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We investigate the high-temperature behavior of the directed polymer model in dimension 1 + 2. More precisely we study the difference ∆F(β) between the quenched and annealed free energies for small values of the inverse temperature β. This quantity is associated to localization properties of the polymer trajectories, and is related to the overlap fraction of two replicas. Adapting recent techniques developed by the authors in the context of the disordered pinning model [4], we identify the sharp asymptotic high temperature behavior lim β→0 β 2 log ∆F(β) = -π .

Introduction

The directed polymer model has been introduced by Huse and Henley (in dimension 1 + 1) in 1985 [START_REF] Huse | Pinning and roughening of domain wall in Ising systems due to random impurities[END_REF] as an effective model for an interface in the Ising model with impurities. It was shortly afterwards generalized to arbitrary dimension 1 + d, where it stands as a model for a stretched polymer interacting with an inhomogeneous solvent. The behavior of the polymer trajectory depends very on value of d, see [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] for a review.

In dimension 1 + 3 and higher there is a phase transition between a high temperature diffusive phase for which there is a Brownian scaling [START_REF] Bolthausen | A note on diffusion of directed polymers in a random environment[END_REF][START_REF] Comets | Directed polymers in a random environment are diffusive at weak disorder[END_REF], and a localized phase where the polymer tends to pin on a few narrow corridors were the environment is more favorable (see [START_REF] Carmona | Strong disorder implies strong localization for directed polymers in a random environment[END_REF][START_REF] Comets | Directed Polymers in a random environment: strong disorder and path localization[END_REF] for rigorous evidence of the phenomenon).

In dimension 1 + 1, the polymer is localized at every temperature. Moreover it belongs to the KPZ universality class, which has been the object of intense studies in the recent year (for a connection between directed polymer and the KPZ equation, see e.g. [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1+1[END_REF] and references therein).

The dimension 1 + 2 is critical for the model. It is known that localization occurs at all temperature (see [START_REF] Comets | Directed Polymers in a random environment: strong disorder and path localization[END_REF][START_REF] Lacoin | New bounds for the free energy of directed polymers in dimension 1 + 1 and 1 + 2[END_REF]), but the difference between the quenched and annealed free-energy of the system, which is a quantitative indicator of localization, grows very slowly with the inverse-temperature. The aim of this paper is to obtain sharp information on the asymptotic behavior of this free-energy difference.

1.1. Directed polymer in random environment. We let P denote the law of S = (S n ) n 0 the symmetric nearest-neighbor random walk on Z d , starting from 0, and whose increment are i.i.d. with law (1.1)

P(S 1 = x) = 1 2d 1 {|x|=1} ,
where | • | is the l 1 norm. Let ω = (ω i,x ) i 0,x∈Z d be a field of i.i.d. random variables with law P, which are centered and have unit variance, E[ω i,x ] = 0 and E[(ω i,x ) 2 ] = 1. We also assume that they have a finite exponential moment in a neighborhood of zero, i.e. that for some positive c, (1.2) ∀β ∈ [-c, c], λ(β) := log E[e λωi,x ] < +∞.

Given the random environment ω and the inverse temperature β > 0, we define the following Gibbs transformation of the law P of the random walk up to length N βω n,Sn .

The free energy (or pressure) of the system is defined by

(1.5) F(β) := lim N →∞ 1 N log Z β,ω N .
The limit is known to exist and be P-a.s. constant, see [START_REF] Comets | Directed Polymers in a random environment: strong disorder and path localization[END_REF]Prop. 2.5]. It is also known that the converge holds in L 1 and hence that (1.6)

F(β) = lim N →∞ 1 N E log Z β,ω N .
An easy upper-bound on F(β) it is given by Jensen's inequality

(1.7) F(β) lim N →∞ 1 N log E Z β,ω N = λ(β).
We refer to this upper bound as the annealed free-energy while F(β) is the quenched one. Knowing whether or not this inequality is sharp gives information on the localization of the trajectory. Heuristically F(β) < λ(β) corresponds to localization of the trajectories under P β,ω N around favorite corridors where ω is favorable, whereas F(β) = λ(β) implies diffusivity of S. This has been largely put on rigorous ground both for the diffusive case [START_REF] Bolthausen | A note on diffusion of directed polymers in a random environment[END_REF][START_REF] Comets | Directed polymers in a random environment are diffusive at weak disorder[END_REF] and the localized one [START_REF] Carmona | Strong disorder implies strong localization for directed polymers in a random environment[END_REF][START_REF] Comets | Directed Polymers in a random environment: strong disorder and path localization[END_REF]. Moreover, it is known that F(β) = λ(β) for small value of β when d 3 [START_REF] Bolthausen | A note on diffusion of directed polymers in a random environment[END_REF] while the inequality is always strict for d = 1 [START_REF] Comets | Majorizing multiplicative cascades for directed polymers in random media[END_REF] and d = 2 [START_REF] Lacoin | New bounds for the free energy of directed polymers in dimension 1 + 1 and 1 + 2[END_REF].

When F(β) < λ(β), the difference ∆F(β) = λ(β) -F(β) > 0 gives some indication on how much localized the trajectories are: Carmona and Hu [START_REF] Carmona | Strong disorder implies strong localization for directed polymers in a random environment[END_REF] (and later Comets Shiga and Yoshida)gave an explicit link between ∆F(β) and the overlap fraction of two replicas, namely in our context

∆F(β) = λ(β) lim N →∞ 1 N N k=1 (P β,ω k-1 ) ⊗2 (S (1) 
k = S (2) 
k ) P -a.s.

In dimension 1, it is known that ∆F(β) scales like β 4 (see [START_REF] Lacoin | New bounds for the free energy of directed polymers in dimension 1 + 1 and 1 + 2[END_REF][START_REF] Watbled | Sharp asymptotics for the free energy of 1+1 dimensional directed polymers in an infinitely divisible environment[END_REF][START_REF] Alexander | Directed polymers in a random environment with a defect line[END_REF]), and it is conjectured [START_REF] Sasamoto | Exact Height Distributions for the KPZ Equation with Narrow Wedge Initial Condition[END_REF][START_REF] Sasamoto | The one-dimensional KPZ equation: an exact solution and its universality[END_REF] that

(1.8) lim β→0 β -4 ∆F(β) = 1 24 .
The exponent 4 is very much related to the β = N -1/4 scaling which is required to obtain a non-trivial intermediate disorder regime limit, see [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1+1[END_REF].

Main result.

In this paper we focus on the case of d = 2, the critical dimension for directed polymers, for which the renormalized free energy ∆F(β) vanishes faster than any power of β. In [START_REF] Lacoin | New bounds for the free energy of directed polymers in dimension 1 + 1 and 1 + 2[END_REF], the author showed the existence of a constant c such that for β 1,

-c -1 β -4 log ∆F(β) -c β -2 .
In [START_REF] Nakashima | A remark on the bound for the free energy of directed polymers in random environment in 1 + 2 dimension[END_REF], the lower bound was improved to log ∆F(β) -c ε β -(2+ε) for any ε > 0.

Our main theorem significantly improves over previous results and identifies the sharp critical behavior of ∆F(β). To derive it we us a by now standard fractional moment/coarse-graining procedure, employed in the context of pinning models [START_REF] Derrida | Fractional moment bounds and disorder relevance for pinning models[END_REF][START_REF] Giacomin | Disorder relevance at marginality and critical point shift[END_REF] recently enhanced in [START_REF] Berger | Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift[END_REF], and adapted for the directed polymer model in [START_REF] Lacoin | New bounds for the free energy of directed polymers in dimension 1 + 1 and 1 + 2[END_REF][START_REF] Nakashima | A remark on the bound for the free energy of directed polymers in random environment in 1 + 2 dimension[END_REF]. Here, we relie in particular on new ideas that have been introduced in [START_REF] Berger | Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift[END_REF] to obtain optimal bounds on the critical point shift in disordered pinning. Let us sketch briefly how the different parts of the proof articulate.

First we realize that to control the free-energy it is sufficient to have a control on E[ Z β,ω N ] which is easier to work with than the log partition function. Then, to obtain the desired upper bound, we proceed in three steps which we introduce here in a rather informal manner:

(i) We perform a coarse-graining of the system, dividing it into cells of length and width √ (to fit with the random walk diffusive scaling) where depends on β and gets very large when β gets small. We choose to be roughly the inverse of ∆F(β) or rather the inverse of the bound we would like to prove for it. The idea behind this procedure is to "factorize" the partition function of a system of size much larger than and isolate the contribution of each cell. Then if one is able to show that partition function "restricted to a cell" is small, we want to use the factorization procedure to deduce a bound on the free energy. (ii) The coarse grained trajectory is defined as the projection of the original trajectory S on this rougher lattice (we give a more proper definition in the core of the paper). We decompose the partition function of a system whose size is a multiple of by isolating the contribution of each coarse grained trajectory. By using the inequality a i √ a i valid for any collection of positive a i 's, we reduce ourselves to estimate the square root moment of partition functions restricted to a single coarse grained trajectory. (iii) We estimate these square root contribution of coarse grained trajectories by performing a "change of measure" which makes the environment ω less favorable in the visited cells.

The way we choose this change of measure is quite elaborate and is based on a multilinear form of the ω n,x in the cell. It is described in details in Section 2.3.

The steps (i) and (ii) are identical to those performed in [START_REF] Lacoin | New bounds for the free energy of directed polymers in dimension 1 + 1 and 1 + 2[END_REF] and are presented in Section 2, however the change of measure is significantly improved with respect to that of [START_REF] Lacoin | New bounds for the free energy of directed polymers in dimension 1 + 1 and 1 + 2[END_REF] and builds on the innovations introduced in [START_REF] Berger | Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift[END_REF]. In Section 3, we prove the technical estimates needed to control the effect of the change of measure procedure.

The upper bound is obtained in Section 4 thanks to an estimate on the second moment of the partition function, together with a concentration argument of log Z β,ω N around its mean inspired by [START_REF] Caravenna | Universality for the pinning model in the weak coupling regime[END_REF]. 1.4. Generalization of the result? The techniques described in Section 1.3 could be adapted to a more general context. Indeed, one might consider the model in which the random walk S is not the simple symmetric random walk on Z d , but belongs to the domain of attraction of an α-stable law with α ∈ (0, 2], see [START_REF] Comets | Weak disorder for low dimensional polymers: The model of stable laws[END_REF]. Let us consider the case of the dimension 1 + 1: it has been showed that weak disorder holds for β small enough when α ∈ (0, 1), see [START_REF] Comets | Weak disorder for low dimensional polymers: The model of stable laws[END_REF], and that strong disorder holds for any β > 0 when α ∈ (1, 2), see [START_REF] Miura | Strong and weak disorder for Lévy directed polymers in random environment[END_REF] (in a continuous setting). A similar question has been studied in [START_REF] Caravenna | Polynomial chaos and scaling limits of disordered systems[END_REF], where a disordered scaling limit can be constructed whenever α ∈ [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1+1[END_REF][START_REF] Alexander | Directed polymers in a random environment with a defect line[END_REF]. The case α = 1 is marginal, as it is the case of the simple random walk in dimension 1 + 2, and it is likely that it could be dealt with the same methods as presented here: one should be able to obtain a necessary and sufficient condition for the existence of a weak disorder phase (note that this is related to the notion of disorder irrelevance, studied in [START_REF] Berger | Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift[END_REF]). In general, localization should occur for all β > 0 if and only if S is recurrent, and the growth of the excess free energy ∆F(β) should be related to that of the mean intersection local time up to time N , cf. (1.11) (analogously to [4, Prop. 6.1-7.1]). 1.5. Some notations. We write (1.9) Z β,ω N := e -N λ(β) Z β,ω N for the renormalized partition function. We introduce the intersection local time up to time N , (1.10) L N (S (1) , S (2) 

) = N t=1 1 {S (1) t =S (2) 
t } .

For (2)

t ) = N t=1 p(2t, 0) N →∞ ∼ 1 π log N .
Note that D(N ) can also be written as

N t=1 x∈Z 2 p(t, x) 2 .
2. Lower-bound 2.1. Fractional moment and coarse-graining. To bound the free energy from above we have to estimate the expected value of log Z β,ω N . Using Jensen's inequality, we can reduce the problem into having to estimate only the square root, which turns out to be more convenient. We have

(2.1) E log Z β,ω N = 2E log Z β,ω N 2 log E Z β,ω N ,
and hence

(2.2) ∆F(β) -lim inf N →∞ 2 N log E Z β,ω N .
We choose to split the system into "cells" of length which we choose to be equal to

(2.3) = β,ε := exp (1 + 2ε) π β 2 ,
where ε > 0 is a parameter (fixed for the rest of the proof), which we choose to be small. The reason for this choice of coarse-graining length will appear later in the proof. We consider a system whose length is a multiple of : N = m , m ∈ N. For every y ∈ Z 2 , we define a window centered at y √ (we assume for simplicity that √ is an even integer), and of width √ :

Λ y := y √ + (-1 2 √ , 1 2 √ ] 2 ∩ Z 2 ,
Note that Λ y contains points. Given any Y = (y 1 , . . . , y m ) ∈ (Z 2 ) m , we define the event

(2.4) E Y := ∀i ∈ {1, . . . , m}, S i ∈ Λ yi .
If S ∈ E Y , then Y is a coarse-grained version of the trajectory of S. The width of the cells is chosen to match the scaling of the random-walk.

We decompose Z β,ω N according to the contribution of the different coarse-grained trajectories

(2.5) Z β,ω N = Z β,ω m = Y∈(Z 2 ) m E exp N n=1 βω n,Sn -λ(β) 1 {S∈E Y } =: Y∈(Z 2 ) m Z Y .
Using the inequality ( i∈I a i ) 1/2 i∈I a 1/2 i , valid for any family of non-negative a i 's, we obtain

(2.6) E ( Z β,ω N ) 1/2 Y∈(Z 2 ) m E (Z Y ) 1/2 .
We are therefore left with estimating E (Z Y ) 1/2 for every coarse-grained trajectory Y. As a consequence of (2.2) and (2.6) we have

(2.7) ∆F(β) -lim inf m→∞ 2 m log   Y∈(Z 2 ) m E (Z Y ) 1/2   ,
We obtain the lower bound in Theorem 1.1 as a consequence of the following result Proposition 2.1. For any ε > 0, there exists some β ε > 0 such that, for every β ∈ (0, β ε ), and m 1

Y∈(Z 2 ) m E (Z Y ) 1/2 2 -m .
This statement implies indeed that ∆F(β) (2 log 2) -1 , and thus from the definition of (2.3), for any arbitrary ε > 0, we have

(2.8) lim inf β→∞ β 2 log ∆F(β) -(1 + 2ε)π.
2.2. The change of measure argument. Let g Y (ω) be a positive function, that can be interpreted as a probability density if renormalized. Using the Cauchy-Schwarz inequality, we have

(2.9) E (Z Y ) 1/2 2 E g Y (ω) -1 E g Y (ω) Z Y .
The idea is then to choose g Y (ω) such that E g Y (ω) -1 is not much larger than one, but that lowers significantly the expectation of Z Y . Hence we want g Y to be of order 1 for "typical environments", but much smaller for atypical ω which results in high values of Z Y (the underlying idea being that these are the ones who carry the mass in the expectation).

As we want to affect the partition function restricted to paths in E Y , we choose a change of measure g Y (ω) which only affects the environment in a corridor which is centered on the location of the paths. To make certain that most trajectories in E Y are affected by the change, we apply it in a region which is slightly wider than √ : For any y ∈ Z 2 , let us define

Λ y := y √ + [-R √ , R √ ] 2 ∩ Z 2
where R is chosen sufficiently large (see the proof of Lemma 3.2). Note that Λ y contains 4R 2 points. We choose g Y to be a function of ω restricted to n i=1 B (i,yi-1) for i = 1, . . . , m where (2.10)

B (i,y) := [(i -1) + 1, i ] × Λ y ,
Because of our coarse-graining, it is natural that we choose g Y as a product of functions of the environment restricted to one cell (ω n,x ) (n,x)∈B (i,y i-1 ) .

We let X(ω) be a function of (ω n,x ) (n,x)∈B (1,0) which we specify in the next section and which satisfies

(2.11) E[X(ω)] = 0, E[(X(ω)) 2 ] 1.
We define X (i,y) as the space-time "translation" of X (2.12)

X (i,y) (ω) := X(θ (i-1) , √ y ω),
where θ a,b is the shift operator: (θ a,b ω) t,x := ω t+a,x+b . Finally, given K > 0 which is chosen large enough, we set

g (i,y) (ω) := exp -K 1 {X (i,y) (ω) e K 2 } , g Y (ω) := m i=1 g (i,yi-1) (ω) (2.13)
With this definition, and provided that K is large, we have

E g (i,y) (ω) -1 = 1 + (e K -1)P X (i,y) (ω) e K 2 1 + (e K -1)e -2K 2 2 ,
and hence by independence of the g (i,yi-1) , i = 1, . . . , m (which are functions of ω on disjoint sets by construction), we have

(2.14) E g Y (ω) -1 2 m .
The main task is then to estimate the effect on Z Y of the multiplication by g Y . We have

(2.15) E g Y (ω) Z Y = E E g Y (ω)e N n=1 βω n,Sn -λ(β) 1 E Y
Note that for a fixed trajectory S, the measure P S on ω defined by

(2.16) dP S dP (ω) := e N n=1 βω n,Sn -λ(β) ,
is a probability measure. Under P S , ω is still a field of independent random variables (in particular the g (i,yi-1) (ω), i = 1, . . . , m are still independent), but there are not identically distributed: the law of (ω n,Sn ) 1 n N has been exponentially tilted. The variance and expectation of ω n,x for 1 n N are then given by (2.17)

E S [ω n,x ] = λ (β)1 {Sn=x} , Var S (ω n,x ) = 1 + (λ (β) -1)1 {Sn=x}
where λ and λ denote the two first derivative of λ. In what follows we will always choose β sufficiently small so that

(2.18) λ (β) -β β ε 3 and λ (β) 1 + ε 3 2 .
With this newly defined measure, the identity (2.15) can be rewritten as follows

(2.19) E g Y (ω) Z Y = E E S [g Y (ω)] 1 E Y = E m i=1 E S g (i,yi-1) (ω) 1 E Y .
Using the product structure of g Y (ω) := m i=1 g (i,yi-1) (ω), we perform an approximate factorization of the above expression by considering the worse possible intermediate points for S. It yields the following upper bound

m i=1 max x∈Λy i-1 E E S g (i,yi-1) (ω) ; S i ∈ Λ yi S (i-1) = x
Using translation invariance (2.12) and summing over all Y we have (2.20)

Y∈(Z 2 ) m E g Y (ω) Z Y 1/2   y∈Z 2 max x∈Λ0 E x E S g (1,0) (ω) ; S ∈ Λ y 1/2   m ,
where P x denotes the law of the simple random walk starting from x. Therefore, one only needs to consider one block: combining this with Lemma 2.2 and (2.9), (2.14), this proves Proposition 2.1.

2.3.

Choice of the change of measure. We now specify our choice of X. With the expression that we have chosen for g, we want X to be typically larger than K under E S , at least for most realizations of S. We choose X to be a positive q-linear form of (ω n,x ) (n,x)∈B (1,0) , which corresponds more or less to the term of order q appearing in the Taylor expansion of the partition function Z β,ω . We set (2.21) q := (log log ) 2 .

To simplify the calculations, we also reduce the interactions (in time) to a range u . We choose

u = u := 1-ε 2 . Note that this gives (cf. (1.11)) (2.22) D(u) β→0 ∼ 1 -ε 2 π log ,
so that the definition of ensures that for β sufficiently small (and if ε < 1/10)

(2.23) (1 + ε) β 2 D(u) (1 + 2ε).
We introduce the set of increasing sequences with increments no larger than u

(2.24) J ,u := {t := (t 0 , . . . , t q ) ∈ N q+1 | 1 t 0 < • • • < t q ; (t j -t j-1 ) u, ∀j ∈ {1, . . . , q}} , We now define (2.25) X(ω) := 1 2R D(u) q/2 x∈( Λ0) q+1 , t∈J ,u P (t, x) ω t,x
where for any x = (x 0 , . . . , x q ) ∈ ( Λ 0 ) q+1 we set ω t,x = q j=0 ω tj ,xj , and (2.26) P (t, x) = q j=1 p(t j -t j-1 , x j -x j-1 )1 {|xj -xj-1| ρ(tj -tj-1)} = P x0 S tj -t0 = x j -x 0 , ∀j ∈ {1, . . . , q} 1 {|xj -xj-1| ρ(tj -tj-1) , ∀j∈{1,...,q}} .

Here and later in the proof |x| = |x 1 | + |x 2 | denotes the l 1 norm on Z 2 , and

(2.27) ρ(t) := min t/2, (log t) √ t .
The condition |x j -x j-1 | ρ(t j -t j-1 ) turns out to be convenient for technical reasons but is not essential. For the rest, as already mentioned, X ressembles the term of order q in the Taylor expansion in β of the partition function "restricted to a cell". We refer to [4, Section 4.2] for a more elaborate discussion on the definition of X(ω).

We easily check that E[X(ω)] = 0 and

(2.28) E[(X(ω)) 2 ] = 1 4R 2 2 D(u) q x∈( Λ0) q+1 , t∈J ,u P (t, x) 2 1 .
Lemma 2.2. With the choice of change of measure made in (2.13)-(2.25), there exists some β ε > 0 such that, for all β β ε , one has

y∈Z 2 max x∈Λ0 E y E S g (1,0) (ω) ; S ∈ Λ y1 1/2 1 4
.

Proof of the key Lemma 2.2

In this section, for notational convenience, we write g(ω) instead of g (1,0) (ω). First, if A is chosen sufficiently large and y 2 A ( • 2 denotes the Euclidean norm), then uniformly for x ∈ Λ 0 = (-√ /2, √ /2] 2 , we have

P x (S ∈ Λ y ) e -1 4 y 2 2 .
Therefore, as g(ω) 1, we have

y 2 A max x∈Λ0 E x E S [g(ω)] ; S ∈ Λ y 1/2 y 2 A max x∈Λ0 P x (S ∈ Λ y ) 1/2 y 2 A e -1 4 y 2 2 1 8 ,
where the last inequality holds provides that A is large enough. For the remaining sum, we use the (rather rough) bound

y 2 A max x∈Λ0 E x E S [g(ω)] ; S ∈ Λ y 1/2 4A 2 max x∈Λ0 E x E S [g(ω)] 1/2 .
Therefore, we need to control E x E S [g(ω)] for every x ∈ Λ 0 :

Lemma 3.1. For any η > 0, there exist constants K(η) > 0 and β 0 (ε, η) such that for all β β 0 , and for any x ∈ Λ 0

(3.1) E x E S [g(ω)] η .
Applying this lemma with η = 1 32A 2 2 , we have

y 2 A max x∈Λ0 E x E S [g(ω)] ; S ∈ Λ y 1/2 1 8 ,
and Lemma 2.2 is proven. To prove Lemma 3.1 we need some control over the distribution of X(ω) under P S .

Lemma 3.2. For any δ > 0, there exist R(δ) and β 0 (ε, δ) such that, for every x ∈ Λ 0 and any

β β 0 P x E S [X] (1 + ε 2 ) q 1 -δ .
Lemma 3.3. For any δ > 0, and R > 0, there exists some β 0 (ε, δ) such that, for every x ∈ Λ 0 and any β β 0

(3.2) P x Var S (X) (1 + ε 3 ) q 1 -δ, .
Proof of Lemma 3.1 Recalling the definition (2.13) of g(ω), we have for any S,

(3.3) E S [g(ω)] e -K + P S X(ω) e K 2 ,
and we choose K large such that e -K η/6. We define the event

A := E S [X] (1 + ε 2 ) q ∩ Var S (X) (1 + ε 3 ) q ,
and we apply Lemmas 3.2 and 3.3 for δ = η/3, so that P x (A) 1 -2η/3, for every x ∈ Λ 0 . Then, choosing β small enough (so that q is sufficiently large) we have e K 2 1 2 (1 + ε 2 ) q , so that on the event A, Chebychev's inequality yields

(3.4) P S X(ω) e K 2 P S X -E S [X] -1 2 (1 + ε 2 ) q 4(1 + ε 3 ) q (1 + ε 2 ) 2q η/6.
Hence from (3.3), we have (still on the event A)

(3.5) E S [g(ω)] η/3.
Using the bound E S [g(ω)] 1 on the complement of A (which has probability at most 2η/3), we conclude the proof of Lemma 3.1.

3.1. Proof of Lemma 3.2. From the definition (2.25) of X, and recalling (2.17), we have, for any trajectory of S

(3.6) E S [X] = (λ (β)) q+1 2R D(u) q/2 t∈J ,u P (t, S (t) ) 1 {St k ∈ Λ0 ∀k∈{0,...,q}}   (λ (β)) q+1 2R D(u) q/2 t∈J ,u P (t, S (t) )   1 max t St ∞ R √
, where we used the notation S (t) := (S t0 , S t1 , . . . , S tq ).

Note that if R = R(δ) is chosen sufficiently large, we have for all x ∈ (-

√ /2, √ /2] 2 ∩ Z 2 (3.7) P x max t S t ∞ > R √ P 0 max t S t ∞ > (R -1/2) √ δ/2 .
On the event {max t S t ∞ R √ }, we use (2.18) which gives λ (β) (1 -ε 3 )β, to obtain

E S [X] β(1 -ε 3 ) q+1 (β 2 D(u)) q/2 1 2R D(u) q t∈J ,u P (t, S (t) ) (1 + ε 2 ) 2q 1 D(u) q t∈J ,u P (t, S (t) ) , (3.8) 
where in the last line, we used (2.23), and the inequality

β 2R (1 -ε 3 ) q+1 (1 + ε) q/2 (1 + ε 2 ) 2q .
which is valid provided ε < 1/10 and β is small enough. Hence combining (3.6) with (3.7)-(3.8) we have (3.9)

P x E S [X] (1 + ε 2 ) q δ/2 + P x   1 D(u) q t∈J ,u P (t, S (t) ) 1 (1 + ε 2 ) q   .
Then, we obtain again a lower bound if we restrict the sum to t such that t 0 /2. We set J ,u := t = (t 0 , . . . , t q ) ; t 0 /2 ; t j -t j-1 ∈ (0, u] ∀j ∈ {1, . . . , q} .

Note that J ,u ⊆ J ,u provided β is small enough (because /2 + qu ). Therefore, it is sufficient to show that (3.10)

P x W < 1 (1 + ε 2 ) q δ/2 .
where

(3.11) W := 1 D(u) q t∈J ,u P (t, S (t) ) .
Note that the law W does not depend on the starting point x, hence for the rest of the proof we replace P x by P. We achieve the bound (3.10) by controlling the first two moments of W (we actually prove that W converges in probability to 1 2 as → ∞). We have

E [W ] = 1 D(u) q t∈J ,u E P (t, S (t) ) . (3.12)
Note that by the definition of P , E P (t, S (t) ) is translation invariant and thus

t∈J ,u E P (t, S (t) ) = 2 {t∈J ,u | t0=1} E P (t, S (t) ) = 2 u t=1 P S 2t = 0 ; |S t | ρ(t) q =: 2 D(u) q . (3.13)
It is an easy exercise to show that the restriction |S t | ρ(t) = min(t/2 , (log t) √ t) has not much effect, and that (recall (1.11)) there exists a constant C such that

(3.14) D(u) -C D(u) D(u) .
Hence, we conclude that

(3.15) 1 2 D(u) -C D(u) q E [W ] 1 2 .
and 

Y j = 1 D(u) q t∈J ,u (j) P (t, S (t) ) - D(u) D(u) q
where J ,u (j) := {t ∈ J ,u ; t 0 = j}. We have E[Y j ] = 0, and

W -E[W ] = 1 /2 j=1 Y j . Hence, (3.17) Var(W 2 ) = 1 2 /2 j1,j2=1 E [Y j1 Y j2 ] ,
and we can conclude by showing that most covariance terms are zero. More precisely we have Lemma 3.4. One has that (i) There exists a constant C 1 such that, for all j, with probability 1,

|Y j | (C 1 ) q . (ii) If |j 1 -j 2 | uq, then E[Y j1 Y j2 ] = 0.
Replacing the terms in (3.17) by either zero (if |j 1 -j 2 | uq) or (C 1 ) 2q (in other cases) we obtain that (3.18) Var(W 2 ) 2uq (C 1 ) 2q 2q (C 1 ) 2q -ε 2 .

Since q and (C 1 ) 2q grow slower than any power of , Var(W 2 ) tends to 0 as goes to infinity (or β ↓ 0). As a consequence, Chebychev's inequality together with (3.15) gives that W converges in probability to 1 2 as → ∞, and (3.10) hence Lemma 3.2 are proven. Proof of Lemma 3.4 For the first point, we remark that trivially Y j -1. For an upper bound, by the local Central Limit Theorem for the simple random walk on Z 2 (which can be obtained with little more than the application of Stirling formula), there exists a constant c 1 such that (3.19) ∀x ∈ Z 2 , p(t, x) c 1 1 + t .

We therefore have t∈J ,u (j)

P (t, S (t) ) u i=1 c 1 1 + i q (c 1 ) q (log u) 2q .
As D(u) is also of order log u (cf. (1.11)), we obtain the result for a suitable C 1 .

For (ii), note that E[Y j1 Y j2 ] = z∈Z 2 E[Y j1 1 {Sj 2 =z} Y j2 ] .
If j 2 > j 1 + qu, then conditionnally on S j2 = z Y j1 and Y j2 are independent, and E[Y j2 |S j2 = z] = 0 for all z ∈ Z 2 . Hence the result.

3.2. Proof of Lemm 3.3. We are going to show a uniform bound on the variance which holds provided that S satisfies

(3.20) max |S t -S t | / 1 t t , |t -t | qu (log u) √ u.
Note that if is sufficiently large (i.e. β sufficiently small), for every x ∈ Λ 0 this occurs with P x probability larger than 1 -δ, by standard properties of the simple random walk.

For any trajectory S, we define a modified environment

ω n,x := ω n,x -λ (β)1 {Sn=x} .
It is such that under P S , the variables ω n,x are independent and centered, with a variance smaller than 1 + (ε 3 /2), see (2.17)- (2.18). We want to expand

(3.21) E S [X 2 ] = 1 4R 2 2 D(u) q E S      x∈( Λ0) q+1 , t∈J ,u P (t, x) q j=1 ω tj ,xj + λ (β)1 {St j =xj }   2    .
We have

q j=0 ω tj ,xj + λ (β)1 {St j =xj } = q+1 r=0 (λ (β)) r A⊆{0,...,q},|A|=r k∈A 1 {St k =x k } j∈{0,...,q}\A ω tj ,xj .
Therefore, when taking the square in (3.21), one obtains a sum over x, x ∈ ( Λ 0 ) q+1 ,t, t ∈ J ,u of P (t, x)P (t , x ) times {(t j , x j ) | j ∈ {0, . . . , q} \ A} := {(t j , x j ) | j ∈ {0, . . . , q} \ B} .

Note that the term r = q + 1 corresponds exactly to E S [X] 2 , and is therefore canceled when considering the variance.

We need to introduce some additional notations to reorganize the sum:

S m := s = (s 0 , . . . , s m ) ; 1 s 0 < • • • < s m ; s m -s 1 mu .
Also, for r 1, and any s ∈ S q-r , a set of s-compatible t:

T r (s) = t = (t 1 , . . . , t r ) ; 1 t 1 < • • • < t r ; s • t ∈ J ,u .
where s • t denotes the ordered sequence with q + 1 elements which is obtained by reordering the values of the s i 's and t j 's. Hence, isolating the term r = 0, and recalling

E S [( ω t,x ) 2 ] 1 + (ε 3 /2) 2, we obtain Var S [X] (1 + (ε 3 /2)) q+1 4R 2 2 D(u) q x∈( Λ0) q+1 , t∈J ,u P (t, x) 2 + 1 4R 2 2 D(u) q q r=1
(λ (β)) 2r 2 q+1-r s∈Sq-r x∈( Λ0) q-r+1 t,t ∈Tr(s) P (s, x), (t, S (t) ) P (s, x), (t , S (t ) ) , (3.23) where we used the notation P (s, t), (x, z) = P (s • t, x • z), where x • z is defined (a bit improperly since the definition depends on s and t) as

(3.24) (x • z) k := x i if (s • t) k = s i , z j if (s • t) k = t j .
The first term, according to (2.28) is smaller than (1 + (ε 3 /2)) q+1 . It remains to control the second term. First, we restrict the summation over x 0 by showing that

(3.25) |x 0 -S s0 | √ u(log u) 2 ⇒ P (s, x), (t, S (t) ) = 0.
Indeed for P to be positive, all coordinates x • S (t) must be within distance qρ(u) of one another. However, (3.20) implies that

(3.26) |x 0 -S t0 | √ u(log u) 2 - √ u log u > qρ(u),
provided that β is small enough. For the other values of x 0 we will make use of the following bound Lemma 3.5. There exists a constant C 2 such that for any realization of S we have, for any s ∈ S q-r (3.27)

t∈Tr(s) P (s, x), (t, S (t) ) 2 q (C 2 log ) r q-r i=1 p(s i -s i-1 , x i -x i-1 ).
This implies, together with (3.25), that for any S verifying (

s∈Sq-r x∈( Λ0) q-r+1   t∈Tr(s)

P (s, x), (t, S (t) )   2 4 q (C 2 log ) 2r s∈Sq-r x∈( Λ0) q-r+1 |x0-Ss 0 | √ u(log u) 2 q-r i=1 p(s i -s i-1 , x i -x i-1 ) 2 .
Summing over all possible 0 s 0 and x 0 , we obtain

(3.29) s∈Sq-r x∈( Λ0) q-r+1 |x0-Ss 0 | √ u(log u) 2 q-r i=1 p(s i -s i-1 , x i -x i-1 ) 2 2u(log u) 4 × x∈Z 2 1 t p(t, x) 2 q-r 2 u(log ) 4+q-r ,
where we used that D( ) log if is large enough, see (1.11). Hence, collecting (3.28)-(3.29), the second term in (3.23) is bounded by

(3.30) 1 4R 2 2 D(u) q q r=1 (λ (β)) 2r 2 q+1-r × 4 q (C 2 log ) 2r 2 u (log ) 4+q+r 4 2q C 2q 2 R 2 log D(u) q (log ) 4 u -1 q r=1 β 2r (log ) r q(C 3 ) q R 2 (log ) 4 -ε 2 ,
where we used that λ (β) 2β (see (2.18)) in the first inequality. In the second inequality, we used that β 2 log 2π from the definition of (2.3), that D(u) 1 4 log if is large enough (and ε < 1/10) so that C 3 := 128 C 2 2 π ; we also used that u 1-ε 2 . Since q, (C 3 ) q and (log ) 4 grow slower than any power of , the r.h.s. of (3.30) tends to zero as goes to infinity (or β → 0). Therefore, if β is small enough, (3.23) implies

(3.31) Var S [X] (1 + (ε 3 /2)) q+1 + 1 (1 + ε 3 ) q .
3.3. Proof of Lemma 3.5. First of all, we divide the sum according to the way the t coordinates are interlaced with the s coordinates: for any given s ∈ S q-r , we have

(3.32) t∈Tr(s) P (s, x), (t, S (t) ) 0 m0<...<mq-r r q-r i=1 si-1<tm i +1<•••<tm i+1 <si P (s i-1 , t mi+1 , . . . , t mi+1 , s i ), (x i-1 , S tm i +1 , • • • , S tm i+1 , x i ) × 0<t1<•••<tm 0 <s0 P (t 1 , . . . , t m0 , s 0 ), (S t1 , • • • , S tm 0 , x 0 ) × sq-r<tm q-r +1<•••<tr < P (s q-r , t mq-r , . . . , t r ), (x q-r , S tm q-r , • • • , S tr .
where we used the (rather unusual, but convenient) convention that if m i+1 = m i then

(3.33) si-1<tm i +1<•••<tm i+1 <si P (s i-1 , t mi+1 , . . . , t mi+1 , s i ), (x i-1 , S tm i +1 , • • • , S tm i+1 , x i ) = P (s i-1 , s i ), (x i-1 , x i ) = p(s i -s i-1 , x i -x i-1 )1 {|xi-xi-1| ρ(si-si-1)}
Here m i designates the index of the last t-coordinate before s i : there are m 0 t-coordinates before s 0 , m i -m i-1 between s i-1 and s i , and r -m q-r after s q-r . We also isolated the contribution of the t-coordinates smaller than s 0 and of those larger than s q-r . Note that there are q+1 q-r+1 2 q possible interlacements 0 m 0 • • • m q-r r, and we will bound the contribution of each of them separately.

First, we deal with the contribution of the t coordinates greater than s q-r . We use (3.19) to obtain (3.34) sq-r<tm q-r +1<•••<tr < P (s q-r , t mq-r+1 , . . . , t r ), (x q-r , S tm q-r , . . . , S tr

sq-r<tm q-r <•••<tr< r k=mq-r+1 c 1 1 + t k -t k-1 c 1 log r-mq-r .
By symmetry, the same argument yields

(3.35) 0<t1<•••<tm 0 <s0 P (t 1 , . . . , t m0 , s 0 ), (S t1 , • • • , S tm 0 , x 0 ) c 1 log m0 .
Then, we deal with the inner terms. We have to prove that there exists a constant C 2 such that, for any 1 s , x ∈ Z 2 , and any sequence (V n ) n 0 with V 0 = 0 and V s = x,

(3.36) 0<t1<•••<t k <s P (0, t 1 , . . . , t k , s), (V 0 = 0, V t1 , • • • , V t k , V s = x) (C 2 log ) k p(s, x) .
This, combined with (3.34)-(3.35) and plugged in (3.32) completes the proof of Lemma 3.5. To prove (3.36), the main ingredient is the following inequality.

Lemma 3.6. There exists a constant C 2 such that for all t 1, for all x satisfying |x| t/2, and for all 0 n t (3.37) sup

{z∈Z 2 / |z| n/2,|x-z| (t-n)/2} P S n = z; S t = x P S t = x C 2 1 + min(n, t -n) .
This is a standard but technical estimate (note that the assumption on z is not needed but simplifies the proof). We use Lemma 3.6 now to prove (3.36) by induction, and postpone its proof to the end of the section.

Note that (3.36) for k = 0 follows from our convention (3.33). For k 1 note that

(3.38) p(s -t k , V s -V t k )p(t k -t k-1 , V t k -V t k-1 )1 {|Vt k -Vt k-1 | 1 2 |t k -t k-1 | ; |Vs-Vt k | 1 2 |s-t k |} C 2 1 + min(s -t k , t k -t k-1 ) p(s -t k-1 , V s -V t k-1 )1 {|Vs-Vt k-1 | 1 2 |s-t k-1 |} .
Using the convention that t 0 = 0, t k+1 = s, it therefore gives the following upper bound on (3.36)

(3.39) t0=0<t1<•••<t k <s=t k+1 k i=0 p(t i+1 -t i , V ti -V ti-1 )1 {|Vt i -Vt i-1 | 1 2 |ti-ti-1|} 2C 2 log(s) 0<t1<•••<t k-1 <s k-1 i=0 p(t i+1 -t i , V ti -V ti-1 )1 {|Vt i -Vt i-1 | 1 2 |ti-ti-1|} ,
where we simply summed (3.38) over t k . We can then conclude by induction. Proof of Lemma 3.6 First, we simplify the problem thanks to a rotation: if we denote S n := (X n , Y n ), then letting X n := X n -Y n , Y n := X n + Y n , we obtain that X n and Y n are two independent symmetric nearest-neighbor random walks on Z. Then, writing x = (x 1 , x 2 ), one has that {S t = x} = { X t = x 1 -x 2 ; Y t = x 1 + x 2 }. Therefore, Lemma 3.6 reduces to a statement on the nearest-neighbor random walk on Z: we only need prove that there exists a constant c 2 such that, for all t 2, and all x satisfying | x| t/2, we have for all 1 n t -1,

(3.40) sup { z∈Z / | z| n/2,| x-z| (t-n)/2} P X n = z P X t-n = x -z P X t = x c 2 min(n, t -n) .
This is equivalent to proving that for all n, t, and k and j satisfying 

n j t-n k-j t k c 2 min(n, t -n) .
By symmetry, we only have to prove this inequality for n t/2. Using Stirling's formula for all the binomial coefficients we obtain that there exists a constant C > 0 such that (3.43)

n j t-n k-j t k C n(t -n)k(t -k) j(n -j)(k -j)(t -n -(k -j))t × n j j n n -j n-j t -n k -j k-j t -n t -n -(k -j) t-n-k+j k t k t -k t t-k
Note that because of our assumptions (3.41) and n t/2, the square-root term is up to a multiplicative constant equivalent to n -1/2 . Hence we just need to show that the factor on the second line is smaller than one. If one considers j as a continuous variable, elementary calculus implies that this term is maximized for j = kn/t, and that this maximal value is indeed 1.

Upper bound

By a superadditivity argument (see [START_REF] Comets | Directed Polymers in a random environment: strong disorder and path localization[END_REF]Proposition 2.5] and its proof) we have

(4.1) ∆F(β) - 1 N E log Z β,ω N .
We use this inequality for some the largest possible choice of N := N β,ε for which Z β,ω N is still of constant order (recall that it has mean one).

After a straightforward second moment computation, see Section 4.2, one realizes that the right choice is

N β,ε := exp (1 -ε)πβ -2 , so that E Z β,ω N β,ε
2 is uniformly bounded by a constant, see (4.18). This intuition is strengthened by the work (in preparation) of Caravenna, Sun and Zygouras [START_REF] Caravenna | Universality in marginally relevant disordered systems[END_REF] which proves that, when β → 0, log Z β,ω N β,ε converges in distribution towards a normal random variable whose expectation and variance depend only on ε.

But to be able to use (4.1), we need to prove that log Z β,ω N β,ε is concentrated around its mean. We stress that obtaining such a concentration result is not straightforward: standard techniques (e.g. using martingales) give that the variance of log Z β,ω N is bounded above by CN (see [START_REF] Comets | Directed Polymers in a random environment: strong disorder and path localization[END_REF]Section 6]). The reader can check that by using this bound as done in [22, Section 7], we would be off by a factor 1 2 for our bound on log ∆F(β). Obtaining better bounds for the variance of log Z β,ω N is in general a very difficult problem and the best known general improvement are by log factors (see e.g. [START_REF] Alexander | Subgaussian concentration and rates of convergence in directed polymers[END_REF]).

However, in our context, the temperature depends on N and we can use this fact to obtain sharper concentration results. To do so, we borrow ideas from [START_REF] Caravenna | Universality for the pinning model in the weak coupling regime[END_REF], and we obtain a uniform bound on the tail of -log Z β,ω N β,ε .

4.1. Concentration of log Z β,ω N β,ε . To simplify the exposition, we present the proof first in the case where ω is bounded, and then quickly adapt it to the general case with a suitable truncation procedure.

The boundedness is used to have a convex concentration inequality which does not depend on the number or variable considered. Let us start with a convex concentration inequality for bounded variables. It follows from [ 

(4.3) P (η ∈ A) P (d(η, A) > t) 2e -t 2 C 1 K 2 .
We do not use the result above directly but as a tool to obtain a finer concentration result which is valid for function whose Lipschitz norm is controlled only a small set. It is a convex version of [23, Proposition 1.6] (we refer to [START_REF] Caravenna | Universality for the pinning model in the weak coupling regime[END_REF] for the details). If f is a function of η we let |∇f (η)| denote the Euclidean norm of the gradient of f , 

(4.5) P f (η) a ; |∇f (ω)| M P (f (η) a -t) 2e - t 2 C 1 K 2 M 2
where the constant C 1 is identical to that of Lemma 4.1.

We want to apply this result to log Z β,ω N β,ε , which is a convex function of (ω n,x ) 1 n N,|x| N . To use Proposition 4.2 efficiently we have to obtain a good bound on the norm of its gradient

(4.6) ∇ log Z β,ω N β,ε := N n=1 |x| n ∂ ∂ω x,n log Z β,ω N β,ε 2 
.

We prove the following in Section 4.2.

Lemma 4.3. There exists positive constants β ε and M = M ε such that for all β < β ε we have

(4.7) P Z β,ω N β,ε 1/2 ; ∇ log Z β,ω N β,ε M ε/80 .
In the case where the environment ω satisfies |ω n,x | K almost surely, we can use Proposition 4.2 directly with a = -log 2, combined with Lemma 4.3. This yields (4.8)

P log Z β,ω N β,ε -log 2 -t 160 ε e - t 2 C 1 K 2 M 2 ,
and hence that (4.9)

∆F(β) - 1 N β,ε E log Z β,ω N β,ε C(ε, M, K) N β,ε . 
In the case where the environment is unbounded, we can deduce from (1.2) that there exists c 0 < c such that C 1 (log N ) 4 M 2 + 8N 3 e -c0(log N ) 2 .

In the end, combining (4.15) for "small" values of t (e.g. t N 2 ) and (4.12) for all other values, we conclude that (4. [START_REF] Comets | Directed polymers in a random environment are diffusive at weak disorder[END_REF])

∆F(β) - 1 N β,ε E log Z β,ω N β,ε C(log N β,ε ) 2 N β,ε .
This yields the result thanks to the definition of N β,ε . It is now standard to show that this last term is uniformly bounded for β β ε , as done for example in [4, § 6.3]. First, notice that γ(β) ∼ β 2 as β ↓ 0. Therefore if β is small enough, we have that γ(β) (1 + ε 2 /2)β 2 , and there exists a constant C ε > 0 such that for all β β ε and all N 1

β 2 N n=1 1 {S (1) n =S (2) n } exp γ(β) N n=1 1 {S (1) n =S (2) n } C ε exp (1 + ε 2 )β 2 N n=1 1 {S (1) n =S (2) n } .
Hence, exactly as in Section 6.3 of [START_REF] Berger | Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift[END_REF], the term we need to bound is Z u N , the partition function of a homogeneous pinning model with parameter u = (1 + ε 2 )β 2 and underlying renewal τ = {n ; S 
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  β)) r+r A⊆{0,...,q},|A|=r B⊆{0,...,q},|B|=r k∈A k ∈B1 {St k =x k } 1 {S t k =x k } j∈{0,...,q}\A j ∈{0,...,q}\B ω tj ,xj ω t j ,x j .When taking the expectation under E S , the only non-zero terms are those with r = r and(3.22) 

( 3 .

 3 41) t/4 k 3t/4 , n/4 j 3n/4 , (t -n)/4 k -j 3(t -n)/4 ,

9 ,

 9 Lemma 3.3] and a more usual concentration inequality [23, Corrolary 4.10] Lemma 4.1. There exists a constant C 1 such that for any m 0, for any sequence of i.i.d. variables η = (η 1 , . . . , η m ) satisfying (4.2) P (|η 1 | < K) = 1, and any convex set A ⊆ R m , we have

2 .

 2 Proposition 4.2 ([9], Proposition 3.4). Let f be a convex function, and η satisfy (4.2). Then for any a, c and t we have

(4. 10 )N β,ε 1 / 2 ;

 1012 ∀v > 0, P(|ω 1 | v) 2e -c0v , x,n | v 8N 3 e -c0v .From this we deduce two bounds. The first one is rough, but valid for any value of β and N , and we use it in desperate cases (4.12)P log Z β,ω N -(βv + λ(β)) N 8N 3 e -c0v .The other one makes use of Proposition 4.2, that we apply to(4.13) ω → f ( ω) := log E exp N n=1 β ω n,Sn -λ(β) ,where ω x,n = ω x,n 1 {|ωx,n| (log N ) 2 } . For β small enough, Lemma 4.3 gives that (4.14) P f ( ω) -log 2, |∇f ( ω)| M P Z β,ω ∇ log Z β,ω N β,ε M -P(ω = ω) ε 160 ,where in P(ω = ω) we implicitly considered environments restricted to n ∈ [1, N ], |x| N , and in the last inequality we used thatP(ω = ω) 8N 3 e -c0(log N ) 2 .Therefore, applying Proposition (4.2) to the function f ( ω), we finally obtain (4.15) P log Z β,ω N β,ε -log 2 -t P (f ( ω) -log 2 -t) + P(ω = ω) 320 ε e -t 2

4. 2 . 2 =Using [ 4 ,N β,ε 1 2 ;N 1 M 2 EN 2 (N

 2242122 Second moment estimate, proof of Lemma 4.3. Let us set γ(β) := λ(2β) -2λ(β), E ⊗2 exp γ(β) Lemma 6.4], for ε > 0 and β sufficiently small, and choosing N = N β,ε := exp (1 -ε)πβ -2 , For notational simplicity let us write f (ω) := log Z β,ω N β,ε . With (4.19), we haveP Z β,ω |∇f (ω)| M = P Z β,ω |∇f (ω)| 2 1 { Z β,ω 21) |∇f (ω)| 2 =β that, similarly to (4.17), we get (4.22)E |∇f (ω)| 2 1 { Z β,ω

  n }. Referring to[START_REF] Berger | Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift[END_REF] (in particular Equations (6.24)-(6.31)), we have that Z u N β,ε 10/ε if β is small enough, and we get thatE |∇f (ω)| 2 1 { Z β,ω N β,ε 1/2} 40 C ε /ε .In the end, choosing M = 80 √ Cε ε in (4.20) yields (4.7).
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