∈ Λ, which implies that

min
λ∈Λ

(〈λ, f(x)〉 − LBλ(N)) ≥ 0.

Note that the corresponding separating hypersurface is the frontier of YΛ(N), which

can be defined as Y?Λ(N) = {v ∈ Rp|hΛ(v) = 0}. Clearly, the larger |Λ| is, the better the

separating function becomes. However, it also becomes more complex and longer to compute.

Function hΛ is convex and piecewise linear and its graph has at most |Λ| facets.

Remark 1 The idea consisting in bounding the Pareto front by a piecewise linear function

was also used by Murthy and Sarkar (1998) to optimize a piecewise linear utility function in

stochastic shortest path problems, as well as by Ehrgott and Gandibleux (2007) to evaluate

the quality of an approximation of an unknown Pareto front.

Conversely, an implementation of MOBB should also implement a computationally tractable

representation of UB≺, which may be approximate. In practice, we can consider a finite

set N of vectors in Rp such that, for any v ∈ UB≺, we have v ≺≺ w for some w ∈ N .

For instance, when there are two objectives and {(ui1, ui2) | 1 ≤ i ≤ k} are the points of

UB maintained in lexicographical order, we can set N = {(ui+1
1 , ui2) | 0 ≤ i ≤ k}, where

u0
2 = +∞ and uk+1

1 = +∞. With this setting, we have an exact covering of UB≺ in the

sense that UB≺ = {v ∈ Rp | ∃w ∈ N , v ≺≺ w}. Note that, if u1
1 = min

v∈Y?
v1 and uk2 = min

v∈Y?
v2,

the definition of N can be restricted to {(ui+1
1 , ui2) | 1 ≤ i ≤ k − 1} since there cannot be

any feasible solution with a cost strictly smaller than u1
1 on the first component, nor a so-

lution of cost strictly smaller than uk2 on the second component (in such a case, we have

UB≺ 6= {v ∈ Rp | ∃w ∈ N , v ≺≺ w}, but this does not invalidate the approach since the

difference is due to parts of the objective space corresponding to no feasible solution). It

typically occurs when the determination of the lexicographically smallest solutions is easy,

6

which is typically the case when the single-objective version of the problem is solvable in

polynomial time. Hence, the set N can here be viewed as a generalization of the nadir point:

indeed, if we want that |N | = 1, then the best point we can choose is the nadir of UB. As

for Λ, the larger |N | is, the better the approximation of UB≺ becomes, but it requires a

greater computational effort. This set N can be used instead of UB≺ to find a separating

function h, as shown by the following lemma.

Lemma 2 When h is monotonic w.r.t. strong dominance (i.e., v ≺≺ w ⇒ h(v) < h(w)), a

sufficient condition for a function h to separate UB≺ and YΛ(N) is:{
h(w) ≤ 0 ∀w ∈ N
h(v) ≥ 0 ∀v ∈ YΛ(N)

Proof. Assume that h separates N and YΛ(N). We show that [∀w ∈ N , h(w) ≤ 0] ⇒
[∀v ∈ UB≺, h(v) < 0]. Consider v ∈ UB≺. By definition of N , there exists w ∈ N such

that v ≺≺ w. Consequently, by monotonicity of h, we have h(v) < h(w). Hence, h(v) < 0

since h(w) ≤ 0 by assumption. Therefore h separates UB≺ and YΛ(N).

Since hΛ is monotonic, this result implies that if hΛ(w) ≤ 0 for all w ∈ N then hΛ

separates UB≺ and YΛ(N) (note that one always has hΛ(v) ≥ 0 for all v ∈ YΛ(N)). By

Lemma 1, it then also separates UB≺ and f(X (N)). Finally, a sufficient condition to

discard the current node N is therefore that, for all w ∈ N , we have hΛ(w) ≤ 0. In the

single objective case, we clearly have N = {UB}, which means that the node is discarded if

UB ≤ LB(N), which is the well-known condition.

Example 1 Consider a node N such that the set of feasible values in the sub-tree is f(X (N)) =

{(4, 10), (5, 9), (6, 6), (7, 8), (10, 4)}. Assume first that UB = {(3, 7), (7, 3)}. Thus, we can

set N = {(7, 7)}, as represented on the left part of Figure 2. Note that (6, 6) ∈ f(X (N)) and

(6, 6) ≺≺ (7, 7). Hence, (6, 6) ∈ UB≺ and therefore there cannot be a separating hypersurface

between UB≺ and f(X (N)). Consequently, the node is not discarded. Assume now that

UB = {(3, 7), (5, 5), (7, 3)}. We can then set N = {(5, 7), (7, 5)}, as represented on the right

part of Figure 2. By taking Λ = {(2, 1), (1
2
, 1), (1, 0), (0, 1)}, the frontier of YΛ(N) is the

convex hull of X (N) and is a separating hypersurface between UB≺ and f(X (N)). Indeed,

from hΛ(5, 7) = min{−1, 1
2
, 1, 3} < 0 and hΛ(7, 5) = min{1,−1

2
, 3, 1} < 0, we deduce that hΛ

separates UB≺ and f(X (N)). Consequently, the node is discarded. Note that the ideal point

7

2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

2

4

6

8

10

c2

c1

c2

c1

UB

Points in f(X (N))

UB≺

h(v1, v2) = 0

Points in N

Figure 2: Piecewise linear separating hypersurface

of f(X (N)) is (4, 4). Hence, if we had used this point to decide whether or not to discard

N , the node would not have been discarded since (4, 4) ≺ (5, 5) ∈ UB.

We complete the presentation of MOBB by two pratical observations about managing

N . Let us first consider a node N of the search tree that cannot be discarded. Function

hΛ has been calculated and hΛ(v) ≥ 0 for all v ∈ YΛ(N). Since N is not discarded, we

have hΛ(w) > 0 for some w ∈ N but we may also have hΛ(w′) ≤ 0 for some w′ ∈ N .

Let us consider such a w′ if it exists. Since hΛ is monotonic w.r.t. weak dominance (i.e.,

v 4 w ⇒ h(v) ≤ h(w)), any feasible solution that is a descendant of the current node N

cannot have a cost v ≺≺ w′. Therefore, we can avoid to test whether hΛ(w′) ≤ 0 in any node

that is a descendant of N or, in other words, w′ can be removed from N while exploring

the subtree rooted at N . In practice, decreasing the size of N makes the separation test

significantly faster.

The second practical improvement assumes that the possible values of the objective

functions are integer, which is quite common in both single and multi-objective combinatorial

optimization problems. In such a case, we can observe that if we replace N (the vectors of

which have integer components) by N ′ = {w − (1− ε, . . . , 1− ε) |w ∈ N} (0 < ε ≤ 1) then

no integer point is removed from the set of points covered by N ′ that is

{v ∈ Zp | ∃w ∈ N , v ≺≺ w} = {v ∈ Zp | ∃w ∈ N ′, v ≺≺ w}.

Therefore, MOBB can use N ′ instead of N without losing any optimal solution.

8

3. Bi-objective minimum spanning tree

While the single-objective minimum spanning tree problem is easily solved, the introduction

of multiple objectives significantly complicates the task. The bi-objective version can be

formulated as follows: given a connected graph G = (V,E) with n = |V | nodes and m = |E|
edges, where each edge e ∈ {e1, . . . , em} is valued by an integer-valued vector we = (we1, w

e
2),

the set X of feasible solutions is the set of spanning trees of G. Each spanning tree is

characterized by an m-tuple x of booleans such that xi = 1 if edge ei belongs to the tree,

xi = 0 otherwise. The value of a tree in the objective space is then f(x) = (f1(x), f2(x)),

where fj(x) =
∑m

i=1 xiw
ei
j (j = 1, 2). The goal is to find (at least) one spanning tree for each

Pareto point in the objective space. After briefly recalling previous works on this problem,

we describe in the following the different phases of the branch-and-bound we propose for the

bi-objective spanning tree problem (BOST): preprocessing of the graph, initialization of the

set UB, presolve methods to speed up the search, and search algorithm itself.

3.1. Related works

The multi-objective spanning tree problem (MOST) has been introduced by Corley (1985),

and proved NP-hard by Emelichev and Perepelitsa (1988) (see also Hamacher and Ruhe,

1994), even when there are only two objectives. Several practical approximation methods

have been proposed (Hamacher and Ruhe, 1994; Zhou and Gen, 1999; Knowles and Corne,

2001b). On the theoretical side, a fully polynomial time approximation scheme has been

provided (Papadimitriou and Yannakakis, 2000), and very recently the expected runtimes

of a simple evolutionary algorithm have been studied (Neumann, 2007). Concerning more

specifically the BOST problem, to the best of our knowledge, only two operational exact

methods (Ramos et al., 1998; Steiner and Radzik, 2008) have been proposed until now,

both based on a two-phase (exact) procedure (Visée et al., 1998). They first calculate the

set of extreme Pareto optimal solutions (i.e., vertices of the convex hull of all solutions in

the objective space) then they compute the set of non-extreme Pareto optimal solutions

located in the triangles generated in the objective space by two successive extreme solutions

(strictly speaking, a two-phase procedure is often described as the generation of supported

Pareto optimal solutions and then non-supported Pareto optimal solutions, but for the sake

of simplicity we do not elaborate here). The methods mainly differ in the way they compute

Pareto-optimal solutions in the triangles: in the method by Ramos et al. (1998), these

9

solutions are computed by a branch-and-bound procedure discarding any node such that an

ad-hoc bounding point (that is weakly dominated by the ideal point of the corresponding

sub-problem) falls outside the triangles; in the method by Steiner and Radzik (2008), they are

computed by a sequence of applications of a k-best algorithm for the single-objective version

of the problem. Both methods have been implemented by Steiner and Radzik (2008): the

latter is shown to run significantly faster on instances with up to 121 vertices for grid or

planar graphs, and up to 38 vertices for complete graphs.

3.2. Preprocessing of the graph

Section 3.2 to Section 3.5 are devoted to preliminary computations that are all processed at

the root node of the search tree. Then Section 3.6 considers the instanciation of the MOBB

procedure to our BOST problem. This section first presents a preprocessing of the graph

which aims to remove some edges of G or make some edges mandatory (that is they must be

in any spanning tree) without changing the set Y? of Pareto points in the objective space.

Note that the rules presented in this section are not only valid for the bi-objective problem

but for the general multi-objective spanning tree problem with p objectives.

As often done when presenting algorithms for constructing spanning trees (see e.g. Tar-

jan, 1983), we describe our preprocessing phase as an edge coloring process. Initially all edges

are uncolored. We color one edge at a time either blue (mandatory) or red (forbidden). At

each step of the preprocessing phase, we have therefore a partial coloring c(·) of the edges of

G. For a partial coloring c, we denote by X (c) the set of trees including all blue edges, some

of the uncolored ones (possibly none), and none of the red ones. We denote by Y(c) the

corresponding values in the objective space. As usual, the Pareto front of Y(c) is denoted by

Y?(c). The aim of the preprocessing phase is to color as many edges as possible, so as to get

a maximal coloring c such that Y?(c) = Y?. We now give conditions under which an edge

can be colored blue or red, which are adaptations of the well-known cut optimality condition

and cycle optimality condition to the multi-objective case. Note that Hamacher and Ruhe

(1994) also give some properties related to these rules but they cannot be applied in our

context. Indeed, Hamacher and Ruhe provide necessary conditions for a spanning tree to be

Pareto optimal. However, we need here sufficient conditions for an edge to be mandatory

(for each Pareto point y ∈ Y?(c), there exists at least one spanning tree x ∈ X (c) including

that edge for which f(x) = y) or forbidden (for each Pareto point y ∈ Y?(c), there exists at

10

least one spanning tree x ∈ X (c) without that edge for which f(x) = y), so as to be able to

recover one spanning tree for each Pareto point in the objective space.

Before introducing the optimality conditions, we recall some definitions from graph the-

ory. A cut in a graph is a partition of the vertices into two disjoint sets and a crossing edge

(with respect to a cut) is one edge that connects a vertex in one set to a vertex in the other.

When there is no ambiguity, the term cut will also be used to refer to the set of crossing

edges defined by the partition of the vertices.

Proposition 1 (optimality conditions) Let G be a connected graph with coloring c of the

edges. The following properties hold:

(i) Cut optimality condition. Let us consider a cut in G with no blue edge and let C denote

the set of crossing edges. If there is some uncolored edge e ∈ C such that we 4 we
′

for all

uncolored edges e′ ∈ C, then e is in at least one tree of cost y for all y ∈ Y?(c).

(ii) Cycle optimality condition. Let us consider a cycle C in G containing no red edge. If

there is some uncolored edge e ∈ C such that we
′
4 we for all uncolored edges e′ ∈ C, then

e can be removed from G without changing Y?(c).

Proof. The proof is similar to the single objective case (see e.g. Tarjan, 1983).

Proof of (i). Suppose that there exists a cut C and a crossing uncolored edge e that satisfies

the cut optimality condition. Let x be a Pareto optimal spanning tree of X (c) that does not

contain e. Now consider the graph formed by adding e to x. This graph has a cycle that

contains e, and that cycle must contain at least one other uncolored crossing edge — say f

— such that f ∈ C, and therefore we 4 wf . We can get a new spanning tree x′ ∈ X (c) by

deleting f from x and adding e. Its cost f(x′) is equal to f(x)−wf +we 4 f(x). By Pareto

optimality of x, we have f(x′) = f(x) and x′ is therefore a Pareto optimal tree in X (c) with

the same value as x.

Proof of (ii). Suppose that there exists a cycle C containing no red edge with an uncolored

edge e ∈ C such that we
′
4 we for all non-blue edges e′ ∈ C. Let x be a Pareto optimal

spanning tree of X (c) that contains e. Now consider the graph formed by removing e from

x. This graph is compounded of two connected components. The induced cut contains at

least one other uncolored crossing edge — say f — such that f ∈ C, and therefore wf 4 we.

We can get a new spanning tree x′ ∈ X (c) by deleting e from x and adding f . Its cost f(x′)

is equal to f(x)− we + wf 4 f(x). By Pareto optimality of x, we have f(x′) = f(x) and x′

is therefore a Pareto optimal tree in X (c) with the same value as x. Hence, for any Pareto

11

Algorithm Greedy(G,c)
Input : A MOST problem on a connected graph G = (V,E) with coloring c1 of the edges
Output : Returns a coloring c2 such that the MOST problem with coloring c2 is equivalent
to the input MOST problem
if one of the following rules can be applied:

Blue rule: if there is an uncolored edge e s.t. the cut optimality condition holds then
set c(e) = blue

Red rule: if there is an uncolored edge e s.t. the cycle optimality condition holds then
set c(e) = red

then apply non-deterministically one of the enforceable rules and set c = Greedy(G,c)
return c

Figure 3: Greedy algorithm for the MOST problem

optimal tree in X (c) containing e, there is an equivalent tree in X (c) without e.

The single objective versions of these conditions make it possible to design a generic

greedy method (see e.g. Tarjan, 1983), from which Kruskal’s and Prim’s algorithms can

be derived. The multi-objective counterpart of this generic greedy method is indicated in

Figure 3. However, unlike the single objective case, it does not necessarily yield a complete

coloring of the graph. As indicated earlier, the returned coloring c is such that Y?(c) = Y?,
i.e. for all y ∈ Y? there is a spanning tree of cost y containing all the blue edges and no red

one. Actually, this property is an invariant of the greedy algorithm, the validity of which

directly follows from Proposition 1. Clearly, as soon as some edges remain uncolored, the

coloring is insufficient to deduce the set of Pareto optimal trees. Therefore, we use this

algorithm as a preprocessing of the graph prior to the exact solution of the BOST problem

by our MOBB algorithm.

The complexity of the greedy method strongly depends on the complexity of detecting

uncolored edges satisfying an optimality condition. In practice, to determine whether an

uncolored edge e = {v, w} satisfies the cut optimality condition, one performs a depth first

search from v in the partial graph Gcut
e = (V,Ecut

e) where Ecut
e = {e′ ∈ E | not(we 4 we

′
)} ∪

{e′ ∈ E | c(e′) = blue}. If w belongs to the set of visited vertices, then the partition between

visited and non-visited vertices constitutes a cut for which e satisfies the cut optimality

condition. Similarly, to determine whether an uncolored edge e = {v, w} satisfies the cycle

optimality condition, one performs a depth first search from v in the partial graph Gcyc
e =

(V,Ecyc
e) where Ecyc

e = {e′ ∈ E |we′ 4 we}\{e}∪{e′ ∈ E | c(e′) = blue}. If w is visited, then

12

the chain from v to w in the search tree, completed with {v, w}, constitutes a cycle for which

e satisfies the cycle optimality condition. Since the number of edges in the graph is m and

the complexity of a depth first search is within O(m) in a connected graph, the complexity of

carrying out the blue rule and the red rule is within O(m2). Since each recursive call of the

algorithm in Figure 3 colors one edge, there are at most m recursive calls, which means that

the algorithm runs in O(m3). However, we are going to show that one single pass is enough

to find a maximal coloring, i.e. a coloring for which no additional edge can be colored (this

coloring is not unique). This algorithm is based on the two following observations:

• Coloring an edge does not make it possible to color additional edges in red. By contra-

diction, assume that the coloring of an edge — say f — makes it possible to color in

red an edge e for which the red rule did not apply before. Clearly, f is colored blue and

there exists a cycle C including f and e where f is the unique edge such that wf 64 we.

Since f is colored blue, there exists a cut C ′ for which the cut optimality condition is

fulfilled. Consider now f ′ ∈ C ∩ C ′ (such an edge necessarily exists and f ′ 6= e). Edge

f ′ cannot be blue (since it belongs to C ′) nor red (since it belongs to C). Hence, f ′ is

uncolored and therefore wf 4 wf
′

by the cut optimality condition in C ′. Furthermore,

by the cycle optimality condition in C, we also have wf
′
4 we. By transitivity of 4, it

follows that wf 4 we. It contradicts the initial assumption that wf 64 we.

• Coloring an edge does not make it possible to color additional edges in blue. By con-

tradiction, assume that the coloring of an edge — say f — makes it possible to color

in blue an edge e for which the blue rule did not apply before. Clearly, f is colored

red and there exists a cut C including f and e where f is the unique edge such that

we 64 wf . Since f is colored red, there exists a cycle C ′ for which the cycle optimality

condition is fulfilled. Consider now f ′ ∈ C ∩ C ′ (such an edge necessarily exists and

f ′ 6= e). Edge f ′ cannot be blue (since it belongs to C) nor red (since it belongs to

C ′). Hence, f ′ is uncolored and therefore wf
′
4 wf by the cycle optimality condition

in C ′. Furthermore, by the cut optimality condition in C, we also have we 4 wf
′
. By

transitivity of 4, it follows that we 4 wf . It contradicts the initial assumption that

we 64 wf .

From these observations, it follows that the O(m2) algorithm given in Figure 4 finds a

maximal edge coloring.

13

Algorithm O(m2) implementation
Input : A MOST problem on a connected graph G = (V,E)
Output : Returns a maximal coloring c
for each edge e of E do

if the cut optimality condition holds for e then
set c(e) = blue

else if the cycle optimality condition holds for e then
set c(e) = red

return c

Figure 4: An O(m2) algorithm to compute blue and red edges

3.3. Initial Pareto front

As mentioned in the beginning of Section 2.2, a branch-and-bound algorithm is notoriously

more efficient when good solutions are known even before starting the search. In our ap-

proach, UB is initialized by a two-phase (approximation) procedure, similar to the one used

by Hamacher and Ruhe (1994): first, the extreme solutions are computed and second, local

search (starting with the extreme solution) is launched. These two phases are more precisely

described below:

1. Computation of the set ES of extreme solutions. First, the two lexicographically op-

timal solutions are computed by resorting to Kruskal’s algorithm. Second, the set ES

of extreme solutions is initialized with the two obtained solutions, and maintained in

increasing order w.r.t. the first objective. Set ES is computed recursively as follows:

given two consecutive solutions x1 and x2 in ES, a new extreme solution is computed

by solving a standard minimum spanning tree problem after scalarizing the vector val-

uations (αi, βi) of each edge ei by a weighted sum λ1αi+λ2βi, with λ1 = f2(x2)−f2(x1)

and λ2 = f1(x1)−f1(x2). Actually, a superset of the extreme solutions can be returned

at the end of this phase. Andersen et al. (1996) observed that the algorithm is polyno-

mial, using a result of Chandrasekaran (1977) proved in the context of minimal ratio

spanning trees. The polynomial complexity of the algorithm is also a corollary of the

following lemma that is also very important in Section 3.5. In this lemma, for every

λ in [0,1], edges ei are sorted according to increasing values of λαi + (1 − λ)βi, and

according to increasing values of i to break ties.

14

Lemma 3 Let us consider the m pairs (αi, βi) for 1 ≤ i ≤ m. Let S(λ) be the

sequence of indices 1, . . . ,m lexicographically sorted according to the λαi + (1− λ)βi, i

values when λ varies in [0, 1]. Then we have that {S(λ) | 0 ≤ λ ≤ 1} contains at most

m(m− 1)/2 + 1 different sequences.

Proof. The proof is geometric. Parallel graduated axes are associated with both

objectives, as represented in Figure 5. We call the first axis the one associated with

objective one, its equation is the line y = 1. The second axis is the line y = 0 and is

associated with objective two. Each pair (αi, βi) is then in correspondence to a seg-

ment Ii (i ∈ {1, . . . ,m}) linking the point (αi, 1) on the first axis to the point (βi, 0)

on the second axis. Given λ ∈ [0, 1], consider the line y = λ. The sequence in regard

to which the segments Ii are crossed by this line gives the sequence of increasing values

λαi + (1 − λ)βi. When several segments are crossed simultaneously on a same point,

they are ranked according to index i. The sequence gives therefore precisely the lexico-

graphical sorting according to the λαi + (1− λ)βi, i values. Consequently, the changes

in sequence S(λ) correspond to crossings of segments i. Since the number of crossing

points is at most m(m− 1)/2, we deduce that the cardinality of this set of sequences

is at most m(m− 1)/2 + 1.

Note that we use index i in Lemma 3 in order that there is a unique possible sequence

S(λ) for a given λ, otherwise several edges with the same weighted sum could be sorted

in many (maybe exponential) ways.

2. Approximation of the Pareto front. The initial set UB is computed from ES by

iteratively performing a local search around the solutions of UB. More precisely, the

algorithm is initialized by setting UB = ES, and all the points are set as “unvisited”.

Two spanning trees are neighbours if they have (n − 2) edges in common. The local

search selects an unvisited point in UB (and its corresponding spanning tree s) and

computes the set N(s) of neighbors of s. Then UB is replaced by the set of non-

dominated points in UB ∪ f(N(s)). If f(s) is still in UB, its status becomes visited

and the search continues with a new unvisited point. The algorithm stops when all

the points in UB are visited. Local search seems to be especially convenient for

BOST, since it appears that the set of Pareto optimal spanning trees is often connected

15

Objective 2

λ = 0.7

Objective 1α2 α4α1 α3 α7α6α5

β1β2 β3β4 β5 β6β7

sequence
1,2,3,4,5,7,6

Figure 5: Proof of Lemma 3

with respect to the usual definition of neighbourhood (Ehrgott and Klamroth, 1997).

Furthermore, if p is considered as a constant (p = 2 for BOST), this phase is performed

within a pseudopolynomial number of iterations since |N(S)| ≤ m(n − 1) and the

number of points in the objective space is at most (n − 1)p(wmax + 1)p with wmax =

maxe,iw
e
i .

3.4. Root lower bound

Let us now consider the bounding phase. The computation of hΛ(c1, c2) is greatly eased by

the fact that minimizing the weighted sum of the two objectives is a polynomial problem.

Therefore, by calculating all the extreme solutions of the sub-problem attached to the current

node, we have the best possible hΛ function. Since |ES| is polynomial, hΛ is also computed

in polynomial time.

3.5. Presorting edges

As a consequence of Lemma 3, there are O(m2) interesting sequences of the edges, so that

they all can be efficiently stored in memory. The benefit of storing all the pre-sorted sequences

of edges is that for any λ ∈ [0, 1], S(λ) can be retrieved in O(log(m(m − 1)/2)) that is in

O(log n) while computing it from scratch takes O(m log n) time (since m ∈ O(n2)). We

simply use a balanced binary tree data structure to store the O(m2) sequences, which means

that the memory requirement of the structure is in O(m3).

Moreover, the pre-sorting and the initialization of the structure can be done in only

O(m3) time by a simple sweeping algorithm where λ is successively increased from 0 to 1.

16

2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

2

4

6

8

10

c2

c1

c2

c1

c2

c1

h(v1, v2) = 0 h(v1, v2) = 0h(v1, v2) = 0

u1

u2

u3

u1

u2 u2

u1

u3

Figure 6: Computing the lower bound

This algorithm has O(m2) steps that correspond to the crossovers in Figure 5. At each step,

a new array of m integers is build to store the new sequence, which is done in O(m) time.

Therefore, as soon as the branch-and-bound search requires a sufficiently large number of

nodes, the time spent in this preliminary phase is easily balanced by the time spared during

the search. Implementation details are given in Section 4.1.

3.6. Search algorithm

3.6.1. Branching scheme

The branching scheme is very simple: at each node, an edge e of G is selected and we create

two subproblems. In the first one, edge e is mandatory (it must be in the spanning tree)

while in the second one, edge e is forbidden (it is removed from G). The heuristic to select

e searches for the uncolored edge such that min(we1, w
e
2) is minimal.

3.6.2. Computing the lower bound

When a descendant node is created, the computation of the separating hypersurface can

be speeded up by using the separating hypersurface of the father node. Indeed, to each

extremal point of the hypersurface is attached a feasible solution for the father node. Clearly,

if this solution is also feasible for the descendant node, it is also extremal for the separating

hypersurface of the descendant node.

Therefore, instead of computing it from scratch, we initialize the computation of the sepa-

rating hypersurface using the “feasible” extremal points of the father. Then the computation

continues as indicated in Section 3.4 for the root lower bound. However, the computation

17

can be made lazy, in the sense that some superfluous calculation may be avoided. It is illus-

trated by Figure 6. Initially, u1 and u2 are computed: they represent the optimal points when

the two objectives are sorted lexicographically according to (c1, c2) and (c2, c1) respectively.

Therefore, we know that Y(N) is above u2 and to the right of u1. At this step, we cannot

conclude whether node N can be discarded because some points of N are in this set. Then,

we search for an optimum, say u3, of the problem with (single) criterion λf1(x)+(1−λ)f2(x)

where λ is defined such that λc1 + (1 − λ)c2 = µ is a linear equation of the straight line

D defined by u1 and u2. By construction, the points of X (N) are above the line parallel

to D containing u3. We observe that there is still a nadir point above this line but we can

eventually get the separating hypersurface by optimizing λ′f1(x) + (1− λ′)f2(x) where λ′ is

defined such that λ′c1 + (1− λ′)c2 = µ′ is a linear equation of the straight line D′ defined by

u1 and u3. We say that the computation is lazy because we avoided to check whether the

line defined by u2 and u3 supports the convex hull of Y(N): indeed, this information is not

required to discard N .

3.6.3. Updating the incumbent Pareto front

When a point w ∈ N satisfies hΛ(w) > 0 then the node N is not discarded but, before

branching, the algorithm checks whether a newly computed extremal point of the separating

hypersurface can be inserted into UB. Indeed, we take advantage of the property that these

extremal points of the separating hypersurface correspond to feasible solutions.

4. Experimental results

4.1. Implementation details

The branch-and-bound algorithm has been implemented in C# (available online http://www-

poleia.lip6.fr/∼sourd/project/nadei/) and was run on a 3.6 GHz personal computer

with a memory of 2GB. In this implementation, the presorting procedure is called only if

the set N computed at the root node contains at least 10 points. Indeed, if |N | < 10, it

means that the gap between the root UB and the convex envelope of Y is very narrow and

we heuristically consider that the search will be short —and therefore refined preprocessing

is not required. Note that in practice we can indeed have |N | < 10 even if |UB| is large (e.g.

greater than 100): both improvements presented at the end of Section 2.2 lead to a drastic

decrease of the size of N even at the root node.

18

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

Pareto optimal points

Figure 7: Typical Pareto front for “hard” instances

In order to reduce at most the number of uncolored edges at the root node, we have

also implemented a shaving procedure. The term “shaving” was introduced by Martin and

Shmoys (1996) for the job-shop scheduling problem. This procedure works as follows: for

each edge e left uncolored by the application of the cycle and cut rules, we build a subproblem

in which e is colored blue. If the computation of the lower bound proves that the subproblem

cannot improve the incumbent UB, then it means that e can be colored red at the root

problem. In our tests, this procedure colors red about 20% of the the uncolored edges and is

therefore very useful to limit the total computation time. As for the presorting, the shaving

procedure is run only if |N | < 10.

4.2. Instances

The experimental tests are based on three classes of graphs. First, the random graphs of

density d are graphs with n nodes and about dn(n − 1)/2 edges. More precisely, for each

pair of nodes {i, j}, the edge is generated with probability d. We check that the generated

graph is connected. When d = 1, the generated graphs are called cliques, that is the graphs

are complete. Second, the grid graphs have n = a2 nodes, which are generated by creating

an a×a grid and joining the neighboring vertices horizontally and vertically. For both clique

and grid graphs, the weights we1 and we2 of each edges are drawn from the uniform distribution

[0, K] where the parameter K represents the maximum edge weight. The construction of

the instances of the last class (called hard instances) is based on the work of Knowles and

19

Corne (2001a). These instances are said to be hard because there are some Pareto optimal

solutions that are far from any supported solution (see Figure 7). Typically, the k-best

approach is very bad for such instances (that have not been tested by Steiner and Radzik,

2008). We first build a clique instance for some given parameters n and K. Let (v1, v2) be

the minimum cost when minimizing the two objectives lexicographically. We then define the

constant M = 2
3

max(v2 − v1, 0). We randomly select a node x of the clique and add two

nodes y and z to the graph with the edges e = {x, y}, f = {x, z} and g = {y, z} and the

weights we = (0, 0), wf = (M, 0) and wg = (0,M).

4.3. Results

In the first series of experiments, the parameter K is set to 100 (as in the tests of Steiner

and Radzik, 2008). We study the computation times of the different phases of the branch-

and-bound algorithm for each class of instances when the size of the graphs varies. Tables 1

and 2 report the results: each line reports the average results for 10 graphs of the same class

generated for the corresponding value of n. Column m′ displays the number of remaining

edges after applying the cycle optimality conditions (red rules) and processing the shaving

procedure. Column “blue” displays the number of edges that are colored blue with the cut

optimality conditions. The four following columns respectively report the CPU times (in

seconds) for the local search, presorting, shaving and branch-and-bound phases and the last

column reports the total CPU time in seconds. Note that some cells in the table are left

empty: it means that presorting and shaving procedures are never called for these graphs

(we discuss this point later).

Figure 8 shows the computation times as a function of the number of nodes of the graphs

for each class of instances (the right part is devoted to random graphs). Before we study

more carefully the behavior of our algorithm, we compare it to the results obtained by Steiner

and Radzik (2008). Roughly speaking, they can solve grid instances with up to 121 nodes

and random instances with at most 38 nodes. Conversely, for all the classes, our algorithm

can solve instances with 400 nodes —and even more— in a similar computation time. An

important difference between the two algorithms is that the k-best approach of Steiner and

Radzik (2008) leads to compute X ? whereas our branch-and-bound computes Y?. Therefore,

one could argue that the comparaison is unfair, however we should note that:

• |X ?| is generally exponential while |Y?| is pseudopolynomial since it contains at most

20

Graph n m′ blue LS Sort Shaving BnB Total
Clique 50 156.5 1.4 0.62 0.05 0.05 0.75 1.54

100 339.8 2.8 4.34 0.56 0.23 3.17 8.56
150 534.3 3.0 12.71 1.89 0.40 3.87 19.68
200 727.0 3.5 28.22 4.10 0.45 4.10 38.64
250 905.3 4.8 52.26 7.06 0.46 2.28 65.74
300 1075.9 5.2 87.94 9.47 0.43 7.61 105.82
350 1181.8 8.7 137.92 13.27 0.58 4.87 154.01
400 1650.4 7.4 208.94 - - 1.56 225.68
450 1839.3 10.1 308.38 - - 0.44 331.68
500 1980.9 13.6 438.75 - - 1.88 473.34

Grid 25 34.7 10.8 0.03 0.01 0.01 0.01 0.1
100 147.9 41.7 1.21 0.03 0.03 1.16 2.48
144 215.8 56.4 5.02 0.07 0.04 5.46 10.69
225 336.4 86.3 30.50 0.25 0.13 31.42 62.54
256 380.2 96.2 48.75 0.39 0.17 53.54 103.22
289 434.5 110.0 81.47 0.56 0.26 87.22 170.06
324 482.8 126.9 123.22 0.77 0.30 124.39 249.39
361 542.1 136.3 199.48 1.12 0.41 203.82 405.79
400 595.0 156.1 261.43 1.46 0.51 226.22 490.87

Hard 50 200.3 3.2 1.2 0.1 0.0 2.6 4.0
100 430.0 3.7 8.2 0.5 0.2 11.6 20.9
150 665.0 4.5 24.9 1.8 0.3 19.3 47.5
200 891.8 4.2 53.6 3.9 0.4 22.0 82.6
250 1115.3 5.3 102.2 6.8 0.3 14.0 129.2
300 1310.5 6.7 173.2 9.8 0.3 11.8 205.3
350 1501.4 7.3 270.7 13.5 0.3 10.1 310.8
400 1661.6 10.6 396.3 16.6 0.3 4.8 442.3

Table 1: Mean CPU time of each phase of the algorithm.

21

Graph n m′ blue LS Sort Shaving BnB Total
d = 5% 50 84.7 16.5 0.17 0.01 0.02 0.14 0.39

100 210.6 19.8 3.15 0.07 0.07 5.68 9.06
150 366.4 21.6 18.11 0.34 0.25 33.37 52.30
200 532.2 23.7 58.24 1.03 0.72 102.84 163.40
250 707.6 25.2 128.77 2.48 1.61 197.02 331.28
300 889.9 27.7 223.39 4.83 2.71 309.95 543.37
350 1081.9 25.2 389.95 8.90 4.55 443.94 851.61
400 1281.5 26.6 584.72 14.61 6.38 540.98 1153.50

d = 25% 50 134.7 4.6 0.5 0.02 0.03 0.79 1.4
100 340.8 5.5 5.79 0.28 0.22 9.58 16.05
150 556.4 6.2 22.25 1.24 0.63 25.57 50.23
200 780.4 6.2 51.95 3.35 1.26 39.05 96.85
250 1016.5 7.0 95.23 7.08 1.78 53.65 160.52
300 1249.0 7.7 158.14 12.51 2.22 53.43 231.43
350 1505.5 7.9 241.62 20.51 2.62 58.19 331.1
400 1731.4 8.8 345.8 29.24 2.44 37.67 427.55

d = 50% 50 165.7 2.7 0.62 0.04 0.04 0.94 1.7
100 392.6 3.9 5.9 0.44 0.26 7.14 13.97
150 628.4 3.8 17.73 1.73 0.61 12.30 33.05
200 863.7 5.1 39.55 4.34 0.89 17.96 64.36
250 1104.9 4.7 70.8 8.05 1.09 17.67 101.00
300 1353.4 6.5 116.76 13.48 1.03 12.30 149.53
350 1582.0 7.2 182.24 19.40 0.97 7.09 219.11
400 1802.4 8.2 270.84 - - 7.38 314.58

d = 75% 50 175.0 1.7 0.58 0.04 0.05 0.71 1.45
100 410.9 3.4 5.40 0.57 0.26 5.00 11.51
150 661.4 2.8 15.91 1.93 0.48 7.37 26.5
200 895.2 4.7 32.12 4.28 0.59 5.79 44.57
250 1129.3 5.2 60.81 7.81 0.64 5.36 78.26
300 1348.3 6.5 98.13 11.74 0.53 3.14 119.72
350 1545.9 6.6 153.09 - - 3.43 179.51
400 1744.1 6.6 234.22 - - 4.97 256.34

Table 2: Mean CPU time for random graphs with d < 1.

22

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

T
im

e

Nodes

Clique
Grid
Hard

 0

 100

 200

 300

 400

 500

 600

 50 100 150 200 250 300 350 400

T
im

e

Nodes

d=0.05
d=0.25
d=0.5
d=0.75
d=1

Figure 8: Performance for different class of graphs

nK points. Therefore any approach that searches for X ? is necessary limited to smaller

instances because computation time is in Ω(|X ?|) and it seems questionable to render

to the decision maker an exponentially large output. Moreover Y? can easily be repre-

sented by a graph (as in Figure 7).

• The k-best approach works on elements of X therefore, it seems unlikely to have an

adaptation of this approach to efficiently compute Y?. Conversely, our branch-and-

bound approach can be adapted in order to directly search for either Y? or X ?. Some

tests have shown that we are able to compute X ? for 15× 15 grid graphs and cliques

with 65 nodes in less than 10 minutes whereas Steiner and Radzik (2008) only solve

9× 9 grid graphs and cliques with 26 nodes.

• The k-best approach seems highly inappropriate to solve instances where some Pareto

optimal points are not in the very best solutions for any linear combination of the

objectives, such as the instances of our “hard” class. Table 1 and Figure 8 show that

these instances remain satisfactorily tractable with our branch-and-bound.

A surprising conclusion can be drawn from the global study of these experimental results.

For small graphs —typically n < 100— instances with low density graphs —that is random

graphs with d = 0.05 and grid graphs— are easier than instances with high density graphs

such as cliques. However, when n is larger, the conclusion is opposite: large grid graphs

lead to more difficult instances than cliques of the same size. This fact is surprising because

23

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300 350 400

T
im

e

Nodes

Total
LS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 50 100 150 200 250 300 350 400

T
im

e

Nodes

Total
LS

Figure 9: CPU time according to the size of the clique graph (left) or the grid graph (right)

a clique contains significantly more spanning trees than a grid. To explain this behavior,

we compare in Figure 9 the ratio between the local search phase and the total CPU time

for both cliques and grids. Clearly, the branch-and bound remains very fast for the large

clique instances. It is due to the fact that at the root node there are very few points in

the objective space between the initial UB and the separating hypersurface. In fact, due

to the high number of spanning trees, most of the “efficient” costs in the two-dimensional

objective space have at least one corresponding spanning tree. This assertion can be verified

by checking the cardinality of N at the root node. Recall that the points of N that are

not lower bounded by the separating hypersurface are removed from N : so |N | reflects

the number of areas in the objective space where UB might be improved. For large clique

instances, |N | is indeed small: for all the tested instances with n ≥ 400 we have |N | < 10

— this is why the presorting is not processed for these instances (see Table 1).

We can explain this phenomenon because we have an exponential number of spanning

trees but a pseudopolynomial number of different points in the objective space because any

spanning tree cost is bounded by nK. To check this assertion, we have run our algorithms for

clique graphs with 100 nodes but with different values of K. Figure 10 shows the computation

times: clearly, instances are more difficult when K increases.

Finally, we would like to mention the quality of the simple local search heuristic. For

more than 99% of the instances, it finds Y? at the root node; for these cases, the branch-and-

bound only proves the optimality of the front. This last observation confirms the experience

24

 0

 10

 20

 30

 40

 50

 60

 70

 80

 50 100 150 200 250 300 350 400 450 500

T
im

e

Maximum cost per edge

Total
LS

Figure 10: Computation time according to the edge cost parameter K

of Ehrgott and Klamroth (1997) with smaller graphs: they indeed mention that the set of

efficient spanning trees is “only very rarely” disconnected.

5. Conclusion

In this paper, we have proposed a new multi-objective branch-and-bound procedure, strongly

relying on the convex hull of the image in the objective space of the potential feasible so-

lutions. Numerical experiments clearly show that this procedure, combined with an effi-

cient presolve method, makes it possible to outperform state-of-the-art algorithms on the

bi-objective spanning tree problem.

An interesting extension of this work would be to apply our procedure to problems

involving more than two objectives. In particular, an important issue is to investigate how

much the separating hypersurface must be refined to obtain good numerical performance:

indeed, the convex hull of Y(N) will be exponentially large. Another research issue would

be to test our procedure on combinatorial problems the single objective version of which

is NP-hard (the computation of the convex hull of Y(N) is here exponential even in the

bi-objective case).

25

References

Andersen, K.A., K. Jörnsten, M. Lind. 1996. On bicriterion minimal spanning trees: an

approximation. Computers and Operations Research 23 1171–1182.

Bitran, G., J.M. Rivera. 1982. A combined approach to solve binary multicriteria problems.

Naval Research Logistics Quarterly 29 181–201.

Chandrasekaran, R. 1977. Minimal ratio spanning trees. Networks 7 335–342.

Corley, H.W. 1985. Efficient spanning trees. Journal of Optimization Theory and Applica-

tions 45 481–485.

Daellenbach, H.G., C.A. De Kluyver. 1980. Note on multiple objective dynamic program-

ming. Journal of the Operational Research Society 31 591–594.

Ehrgott, M. 2000. Multicriteria Optimization, Lecture Notes in Economics and Mathematical

Systems , vol. 491. Springer Verlag, Berlin. 2nd edition: 2005.

Ehrgott, M., X. Gandibleux. 2000. A survey and annoted bibliography of multiobjective

combinatorial optimization. OR Spektrum 22 425–460.

Ehrgott, M., X. Gandibleux. 2004. Approximative solution methods for multiobjective com-

binatorial optimization. Journal of the Spanish Statistical and Operations Research Society

12 1–88.

Ehrgott, M., X. Gandibleux. 2007. Bound sets for biobjective combinatorial optimization

problems. Computers & Operations Research 34 2674–2694.

Ehrgott, M., K. Klamroth. 1997. Connectedness of efficient solutions in multiple criteria

combinatorial optimization. European Journal of Operational Research 97 159–166.

Emelichev, V.A., V.A. Perepelitsa. 1988. Multiobjective problems on the spanning trees of

a graph. Soviet Mathematics Doklady 37 114–117.

Hamacher, H.W., G. Ruhe. 1994. On spanning tree problems with multiple objectives.

Annals of Operations Research 52 209–230.

Kiziltan, G., E. Yucaoglu. 1983. An algorithm for multiobjective zero-one linear program-

ming. Management Science 29 1444–1453.

26

Knowles, J.D., D.W. Corne. 2001a. Benchmark problem generators and results for the multi-

objective degree-constrained minimum spanning tree problem. Proceedings of the Genetic

and Evolutionary Computation Conference GECCO2001 . Morgan Kaufmann Publishers,

424–431.

Knowles, J.D., D.W. Corne. 2001b. A comparison of encodings and algorithms for mul-

tiobjective spanning tree problems. Proceedings of the 2001 Congress on Evolutionary

Computation CEC2001 . 544–551.

Marcotte, O., R.M. Soland. 1986. An interactive branch-and-bound algorithm for multiple

criteria optimization. Management Science 32 61–75.

Martin, P.D., D.B. Shmoys. 1996. A new approach to computing optimal schedules for the

job shop scheduling problem. S.T. McCormick W.H. Curnigham, M. Queyranne, eds.,

Proceedings fifth international IPCO conference, Vancouver, Canada. LNCS 1084, 389–

403.

Mavrotas, G., D. Diakoulaki. 1998. A branch and bound algorithm for mixed zero-one

multiple objective linear programming. European Journal of Operational Research 107

530–541.

Murthy, I., S. Sarkar. 1998. Stochastic shortest path problems with piecewise-linear concave

utility functions. Management Science 44 125–136.

Neumann, F. 2007. Expected runtimes of a simple evolutionary algorithm for the multi-

objective minimum spanning tree problem. European Journal of Operational Research

181 1620–1629.

Papadimitriou, C.H., M. Yannakakis. 2000. On the approximability of trade-offs and optimal

access of web sources. IEEE Symposium on Foundations of Computer Science FOCS 2000 .

Redondo Beach, California, USA, 86–92.

Ramos, R.M., S. Alonso, J. Sicilia, C. Gonzales. 1998. The problem of the optimal biobjective

spanning tree. European Journal of Operational Research 111 617–628.

Serafini, P. 1986. Some considerations about computational complexity for multiobjective

combinatorial problems. J. Jahn, W. Krabs, eds., Recent advances and historical develop-

27

ment of vector optimization, Lecture Notes in Economics and Mathematical Systems , vol.

294. Springer-Verlag, Berlin.

Steiner, S., T. Radzik. 2008. Computing all efficient solutions of the biobjective minimum

spanning tree problem. Computers & Operations Research 35 198–211.

Tarjan, R.E. 1983. Data structures and network algorithms . CBMS-NSF Regional Con-

ference Series in Applied Mathematics, Society for Industrial and Applied Mathematics,

Philadelphia, PA.

Visée, M., J. Teghem, M. Pirlot, E.L. Ulungu. 1998. Two-phases method and branch and

bound procedures to solve biobjective knapsack problem. Journal of Global Optimization

12 139–155.

Zhou, G., M. Gen. 1999. Genetic algorithm approach on multi-criteria minimum spanning

tree problem. European Journal of Operational Research 114 141–152.

28

	Introduction
	Multi-objective branch-and-bound
	Preliminary definitions
	The multi-objective branch-and-bound procedure

	Bi-objective minimum spanning tree
	Related works
	Preprocessing of the graph
	Initial Pareto front
	Root lower bound
	Presorting edges
	Search algorithm
	Branching scheme
	Computing the lower bound
	Updating the incumbent Pareto front

	Experimental results
	Implementation details
	Instances
	Results

	Conclusion

