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Abstract

In this paper, we provide polynomial and pseudopolynomial algorithms for classes of particular instances of interval data minmax

regret graph problems. These classes are defined using a parameter that measures the distance from well known solvable instances.

Tractable cases occur when the parameter is bounded by a constant.

Key words: Robust optimization; Interval data; Shortest path; Spanning tree; Bipartite perfect matching

1. Introduction

In recent years there has been a growing interest in robust
optimization problems [17]. Studies in this field concern
problems where some parameters are not well known due
to uncertainty or imprecision. Usually, in weighted graph
optimization problems, the uncertain or imprecise param-
eters are the weights. In such a case, a set of scenarios is
defined, with one scenario for each possible assignment of
weights to the graph. Two approaches can be distinguished
according to the way the set of scenarios is defined: the in-
terval model where each weight is an interval and the set
of scenarios is defined implicitly as the Cartesian product
of all the intervals; the discrete scenario model where each
weight is a vector, every component of which is a particu-
lar scenario. Intuitively, a robust solution is a solution that
remains suitable whatever scenario finally occurs. Several
criteria have been proposed to formalize this: the minmax
criterion consists of evaluating a solution on the basis of its
worst value over all scenarios, and the minmax regret cri-
terion consists of evaluating a solution on the basis of its
maximal deviation from the optimal value over all scenar-
ios. We will mainly focus here on the robust shortest path
problem (RSP for short), the robust minimum spanning tree
problem (RST for short) and the robust minimum weighted
(bipartite) perfect matching problem (R(B)PM for short),
with the minmax regret criterion in the interval model. Al-
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though not crucial for our results, let us emphasize that
we consider here RSP in directed graphs (while RST and
R(B)PM deal of course with undirected graphs).

Formally, an interval data minmax regret network opti-
mization problem can be defined as follows. Let G = (V, E)
be a given directed or undirected graph (in the sequel, un-
less otherwise stated, we denote n = |V | and m = |E|). A
feasible solution is a subset π ⊆ E satisfying a given prop-
erty Π (for example, being a path, a tree or a matching).
Each edge e ∈ E is valued by an interval Ie = [le; ue] of
possible weights, where le and ue are nonnegative integers.
The set of scenarios is the Cartesian product S =

∏

e∈E Ie.
In other words, a scenario s ∈ S consists of assigning a
weight ws(e) ∈ Ie for every e ∈ E. For any feasible solu-
tion π and any scenario s ∈ S of an instance I = (G, IE)
where IE = {Ie : e ∈ E}, the value of π under scenario
s is ws(π) =

∑

e∈π ws(e) and its regret under scenario s

is Rs(π) = |ws(π) − opt(s)|, where opt(s) is the value of
an optimal solution for the standard instance valued by
ws (rigorously, we should write Rs(I, π) but we omit I
when no confusion is possible). The max regret of solution
π is defined by R(π) = maxs∈S Rs(π). The aim of a min-
max regret optimization problem is, given an instance I =
(G, IE), to find a feasible solution π∗ minimizing R(π∗).
Note that, for a minimization problem, R(π) = Rs(π)(π),
where s(π), called worst case scenario for π, is defined by
ws(π)(e) = ue if e ∈ π and ws(π)(e) = le otherwise [3].

In this paper, we consider tractable instances of RSP and
RST, that have been proved strongly NP-hard [4] in the
general case, as well as tractable instances of RBPM, the
restriction of which to complete bipartite graphs (known as
the interval data minmax regret assignment problem) has
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been proved NP-hard [13]. For this purpose, as suggested
by Guo et al. [11], we introduce parameters that measure
the distance from well known solvable instances. For ex-
ample, if all the intervals of an instance reduce to a single
point –degenerate intervals–, then the robust optimization
problem reduces to a standard optimization problem, and
is therefore polynomially solvable provided that the stan-
dard version is polynomial. One can define the distance
from this trivial case as the number k of non degenerate
intervals. If this distance k is bounded by a constant, then
the robust optimization problem is polynomially solvable
by a brute force algorithm [4]. In this work, we focus on two
kinds of parameters: some that measure the distance from
special weight structures (instances for which the minmax
regret is zero, instances with linearly ordered weights), and
a one that measures the distance from a special graph struc-
ture (tree). The paper is organized as follows. The first two
sections deal with the first kind of parameters: we show
that RSP and RBPM are polynomially solvable when the
minmax regret is bounded by a constant k (Section 2), as
well as RST when the number of intersecting intervals in
the instance is bounded by a constant k (Section 3). More
precisely, following parameterized complexity terminology
[8], the first two problems are in XP (problems solvable in
O(nf(k)) for some function f) while the third one is in FPT
(problems solvable in O(f(k)nc) for some constant c). The
next section deals with graphs close to be trees: we show
that RSP and RBPM are pseudopolynomial for graphs with
bounded treewidth and bounded degree (Section 4).

2. Upper bounded minmax regret

In this section, we investigate the hardness of solving an
interval data minmax regret graph optimization problem
when there exists a solution with bounded maximal regret.
Note that studying instances where the optimum value is
upper bounded is a classical way to understand the in-
trinsic difficulty of a combinatorial optimization problem
(problems which become polynomially solvable in this case
are called simple, see Paz and Moran [18]). Here, we first
show that we can easily determine if there is a solution of
maximal regret 0, i.e. a solution which is optimal under
every possible scenario. Next, we show that for RSP and
RBPM, we can extend this result to polynomially deter-
mine if there exists a solution of maximal regret at most k.

First, let us prove that the problem of the existence of
a solution of maximal regret 0 can be easily solved for any
interval data minmax regret graph optimization problem
Π. We use a generic 2-approximation algorithm proposed
by Kasperski and Zielinski [14]. For any instance I this
algorithm outputs a solution π such that R(π) ≤ 2R(π∗)
(where R(π∗) is the minmax regret of I). If R(π∗) = 0,
then R(π) = 0, else since R(π) ≥ R(π∗), we have R(π) > 0.
The expected result follows (Π being assumed to be poly-
nomial). Now, by a reduction to the regret 0 case, we prove

the following:

Proposition 1 For RSP, the problem of determining if the
minmax regret is at most k can be solved in time O(n2mk).

Proof. Let I = (G, IE) be an instance of RSP and denote
by r its optimum regret. Let us remark that if there exists a
degenerate interval Ie = {0} in I with e = (v1, v2), then one
can merge nodes v1 and v2 and get an equivalent instance
(possibly with multiedges). In particular, we can assume
that ue > 0 for any e. We construct m instances I1, . . . , Im

of RSP as follows: Ii is the same instance as I up to the
interval [li, ui] associated in I to ei which is transformed
into [max{li − 1; 0}, ui − 1] (we take max{li − 1; 0} to fit
with the usual assumption that li and ui are nonnegative).
We claim that:

(i) r∗i ≥ r−1 where r∗i denotes the optimum regret of Ii;
(ii) if r∗i = r − 1 then any optimum solution for Ii is

optimum for I;
(iii) there exists at least one i such that r∗i = r − 1 (if

r > 0).
If the claims are true, then by applying this construction

recursively to depth k, I has an optimum regret at most
k if and only if (at least) one of the final instances has op-
timum regret 0 (if at some point, we find an interval re-
duced to {0}, we can merge the corresponding nodes). We
get mk instances; the generic 2-approximation algorithm is
in O(n2) for RSP, and the complexity follows. Claims (i)
and (ii) hold since the regret of any path π satisfies Ri(π) ≥
R(π) − 1 (under any scenario, the value of any path has
decreased by at most 1). For Claim (iii), consider an opti-
mum solution π∗ = ((v0, v1), · · · , (vp−1, vp)) (where v0 = s

and vp = t) of I, and its worst case scenario s(π∗) in I. We
prove that there exists at least one edge ei ∈ π∗ such that
no shortest path in s(π∗) contains this edge. Note that if
this is true, then consider instance Ii: in s(π∗), the value
of the shortest path is the same in I and in Ii, hence the
regret of π∗ decreased by 1, and Claim (iii) is true. Then,
assume that for any i, there exists a shortest path πi (in
s(π∗)) which contains (vi−1, vi). Let wi

1 be the value (in
s(π∗)) of this path between s and vi−1 and wi

2 its value be-
tween vi and t (hence w1

1 = w
p
2 = 0). Since π∗ has regret

r, we get (s(π∗) is omitted for readability) that w(πi) =
wi

1 + wi
2 + u(vi−1,vi) = w(π∗)− r. Summing up we obtain:
p

∑

i=1

(wi
1 + wi

2) = pw(π∗) − pr −

p
∑

i=1

u(vi−1,vi)

= (p − 1)w(π∗) − pr

(1)

But remark that for each i ∈ {2, · · · , p} we can build a path
of value wi

1 + wi−1
2 (composed of the initial part of πi from

s to vi−1 and the final part of πi−1 from vi−1 to t). Then,
since each of these paths has value at least w(π∗) − r:

p
∑

i=2

(wi
1 + wi−1

2 ) ≥ (p − 1)(w(π∗) − r)

= (p − 1)w(π∗) − pr + r

(2)
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But since w1
1 = w

p
2 = 0, Equations (1) and (2) are incom-

patible for r > 0. 2

The central property, leading to Claim (iii), is that, in an
optimum solution π∗ for which R(π∗) > 0, there exists at
least one edge that does not belong to any optimum solution
(i.e. any shortest path) in s(π∗). Actually, one can show
that this property is also true for the interval data minmax
regret perfect matching problem in bipartite graphs. For
any instance I = (G, IE) of R(B)PM, we assume that G has
a perfect matching (in particular, the number n of vertices
of G is even).

Proposition 2 For RBPM, the problem of determining
if the minmax regret is at most k can be solved in time
O(n2mk).

Proof. The proof is quite identical to the one of Proposi-
tion 1. Let I = (G, IE) be an instance of RBPM where G =
(V, E) is a bipartite graph which admits a perfect matching
and denote by r its optimum regret. W.l.o.g., assume that
le ≥ k for any e. Actually, by adding any constant c > 0
to each interval Ie, we obtain an equivalent instance since
all the perfect matchings have the same size. As previously,
we build m instances I1, . . . , Im of RBPM where Ii is the
same instance as I up to the interval [li, ui] associated in I
to ei which is transformed to [li−1, ui−1]. Using the same
notation than those given in Proposition 1, we claim that:
(i) r∗i = R(Ii) ≥ r− 1; (ii) if r∗i = r− 1 then any optimum
solution for Ii is optimum for I; (iii) there exists at least
one i such that r∗i = r − 1 (if r > 0).

The proof of Claims (i) and (ii) is identical to the proof
of Proposition 1. So, we only prove Claim (iii). Consider
an optimum solution π∗ = {e1, · · · , en

2
} of I, and its worst

case scenario s(π∗) in I. As previously, we prove that there
exists at least one edge ei ∈ π∗ such that no perfect match-
ing with minimum weight in s(π∗) contains this edge. As-
sume the reverse, and let πi for i = 1, · · · , n

2 be a perfect
matching with minimum weight w(π∗) − r which contains
edge ei in scenario s(π∗) (note that possibly some πi are
identical). Then, in scenario s(π∗) we have:

n
2

∑

i=1

w(πi \ ei) =
n − 2

2
w(π∗) −

n

2
r (3)

On the other hand, the graph G′ induced by ∪
n
2

i=1

(

πi \ ei

)

is (n
2 − 1)-regular (G′ is considered as a multigraph, that

is if an edge (x, y) appears p times in ∪
n
2

i=1

(

πi \ ei

)

, then
there are p parallel edges between x and y in G′). Since
G′ is bipartite and (n

2 − 1)-regular, G′ can be decomposed
into (n

2 − 1) matchings π′i for i = 1, . . . , n
2 − 1 (by König’s

Theorem, [16]). These matchings π′i are perfect in G and
if π′ is a matching of minimum weight in scenario s(π∗)
among the matchings π′i for i = 1, . . . , n

2 −1, then the value
of π′ satisfies:

n − 2

2
w(π′) ≤

n
2

∑

i=1

w(πi \ ei) (4)

le = [1, 2]

le = [1, 6]

Fig. 1. An example for RPM in a non bipartite graph.

Using equality (3) and inequality (4) we obtain w(π′) ≤
w(π∗)−(1+ 2

n
)r, which is impossible for r > 0 since w(π′) ≥

w(π∗) − r.
By applying this construction recursively to depth k, we

build mk instances such that I has an optimum regret at
most k iff (at least) one of the final instances has optimum
regret 0. Since we supposed that ∀e ∈ E, le ≥ k for the
initial instance, all the interval lower bounds in the final
instances are non-negative. 2

Our method seems to be quite general and may be fruit-
fully applied to other problems, but however not to all of
them. Indeed, the property leading to Claim (iii) is no
more true for some problems such as RST or RPM (in ar-
bitrary graphs), and for them the question whether they
are simple (according to the definition of [18]) or not re-
mains open. Figure 1 illustrates why the property does not
hold for RPM in a non bipartite graph. The solution π∗

described by solid lines is the unique optimal solution for
RPM. Its worst value is 6, its max regret is 2, and in its
worst scenario s(π∗), each edge of π∗ belongs to a perfect
matching of minimum weight.

3. Upper bounded number of interval intersections

As previously mentioned, RST and RSP are fixed param-
eter tractable (FPT) when the parameter is the number
of non degenerate intervals (with a brute force algorithm).
Minimum spanning trees have special properties that lead
to another easy cost structure: when all intervals are dis-
joint (Ie ∩ If = ∅ for any edges e and f), any minimum
spanning tree under any scenario is an optimum solution
for RST [1]. Indeed, Kruskal algorithm leads then to the
same tree, independently of the scenario. This tree is op-
timal, and its regret is 0. Note that, on the other hand,
even if all intervals are [0, 1], RST is NP-hard [1,4]. Here,
we show that RST is FPT when considering as a parame-
ter the number of intervals that intersect at least one other
interval. Although using brute force, the optimality of the
algorithm is not obvious.

Proposition 3 RST can be solved in time O(2k m log m),
where k is the number of intervals that intersect at least one
other interval.

Proof. Let I = (G, IE) be an instance of RST where G =
(V, E) and Ie = [le, ue] for any e ∈ E. We define J = {Ie1

:
∃e2 6= e1, Ie1

∩ Ie2
6= ∅}, and we set k = |J |. Let J ′ ⊆ J .
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We want to compute the best (in terms of regret) spanning
tree π such that π ∩ EJ = EJ′ (where EJ denotes the set
of edges corresponding to intervals in J). Indeed, if we are
able to do this, we only have to consider each possible J ′ ⊆
J , and take the best solution so computed.

If EJ′ contains a cycle, there is no tree π such that π ∩
EJ = EJ′ . If not, we proceed as follows: we remove from E

the set EJ\J′ and, considering EJ′ as part of the spanning
tree, we complete it by applying Kruskal algorithm to the
remaining graph (choosing any weight w(e) ∈ [le, ue] since
the output does not depend on the value of an edge e 6∈ J).
Let πJ′ be the obtained solution. In the sequel, we show
that πJ′ is the best (in terms of regret) spanning tree π

such that π∩EJ = EJ′ . Then, the global complexity of our
algorithm is bounded by 2kO(m log m).

Let π be a spanning tree such that π ∩ EJ = EJ′ . We
want to prove that R(πJ′) ≤ R(π). First, note that πJ′ and
π agree on EJ . Then, under any scenario where w(e) = ue

for e ∈ EJ′ and w(e) = le for e ∈ EJ\J′ , Kruskal algorithm
will produce the same optimum solution π∗. In particular
π∗ is optimal both in s(π) and s(πJ′). However, π∗ does not
have the same value in these two scenarios. Then:

R(πJ′) − R(π) = ws(πJ′ )(πJ′) − ws(πJ′ )(π
∗)

−
(

ws(π)(π) − ws(π)(π
∗)

)

We upper bound this by considering each edge of the graph.
If πJ′ and π agree on an edge e (either take it or not), then
the difference is 0 for this edge, since this edge has the same
value in s(π) and s(πJ′), and since we refer to the same
tree π∗. Note that this includes all edges in EJ . If πJ′ and
π disagree on e, either:
– e is in πJ′ \π. If e is not in π∗, then in the regret it counts

ue for πJ′ (ue for πJ′ and 0 for π∗) and 0 for π (0 for π

and 0 for π∗). If e is in π∗, it counts 0 for πJ′ and −le for
π. The loss (in terms of regret) from πJ′ respect to π is
therefore at most ue;

– e is in π \ πJ′ . If e is not in π∗, then it counts 0 for πJ′

and ue for π. If e is in π∗, it counts −le for πJ′ and 0 for
π. Then, respect to π, πJ′ “wins” at least le.

Summing up these inequalities for all edges leads to:

R(πJ′) − R(π) ≤
∑

e∈πJ′\π

ue −
∑

e∈π\πJ′

le (5)

Now, recall that π and πJ′ agree on J , and that the
intervals not in J do not intersect. Hence, whatever the
value of edges not in J , πJ′ will have a better value than
π. This is true in particular when the weight of each e 6∈ J

is fixed to ue if e is in πJ′ and to le otherwise. This means
that

∑

e∈πJ′\π

ue ≤
∑

e∈π\πJ′

le (6)

Equations (5) and (6) lead to the result that πJ′ is the best
tree π such that π ∩ J = J ′. 2

Note that for RSP, making assumptions on interval in-
tersections does not simplify the problem.

Proposition 4 RSP is NP-hard even if there are no inter-
sections between intervals.

Proof. We simply modify the instances given in [15] show-
ing that the problem is NP -hard in series-parallel graphs.
We have a set of n+1 nodes v1, . . . , vn+1. There is an edge
from v1 to vn+1, and two edges e1

i and e2
i from vi to vi+1,

i = 1, · · · , n. Then a path from v1 to vn+1 is either edge
(v1, vn+1) or contains exactly one edge from vi to vi+1,
i = 1, · · · , n. Let M be greater than the largest number
of the instance. We replace each edge e1

i (resp. e2
i ) by two

consecutive edges (vi, v
1
i ) and (v1

i , vi+1) (resp. (vi, v
2
i ) and

(v2
i , vi+1)), where v1

i (resp. v2
i ) is a new vertex. Then, if

[l1i , u
1
i ] and [l2i , u

2
i ] are the intervals of e1

i and e2
i , we set

– the interval of (vi, v
1
i ) to [4iM + l1i , 4iM + u1

i ],
– the one of (v1

i , vi+1) to [(4i + 3)M ; (4i + 3)M ],
– the one of (vi, v

2
i ) to [(4i + 1)M + l2i , (4i + 1)M + u2

i ],
– the one of (v2

i , vi+1) to [(4i + 2)M ; (4i + 2)M ].
Moreover, we replace the interval [l, u] of edge (v1, vn+1)

by [l + K, u + K], where K =
∑n

i=1(8i + 3)M =
(3n + 4n(n + 1))M . Of course, there are no more inter-
section between intervals. Moreover, we have added a
constant value (namely K) to any path from v1 to vn.
Since regrets are not modified by this transformation, the
hardness follows. 2

4. Upper bounded treewidth and max degree

The treewidth of a graph can be seen as a measure of
how far it is from being a tree (the treewidth of a tree is
1). Kasperski and Zielinski have recently shown that RSP
is NP-hard in series-parallel graphs, but admits a pseu-
dopolynomial algorithm in this case [15]. It is well-known
that the treewidth of an (undirected) series-parallel graph
is at most 2. A natural extension of their result is there-
fore to investigate complexity of RSP in graphs of bounded
treewidth (more precisely, in graphs whose corresponding
undirected simple graph has a bounded treewidth). Clearly,
RSP is polynomially solvable in a graph G the treewidth
of which is k = 1 (G is a tree), or the max degree of which
is ∆ ≤ 2 (G is a set of cycles and/or chains). However,
it is NP-hard when k = 2 and ∆ = 3 (since there is a
polynomial reduction from the partition problem involving
an ESP graph -without multiedges- of max degree 3 [15]).
Using a mathematical programming formulation, we show
here its pseudopolynomiality for bounded k and ∆.

Proposition 5 RSP can be solved in time O((n +
m)2∆(k+1)((n − 1)umax)

k+1) in graphs G = (V, A) of
treewidth k and max degree ∆, where umax = max

(i,j)∈A
uij.

Proof. Let G = (V, A) denote a directed graph with a
source node s and a sink node t, and let G′ = (V, E) denote
the simple undirected graph obtained from G by removing
orientation of edges and by simplifying multiedges. Solving

4



RSP in G amounts to solving the following integer linear
program (ILP) [12]:

min
∑

(i,j)∈A

uijyij − xt (7)

s.t. xj ≤ xi + lij + (uij − lij)yij ∀(i, j) ∈ A, (8)

∑

k:(j,k)∈A

yjk −
∑

i:(i,j)∈A

yij =



















1 if j = s

-1 if j = t

0 if not

∀j ∈ V, (9)

xs = 0, yij ∈ {0, 1} ∀(i, j) ∈ A, xj ∈ N ∀j ∈ V. (10)

The interaction graph of an ILP includes a vertex for each
variable of the program and an edge between two vertices
if both corresponding variables appear in the same con-
straint. We now show that the program is solvable in pseu-
dopolynomial time by applying a dynamic programming
technique on a tree decomposition of the interaction graph
IG = (I, U), i.e. a labeled tree (T, L) such that (a) every
node t of T is labeled by a non-empty subset L(t) of V s.t.
∪t∈T L(t) = V , (b) for every edge {i, j} ∈ U there is a node
t of T whose label L(t) contains both i and j, (c) for every
vertex i ∈ I the nodes of T whose labels include i form a
connected subtree of T . The width of a tree decomposition
is maxt∈T |L(t)| − 1. The treewidth of IG is the smallest k

for which IG has a tree decomposition of width k. If the
treewidth of a graph is bounded by a constant k, then a tree
decomposition of treewidth at most k can be constructed
in linear time (in the number of nodes) [7]. This tree de-
composition can itself be converted in linear time in a nice
tree decomposition of the same width, i.e. a rooted tree de-
composition such that each node has at most two children,
with four types of nodes t: leaf nodes with |L(t)| = 1, join
nodes with two children t′, t′′ s.t. L(t) = L(t′) = L(t′′),
introduce nodes with one child t′ s.t. L(t) = L(t′) ∪ {v}
for some v ∈ V , forget nodes with one child t′ s.t. L(t) =
L(t′) \ {v} for some v ∈ V . The proof of pseudopolynomi-
ality of the approach is in three steps: (i) we show that if
the max degree of G and the treewidth of G′ are bounded
by some constant, then the treewidth of IG is bounded by
some constant; (ii) we show how to solve by dynamic pro-
gramming an ILP whose IG has a bounded treewidth; (iii)
we show that the previous approach is pseudopolynomial
since variables xj are upper bounded by (n−1)umax, where
umax = max(i,j)∈A uij .

Proof of (i). Assume that G′ has treewidth k and G has
max degree ∆. Note that IG restricted to constraints (9)
is the line graph of G, i.e., the graph where each vertex
represents an edge of G and any two vertices are adjacent
iff their corresponding edges are incident. It can be shown
that the treewidth of the line graph is at most ∆(k +1)−1
[2]. Assuming (T, L) is a tree decomposition of width k of
G′, the idea is to consider the labeled tree (T, L′) where
L′(t) is the set of edges of G incident to some node in L(t).
Indeed, one can show that (T, L′) is then a tree decompo-
sition of the line graph [2]. We now show that (T, L∪L′) is

a tree decomposition of IG (where we identify a vertex or
an edge of G with the corresponding variable in the ILP).
For this purpose, one can consider the following partitions
of I and U : I = X ∪ Y , where X = {xj : j ∈ V } and Y =
{yij : (i, j) ∈ A}, and U = UX ∪ UY ∪ UXY , where UX =
{[xi, xj ] : (i, j) ∈ A}, UY = {[yjk, yij ] : (i, j) ∈ A, (j, k) ∈
A} and UXY = {[xi, yij ], [xj , yij ] : (i, j) ∈ A}. Condition
(a) holds since ∪t∈T L(t) = X and ∪t∈T L′(t) = Y . Condi-
tions (b) and (c) hold for edges of UX and for vertices in X

since (T, L) is a tree decomposition of G′. They also hold for
edges of UY and for vertices in Y since (T, L′) is a tree de-
composition of the line graph. Besides, condition (b) holds
for edges of UXY by construction of L′. Hence, (T, L ∪ L′)
is a tree decomposition of IG. Furthermore, the treewidth
of IG is upper bounded by maxt∈T L(t)+maxt∈T L′(t)−1
= k + ∆(k + 1).

Proof of (ii). By using a method related to non-serial dy-
namic programming [6], we now show how to solve an ILP
in the following general form:

(P )



































min

n
∑

j=1

cjxj

n
∑

j=1

aijxj Ri bi where Ri ∈ {≤, =,≥} ∀i ≤ m

xj ∈ Dj ∀j ≤ n

For this purpose, let us introduce the notion of subprogram
of an ILP. For each node t of the nice tree decomposition
T of the interaction graph of the ILP, P (t) denotes the
subprogram of P restricted to the variables whose indices
belong to D(t) =

⋃

t′ L(t′) for t′ = t or t′ a descendant of t:

(P (t))































min
∑

j∈D(t)

cjxj

n
∑

j=1

aijxj Ri bi ∀i : [∀j, (aij 6= 0 ⇒ j ∈ D(t))]

xj ∈ Dj , ∀j ∈ D(t)

Given t ∈ T and σ an assignment of values to variables
of L(t) (such that σ(j) ∈ Dj), we denote by Rt(σ) the
minimum value of a feasible solution x of P (t) under the
constraint xj = σ(j) ∀j ∈ L(t). One sets Rt(σ) = +∞
if no feasible solution of P (t) is compatible with σ. The
dynamic programming algorithm consists of traversing the
nice tree decomposition in a bottom up manner, and com-
puting recursively the tables Rt for each t ∈ T , where table
Rt has an entry Rt(σ) for each possible assignment σ: let
t be a leaf node, say L(t) = {j}, then Rt(σ) = cjσ(j); let
t be a join node with two children t′ and t′′, then Rt(σ) =
Rt′(σ) + Rt′′(σ) −

∑

j∈L(t) cjσ(j); let t be an introduce

node, say L(t) = L(t′)∪{j}, then Rt(σ) = +∞ if σ violates
a constraint of P (t), otherwise Rt(σ) = Rt′(σt′ ) + cjσ(j)
where σt′ denotes assignment σ restricted to the variables
in L(t′); let t be a forget node, say L(t) = L(t′) \ {j},
then Rt(σ) = mindj∈Dj

{Rt′(σ
′) : σ′(k) = σ(k) ∀k 6=

j and σ′(j) = dj}. The optimum is minσ Rr(σ) at the root

5



node r of the nice tree decomposition.

Proof of (iii). We have |I| = n + m since there are n

xi’s and m yij ’s in the ILP formulation of RSP. There
are therefore O(n + m) nodes in the nice tree decom-
position. Noticing that a table Rt can be computed in
time O(2∆(k+1)((n − 1)umax)

k+1) since there are at most
∆(k + 1) boolean variables and k + 1 integer variables in
L(t), the result follows. 2

This approach based on properties of the interaction
graph of an ILP formulation is quite general, and can be
also fruitfully applied to RBPM. As in Section 2, for any
instance of RBPM, we assume that there exists a perfect
matching.

Proposition 6 RBPM can be solved in time O((n+
m)2∆(k+1)((n + 1)umax)

k+1) in graphs of treewidth k and
max degree ∆, where umax = max

(i,j)∈E
uij.

Proof. Let G = (V1∪V2, E) denote an undirected bipartite
graph, where V1 and V2 partition the set of vertices into two
independent sets. Solving RBPM in G amounts to solving
the following ILP [13]:

min
∑

[i,j]∈E

uijyij −





∑

j∈V2

xj −
∑

i∈V1

xi



 (11)

s.t. xj ≤ xi + lij + (uij − lij)yij ∀[i, j] ∈ E, (12)
∑

j∈V2

yij = 1 ∀i ∈ V1, (13)

∑

i∈V1

yij = 1 ∀j ∈ V2, (14)

yij ∈ {0, 1} ∀[i, j] ∈ E, (15)

xi ∈ Z ∀i ∈ V1, xj ∈ Z ∀j ∈ V2. (16)

Variables xi’s and xj ’s (resp. constraints (12)) represent
potentials assigned to vertices of G (resp. constraints) in
the dual version of the weighted perfect matching prob-
lem in bipartite graphs. More precisely, given a perfect
matching characterized by a vector y of booleans, con-
straints (12) correspond to the dual version of the problem
weighted according to the worst case scenario for y. Hence,
∑

j∈V2
xj −

∑

i∈V1
xi takes the value of the best perfect

matching in scenario s(y). Actually, variables xi’s and
xj ’s are real variables in the formulation of Kasperski and
Zielinski [13], which leads to a mixed integer model. How-
ever, there always exists integer potentials xi’s and xj ’s
that are optimal in the dual problem. Indeed, for instance,
the primal dual algorithm of Ford and Fulkerson [10]
builds an optimal dual solution, the potentials of which
are integers within {−numax, . . . , umax} by construction.
Therefore the solution obtained by solving the above ILP
remains optimal. The proof of Proposition 6 is then identi-
cal to the one of Proposition 5, constraints (12) (resp. (13)
and (14)) playing the role of constraints (8) (resp. (9)), G

the role of G′, and (n + 1)umax the role of (n − 1)umax. 2

Note that we conjecture that RSP and RBPM can
be pseudopolynomially solved in graphs with bounded
treewidth (without any degree restriction). Besides, an-
other extension of the result on series-parallel graphs,
based on the notion of reduction complexity ([5]), can be
found in the conference version of this article [9].

Acknowledgement: The very useful comments and
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knowledged.
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