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Abstract

A production planning problem, known as the Discrete Lot sizing and S chedul-

ing P roblem with seq uence-dependent changeov er costs, is considered. W e propose

a new way of modelling the production sy stem based on the use of a multi attribute

product structure encountered in many industrial situations. T he basic idea is to

describe the products as combinations of phy sical attributes and to ex ploit this de-

scription to reduce the size of the mix ed-integer program to be solv ed. T he results

of our computational ex periments show the practical usefulness of the proposed

formulation which leads to signifi cantly improv ed effi ciency in the solution process.
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1 Introduction

A wide variety of models for production planning and inventory management h as b een

investigated. Among th em, capacitated lot sizing models aim at determining a minimal

cost production sch edule complying with given capacity restrictions and such th at demand

for all products is satisfi ed with out b ack logging. Lot sizing prob lems can b e b roadly

classifi ed b y th e numb er of products, capacitated resources and product levels involved.

T h e present work pertains to multi-item single-resource single-level lot-sizing models:

multiple items assumed to b e independent to one anoth er (i.e. not link ed b y parent-

component relationsh ips) are to b e produced on a single constrained resource. Moreover

all prob lem parameters are supposed to b e deterministically k nown.

A furth er important distinction among deterministic lot-sizing models can b e made

b ased on considerations on th e demand (see e.g. [16 ]):

• O n one h and, th ere are models such as th e E conomic Lot Sch eduling Prob lem

(E LSP) wh ere th e demand rate is supposed to b e constant and a continuous time

scale and infi nite time h orizon are used. E arly contrib utions on th e E LSP can b e

found for instance in [2] and [7 ].

• O n th e oth er h and, some models assume a dynamic, time-varying demand and use a

discrete time scale and fi nite time h orizon. In such models, time-dependent demand

is specifi ed on a period-b y-period b asis. R ecent overviews on th e literature ab out

th is line of research can b e found in [6 ], [12], [13 ] and [3 2] .

In th e present paper, we focus on a capacitated dynamic lot-sizing prob lem k nown as

th e Discrete Lot sizing and Sch eduling Prob lem (DLSP). T h e DLSP is b ased on several

k ey assumptions (see e.g. [8 ]):

• Demand for products is deterministically k nown and time-varying.

• T h e production plan is estab lish ed for a fi nite time h orizon sub divided into several

discrete periods.

• At most one item can b e produced per period (” small b uck et” model) and th e

facility processes eith er one product at full capacity or is completely idle (” all-or-

noth ing” assumption).

• Costs to b e minimized are th e inventory h olding costs and th e ch angeover costs.

In lot sizing prob lems, th e ch angeover costs to b e incurred wh en th e production of

a new lot b egins can depend eith er on th e next item only (sequence-independent case)

or on b oth th e previous and th e next items (sequence-dependent case). W e consider
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here the (more difficult) case of sequence-dependent changeover costs. In this paper, we

assume zero changeover times. H owever the integration of positive changeover times is

an important extension of our model and is currently being worked on.

The reader is referred to [33] for a recent literature review on scheduling and lot sizing

with sequence-dependent setup. In the sequel, we discuss more specifically contributions

on the DLSP with sequence-dependent changeover costs. In [9 ] and [24 ], the problem is

reformulated as a Travelling Salesman Problem with Time Windows and is solved using

either Lagrangian relaxation or a dynamic programming-based algorithm. The authors

of [14 ] show the equivalence between the DLSP with sequence-dependent changeover

costs and the B atch Sequencing Problem (B SP) and use a specific branch-and-bound

type algorithm for solving the B SP to optimality. In these papers, the number of items

considered in the computational experiments is relatively small (no more than 10 items)

whereas the horizon length can be up to 10 0 periods. In a recent paper, [32] proposes

to strengthen a basic MIP (mixed-integer programming) formulation of the DLSP with

sequence-dependent changeover costs using both a reformulation of the changeover vari-

ables and valid inequalities. Thanks to this strengthened formulation, the lower bounds

provided by the linear relaxation of the problem are significantly better, enabling a B ranch

& B ound type procedure to solve the problem more efficiently. H owever, as pointed out

by [1], the large number of variables needed in the reformulation to handle changeovers

is an important drawback of this approach.

The purpose of the present paper is to propose a new way of modelling the production

system to be planned by properly exploiting a multi attribute product structure frequently

encountered in industrial applications. The basic idea of the new model originates from

the observation that products can usually be described in terms of a set of physical

attributes such as color, dimension, quality level... If this is possible, each item to be

produced will be identified, not only by a unique index as it is usually done, but also by

a M -tuple, each component of which indicates the value of the corresponding attribute

for the given item. When such a multi attribute product structure can be exhibited

in the industrial context under study, we propose to exploit it to reduce the size of

the mixed integer program to be solved. This is achieved by looking at changeovers

at an aggregate level using the relevant physical attributes instead of considering each

individual changeover between items. B y doing so, we are able to significantly reduce the

number of changeover variables and associated constraints in the MIP formulation, while

maintaining the quality of the bounds provided by the linear relaxation of the problem.

We extend the approach used by [32] to derive valid inequalities for the resulting mixed-

integer linear program. Computational results show that exact optimal solutions can in

general be obtained more efficiently with the new model as compared with previously
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described approaches.

The paper is organized as follows. In section 2, we introduce the strengthened refor-

mulation proposed by [32] for the DLSP with sequence-dependent changeover costs. In

our computational experiments, we use it as a reference for comparison with our model.

In section 3, we describe our proposal to model the production system using product

attributes and discuss our main assumptions. When these assumptions hold, we propose

in section 4 to exploit them to formulate the DLSP with sequence-dependent changeover

costs with a reduced number of variables and constraints. Results of computational ex-

periments carried out on a large number of randomly generated instances to validate

our approach are reported in section 5 . Section 6 presents the concluding remarks and

discussions for future investigations.

2 A strong formulation for the DLSP with sequence-

dep endent changeov er costs

In this section, we recall a strong formulation for the DLSP with sequence-dependent

changeover costs. This formulation was presented by [15 ] for the variant of the DLSP

referred to as CSLP (Continuous Setup Lot sizing Problem), where the all-or-nothing

assumption is relaxed. More recently, [1] and [32] propose to use it to solve the DLSP

with sequence-dependent changeover costs. We next discuss a further strengthening of

this formulation obtained by exploiting valid inequalities developed by [30].

We wish to optimize the production schedule for a set of N items over an horizon

featuring T planning periods. A period is indexed by t = 1, ..., T , an item by k = 0, .., N .

We agree to use item k = 0 to represent idle periods.

We use the following notation for the parameters:

• Dkt: demand (in units) for item k in period t,

• Pkt: production capacity (in units per period) for item k in period t,

• hk: holding costs per unit and period for item k,

• ckl: changeover costs from item k to item l.

Decision variables are defined as follows:

• Ikt: inventory level corresponding to item k at the end of period t,

• ykt: setup variables. ykt = 1 if the resource is setup for item k in period t, and 0

otherwise,
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• wklt: changeover variables. wklt = 1 if the resource is switched from item k to item

l at the beginning of period t, and 0 otherwise.

With this notation, [1] propose to formulate the DLSP with sequence-dependent

changeover costs as follows:

(DLSP1)

m in

N∑

k=1

T∑

t=1

hkIkt +
N∑

k=0

N∑

l=0

T∑

t=1

cklwklt (1)

∀k, ∀t, Ikt = Ik,t−1 + Pktykt − Dkt (2)

N∑

k=0

yk0 = 1 (3)

∀k, ∀t, yk,t−1 =
N∑

l=0

wklt (4)

∀l, ∀t, ylt =

N∑

k=0

wklt (5)

∀k, ∀l, ∀t, wklt ≥ 0 (6)

∀k, ∀t, Ikt ≥ 0 (7)

∀k, ∀t, ykt ∈ { 0, 1} (8)

The objective, minimizing the sum of inventory holding costs and changeover costs, is

expressed by (1). Changeover costs ckl are incurred between two successive production

batches of item k and item l, in the first period of production of item l. Constraints (2)

express the inventory balance. The ”all-or-nothing” assumption is enforced by the term

Pktykt in the equality: if the resource is setup for k in period t, then all the available

capacity is used and the production quantity of item k must be equal to Pkt. (3) is also

linked to the ”all-or-nothing” assumption: together with constraints (4)-(5), they ensure

that in each period, the resource either produces a single product at full capacity, or is

idle (i.e y0t = 1). Equalities (4) and (5) link the setup variables with the changeover

variables. (4) guarantee that item k can be produced in period t − 1 if and only if a

changeover from k to another item l (possibly l = k) takes place at the beginning of

period t. Similarly, (5) guarantee that item l can be produced in period t if and only if a

changeover from another item k (possibly k = l) to item l takes place at the beginning of

period t. (6) state the non-negativity of the changeover variables: observe, as pointed out

by [1], that thanks to constraints (3)-(5) and (8), there is no need to define variables wklt

as binary variables. The set of constraints (2) and (7) ensure that demand for each item

is fulfilled without backlogging. The binary character of the setup variables is represented
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by (8).

As suggested by [32], the formulation DLSP1 can be further strengthened using a fam-

ily of strong valid inequalities developed by [30] for the single-item DLSP with Wagner-

Whitin costs, constant capacity and no backlogging. U nder these assumptions, demand

can be measured in terms of how many units can be produced during one production

period, i.e. the production capacity and demand quantity can be normalized to one unit

per period without loss of generality: dkt ∈ {0, 1} and Pkt = 1

In order to present the valid inequalities developed by [30], we first introduce some

additional notation:

• D̃k,t,τ : cumulated demand for item k in the interval {t, ..., τ }. Thanks to the nor-

malization, demand on item k is binary so that D̃k,t,τ is equal to the number of

positive demand periods for k in {t, ..., τ }.

• Sk,q: qth positive demand period for item k. Note that Sk,D̃k,1,t +q denotes the qth

period with positive demand after period t.

We also introduce the start-up variables zkt defined as:

zkt =















1 if the production of a new lot of item k begins at period t, i.e. if

a start-up for item k takes place at the beginning of period t,

0 otherwise.

These variables are linked to the changeover variables by the equations:

∀k, ∀t, zkt =
∑

l:l 6=k

wlkt (9)

With this notation, the following inequations (10) are valid inequalities for the DLSP

with sequence-dependent changeover costs:

∀t, ∀k, ∀p ∈ {0...D̃k,t+1,T}, Ikt ≥

p
∑

q=1

(

1 − yk,t+q −

S
k,D̃k,1,t +q
∑

τ=t+q+1

zkτ

)

(10)

We briefl y explain the underlying idea. F irst note that yk,t+q +
∑

S
k,D̃k,1,t +q

τ=t+q+1 zkτ = 0 if and

only if the resource is not setup for item k in period t+ q and no startup for k takes place

between the period t+q+1 and the period where the qth demand after period t occurs, i.e.

if and only if no production of item k is possible in the interval {t + q, ..., Sk,D̃k,1,t +q}. In

this case, the quantity needed to satisfy the qth demand after period t should be in stock

at the end of period t. Thus we see that constraints (10) force an increase of the stock
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of item k at the end of period t by one for each index q for which no production occurs

in the interval {t + q, ..., Sk,D̃k,1,t+q}. The reader is referred to [30] for a detailed proof of

the validity of (10). In our computational experiments, we add these valid inequalities to

the formulation according to a cutting-plane generation strategy (for details see section

4.2). The resulting strengthened formulation is denoted DLSP1* .

As pointed out by [1], an important drawback of the DLSP1 formulation is that the

number of variables needed in the formulation to handle changeovers, (N + 1)2T , grows

very rapidly with problem size. In the sequel, we present one way to avoid this issue in

certain situations, namely when products can be described as combinations of a number

of physical attributes.

3 The DLSP with products described as combina-

tions of physical attributes

In most papers dealing with lot sizing problems, each individual item to be produced is

described with a single index (k in the formulation presented above) and is considered

independently of the other items. However, in many industrial situations, the items to

be produced diff er in their physical characteristics or attributes (e.g. color, dimensions,

shape, mixture composition, quality level...). As explained by [21] for the case of a metals

plant, such physical attributes often contribute significantly to the sequence dependency

of changeover costs. Moreover it is frequently the case that many items share a common

value for some attribute so that we can define a (small) finite number of possible values

for each attribute. In the sequel, we propose to describe each item to be produced as

well as the resource setup state using the physical attributes of the products and to

look at changeovers at an aggregate level using the relevant physical attributes instead

of considering each individual changeover between items. By doing so, we are able to

simplify the production planning process with respect to:

• the evaluation of changeover costs. Changeovers costs are most often estimated by

human production experts. In the presence of a multi attribute product structure,

it may be easier for them to evaluate changeover costs attribute by attribute rather

than item by item. This was experienced by the authors in the industrial application

described in [19].

• the resolution of the optimization problem. Thanks to the use of a multi-attribute

product structure, we are able to reduce the size of the obtained mixed integer

program and thus to make it easier to solve with a standard MIP software.
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The idea of exploiting a multi attribute product structure may be used in a variety

of modelling environments. We focus here on its application on a particular type of

lot sizing problems, namely the DLSP, but the present work could be extended to deal

with a closely related dynamic lot sizing problem known as the General Lot sizing and

Scheduling Problem or GLSP (see e.g. [17]).

In section 4, we derive a new formulation for the DLSP which is likely to be solved

more efficiently using standard MIP software. In order to do this, we need to make several

assumptions on the production system.

3.1 Main assumptions

1. We suppose that each item to be produced can be described by a set of physical

attributes, each of them takes a finite number of discrete values. We also suppose

that each item is uniquely identified thanks to a M -tuple, each component of which

gives the value of the corresponding attribute for the given item.

2. We assume that the setup state of the resource can also be described using product

attributes. Thus, we will not describe the setup state of the resource by indicating

the item that the resource is able to produce, but by indicating, for each attribute,

for which value of this attribute the resource is setup. The resource setup state

will therefore also be described by a M -tuple, each component of which gives the

value of the corresponding attribute for the present state of the resource. To ensure

consistency, it should be understood that a given item can be produced on the

resource if and only if the resource is setup with the correct value for every attribute.

3. We assume that we are able to evaluate the changeover costs on the resource for

each attribute separately . This means that given an attribute and two possible

values for this attribute, we are able to evaluate the cost of a changeover from one

value to the other and that this cost does not depend on the setup state of the

resource with respect to the other attributes.

4. We need to specify how the costs relative to different attributes will combine, i.e.

how we will compute changeover costs when changeovers for different attributes

happen simultaneously on the resource. In this paper, we consider the case where

the global changeover costs is the sum of all individual changeover costs for the

different attributes. Another possible assumption is that global changeover costs

equal the maximum of the individual costs.

Thanks to these assumptions, we will be able to decide about the production plan on

the resource using the product attributes. In this case, the production plan will consist
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of a set of parallel sequences, one for each attribute. Each of these sequences indicates,

for every planning period, for which value of the corresponding attribute the resource is

setup. Thus, in each planning period, combining the values for the different attributes, we

will be able to deduce the item for which the resource is setup. A detailed mathematical

programming formulation is proposed in section 4, but in order to illustrate the usefulness

of the new model, we first discuss some industrial situations where it appears to be well

suited.

3.2 Possible industrial applications

In order to illustrate the practical relevance of the proposed model, we provide examples

of industrial situations found in the literature where using physical attributes to describe

the products is appropriate.

• In [4] and [27], a production planning problem for a bottle filling line is considered.

For this type of production line, two physical attributes of the products have to

be taken into account: the size or shape of the bottle and the liquid used to fill it.

Hence each item can be described by means of two attributes: the bottle size/ shape

and the liquid to be used. Each individual item would be described by a pair (i1, i2)

where i1 is the index of the corresponding bottle size/ shape and i2 the index of the

corresponding liquid.

• [5] discuss a lot sizing problem they found in an automated foundry. Each item to

be produced can be described by two attributes: the type of metal alloy it is made

of and the shape it takes from the used mould. Here we could use as well a pair

(i1, i2) where i1 would give the index of the alloy type and i2 the index of the mould

shape.

• [26] study a production planning problem arising in the textile industry in a com-

pany producing acrylic fibers. The authors report that two physical characteristics

of the products have an impact on the scheduling of the plant spinning unit, namely

the fiber composition and their diameter. Thus, we could use a pair (i1, i2) to de-

scribe each item: i1 would refer to the fiber composition and i2 to its diameter.

• [19] considers the production planning problem for a float glass production line.

Here each item (a glass sheet) can be described using several physical characteris-

tics: glass color and quality, dimensions of the sheet (thickness, width and length).

An item could thus be described using a 5-tuple, with components corresponding to

the color, quality and dimensions of the corresponding glass sheet. In fact, the pro-
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duction system model studied in the present paper was suggested in this particular

context of application.

Though far from being exhaustive, the above list is a good indication of the wide

applicability of the model proposed here. Moreover the proposed model could also prove

useful for the frequently encountered situation where changeover costs have a major-

minor setup structure. This type of structure is mainly found when the items to be

produced can be grouped into families. In this case, there is a large changeover involved

with setting up the resource to produce a given family of items (major setup) and an

additional smaller changeover is required between two items belonging to the same family

(minor setup). This situation is described for instance in [10], [11], or [23] for the case of

a time-varying demand (i.e. for dynamic lot sizing problems such as the DLSP) as well

as in [4], [20], [21] or [31] for the case of a constant demand (i.e. for the ELSP). Such a

major-minor setup structure could be modelled using a multi attribute product structure.

Namely, each item could be described using two attributes: the first one corresponding to

the product family and the second one being used to identify the individual item within

the family.

Our model is also capable of handling the situations where there is a change of mag-

nitude within the values of a given physical attribute m, i.e. when the indices i ∈ [0, V m]

correspond to values of m belonging to different orders of magnitude. Namely, in this

case, the corresponding changeover costs are likely to be sequence-dependent: there will

be a large changeover between two values of m belonging to different orders of magnitude

and a smaller changeover between two values belonging to the same order of magnitude.

In our model, we allow sequence-dependent changeover costs between values of a given

physical attribute and are thus able to represent such situations without making any

additional assumptions.

4 A formulation for the DLSP with product at-

tributes and sequence-dependent changeover costs

4.1 B asic formulation

We now present a formulation for the DLSP with product attributes and sequence-

dependent changeover costs. This formulation can be used to solve the DLSP when

a product description using physical attributes is possible and when the assumptions

discussed in section 3.1 hold.

We use the same notation as in section 2 for the parameters relative to items:
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• Dkt: demand for item k in t,

• Pkt: production capacity for item k in t,

• hk: holding costs per unit and period for k.

We assume that each item can be described using M physical characteristics or attributes.

Correspondence between products and attributes is given by a matrix A of dimensions

M × (N + 1). Amk represents the value of the attribute m for product k and the kth

column of A gives the M -tuple describing product k in terms of product attributes. For

each attribute m, we have:

• a set of possible values: i ∈ [0, V m]

• a changeover cost matrix: Cm. Cm
ij is the cost of a transition from the value i ∈

[0, V m] to the value j ∈ [0, V m] of attribute m.

We agree to use the M -tuple (0,0,....,0) to describe the item k = 0: i.e ∀m,Am0 = 0.

We use the following decision variables:

• Ikt: inventory level corresponding to item k at the end of period t,

• ykt: setup variables at the item level. ykt = 1 if the resource is setup for item k in

period t, and 0 otherwise,

• wm
ijt: changeover variables at the attribute level. wm

ijt = 1 if a switch from the value

i to the value j of attribute m takes place at the beginning of period t, and 0

otherwise.

Under the assumption that changeover costs related to different attributes are added

whenever two transitions occur simultaneously (see assumption 4 in section 3.1), the

DLSP can be formulated as follows:

(DLSP2)

min

N
∑

k=1

T
∑

t=1

hkIkt +

M
∑

m=1

V m
∑

i=0

V m
∑

j=0

T
∑

t=1

Cm
ij wm

ijt (11)

∀k, ∀t, Ikt = Ik,t−1 + Pktykt − Dkt (12)

N
∑

k=0

yk0 = 1 (13)

∀m, ∀i ∈ [0, V m], ∀t,
∑

k st Amk=i

yk,t−1 =

V m
∑

j=0

wm
ijt (14)
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∀m, ∀j ∈ [0, V m], ∀t,
∑

k st Amk=j

ykt =

V m
∑

i=0

wm
ijt (15)

∀m, ∀(i, j) ∈ [0, V m] × [0, V m], ∀t, wm
ijt ≥ 0 (16)

∀k, ∀t, Ikt ≥ 0 (17)

∀k, ∀t, ykt ∈ {0, 1} (18)

The objective, minimizing the sum of changeover costs and inventory holding costs,

is expressed by (11). Note that inventory holding costs are computed item by item

whereas changeover costs are computed attribute by attribute. Constraints (12) express

the inventory balance. Combined with the non negativity constraints (17), they prevent

any backlogging. (13), together with constraints (14)-(15), guarantee that in each period

the resource either produces a single item or is idle.

Equalities (14) and (15) link the setup variables with the changeover variables. First

note that the term
∑

k st Amk=i ykt equals 1 if and only if an item k requiring the resource

to be setup for the value i of the attribute m is produced in period t, i.e. if and only if the

resource is setup for the value i of attribute m in period t. Thus (14) guarantee that the

resource is setup for the value i of attribute m in period t-1 if and only if a changeover

from value i to another possible value j of attribute m (possibly j = i) takes place at the

beginning of period t. Similarly, (15) guarantee that the resource is setup for the value

j of attribute m in period t if and only if a changeover from another possible value i of

attribute m (possibly i = j) to value j takes place at the beginning of period t. The non

negativity of the changeover variables is stated by (16) and the binary character of the

setup variables is expressed by (18).

The formulation DLSP2 can be easily modified to consider the other possible assump-

tion about the combination of costs relative to different attributes, i.e. the assumption

that global changeover costs equal the maximum of the individual costs. This can be

done by defining additional continuous variables Ct to evaluate the changeover costs to

be incurred at the beginning of each period t. In this case, the DLSP can be formulated

as follows:

(DLSP2 MAX )

min

N
∑

k=1

T
∑

t=1

hkIkt +
T

∑

t=1

Ct

s.t. ∀m, ∀t, Ct ≥

V m
∑

i=0

V m
∑

j=0

Cm
ij wm

ijt

and (12) − (18)
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In the sequel, we assume that global changeover costs equal the sum of the individual

costs and thus use the formulation DLSP2. However similar results could be obtained

with the other assumption.

Let us now compare the number of changeover variables in the formulations DLSP1

and DLSP2. For the sake of simplicity, we do not take into account the item k = 0 in

the comparison. As shown in section 2, in this case, DLSP1 includes N2T changeover

variables, one for each possible pair of items and for each period. Note that when the

product description using attributes is possible, we can compute the number of products

as the number of possible combinations obtained by choosing for each attribute m one

value out of V m. Thus we have: N2 =
(
∏M

m=1 V m
)2

. Now, as can be seen above,

in th e D L S P 2 form u lation, th ere are
∑M

m=1

(

V m2
)

T ch ang eover variables, one for each

p air of p ossible valu es of each attribu te and for each p eriod . In m ost cases wh ere th e

p rod u ct d escrip tion u sing attribu tes will be im p lem ented , we will h ave:
∑M

m=1

(

V m2
)

�
(
∏M

m=1 V m
)2

, thus leading to a significant reduction in the number of changeover variables

needed in the formulation.

In word s, in th e p rop osed m od el, we d o not consid er each ind ivid u al ch ang eover be-

tween item s, bu t rath er look at ch ang eovers at a m ore ag g reg ate level u sing p rod u ct

attribu tes. B y d oing so, we are able to sig nifi cantly red u ce th e size of th e m ix ed integ er

linear p rog ram m to be solved (e.g . u sing a B ranch & B ou nd p roced u re).

4.2 Strengthening the formulation with valid inequalities

A s for th e D L S P 1 form u lation, th e D L S P 2 form u lation can be fu rth er streng th ened u nd er

th e assu m p tion of W ag ner-W h itin costs, constant cap acity and no back log g ing . T h is can

be ach ieved by ex tend ing th e ineq u alities (1 0 ) to th e D L S P 2 form u lation. In ord er to d o

th is, we d efi ne two new sets of variables:

Y m
it =

∑

k st Amk=i

ykt =















1 if th e resou rce is setu p for th e valu e i of

attribu t m in p eriod t,

0 oth erwise.

Zm
it =

∑

j∈[0 ,V m] st j 6=i

wm
jit =















1 if a startu p for th e valu e i of attribu t m

tak es p lace at th e beg inning of p eriod t,

0 oth erwise.

W ith th is notation, we h ave:

1 3



Proposition 1. All feasible solutions of DLSP2 satisfy:

∀t, ∀k , ∀p ∈ {0...D̃k,t+1,T }, ∀m = 1...M ,

Ikt ≥

p
∑

q=1

(

1 − Y m
Amk ,t+q −

S
k,D̃k,1,t +q
∑

τ=t+q+1

Zm
Amk ,τ

)

(19 )

Proof. Before the proof, which extends the one given in [30] for the DLSP1 formulation,

we briefl y explain the idea underlying (19 ). Y m
Amk ,t+q +

∑

S
k,D̃k,1,t +q

τ=t+q+1 ZAmk
= 0 if and only

if the resource is not setup in period t+ q for the value Amk of attribute m needed to

produce item k and no startup for this value occurs between the period t + q + 1 and the

period where the qth demand after period t occurs, i.e. if and only if no production of

item k is possible in the interval {t + q, ..., Sk,D̃k,1,t +q}. In that case, the quantity needed

to satisfy the qth demand on item k after period t should be in stock at the end of period

t.

Now consider an arbitrary integral feasible solution of DLSP2, say (y, w, Y, Z). We

arbitrarily choose an item k, a period t, a demand occurrence p ∈ {0...D̃k,t+1,T } and an

attribute m and we show that the feasible solution chosen satisfies the corresponding

valid inequality. In the sequel, for the sake of simplicity, we drop the item index k and

we denote i = Amk the value of attribute m for item k.

We denote Rq the qth production period for this item in the feasible solution con-

sidered. By definition, we have R1 < R2 < ... < Rq < ... < RD̃1,T
. M oreover, because

backlogging is not allowed, the qth production period must occur before the qth demand

period: ∀q, Rq ≤ Sq.

Let q0 be the highest index such that RD̃1,t +q < t + q. Then we have:

• ∀q ≤ q0, RD̃1,t +q < t + q. The qth demand after period t is produced before period

t+ q .

• ∀q > q0, t + q ≤ RD̃1,t +q ≤ SD̃1,t +q. The qth demand after period t is produced

between t+ q and the period SD̃1,t +q where it occurs. In this case, the resource must

be setup for the value i of attribute m at least once in the interval {t+q, ..., SD̃1,t +q}.

Thus we have:

∀q > q0, Y
m
i,t+q +

S
D̃1,t +q
∑

τ=t+q+1

Zm
i,τ ≥ 1 (20)
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Hence,

t
∑

t=1

yt +

p
∑

q=1

(

Y m
i,t+q +

S
D̃1,t+q
∑

τ=t+q+1

Zm
i,τ

)

≥

t
∑

t=1

yt +

q0
∑

q=1

Y m
i,t+q +

p
∑

q=q0

(

Y m
i,t+q +

S
D̃1,t+q
∑

τ=t+q+1

Zm
i,τ

)

(21)

≥

t
∑

t=1

yt +

q0
∑

q=1

yt+q + p − q0 (22)

≥ D̃1,t + q0 + p − q0 (23)

≥ D̃1,t + p (24)

(21) comes from the fact that
∑q0

q=1

∑
S

D̃1,t+q

τ=t+q+1 Zm
i,τ ≥ 0. To obtain (22), we use the

fact that yt+q ≤ Y m
i,t+q as well as the inequalities (20). F inally, (23) is true because, by

definition of q0, the cumulated demand D̃1,t + q0 is satisfied by the cumulated production

before t + q0,
∑t+q0

t=1 yt, so that
∑t+q0

t=1 yt ≥ D̃1,t + q0 .

As
∑t

t=1 yt−D̃1,t is the inventory level of item k at the end of period t, this establishes

the validity of (19).

The number of valid inequalities (10) and (19) grows quite fast with the problem size

and the production capacity utilization: e.g. for the instances involving 30 products and

100 periods with a capacity utilization of 90% (see section 5 ), there are more than 7 000

valid inequalities (10) for the DLSP1 formulation and more than 21000 valid inequalities

(19) for the DLSP2 formulation. Hence it is not possible to include directly all valid

inequalities in the formulations DLSP1 and DLSP2. In the computational experiments

to be presented in section 5 , the following cutting-plane generation strategy has been

implemented to strengthen both formulations:

1. We solve the linear relaxation of the problem using the formulation DLSP1 (respec-

tively DLSP2).

2. We look at each valid inequality of type (10) (respectively (19)). If it is violated by

the current continuous solution, we add it to the formulation.

3. If at least one violated inequality is found in step 2, we go back to step 1 and repeat

until no more violated valid inequalities can be generated.

The resulting strengthened formulation is denoted DLSP1* (respectively DLSP2* ).
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4.3 A small illustrative example

We use a small example to illustrate the proposed model and to show an application of the

DLSP2 formulation. We consider a bottle filling line where 4 items can be produced. An

item is described by the corresponding bottle size (attribute 1 with two possible values)

and the composition of the liquid to be used (attribute 2 with two possible values). Table

1 shows how each of the 4 items can be described using the two attributes. We agree to

use the item k = 0 described by the 2-tuple (0,0) to represent the idle period. Table 2

gives the changeover costs for each attribute and table 3 provides the demand for each

product.

Figure 1 shows the optimal production plan obtained while using the DLSP2 formu-

lation. The first two lines give the sequence of setup states for each attribute. In each

planning period, we can deduce from these sequences the item for which the resource is

setup. The changeover costs to be incurred between each lot are also shown in the bottom

line of figure 1. C onsistently with our assumption, changeover costs relative to diff erent

attributes are added whenever transitions for diff erent attributes occur simultaneously.

This is the case here at the beginning of periods 1, 4, 9 and 10 where both the bottle size

and the liquid composition are changed.

5 C omputational results

In this section, we discuss the results of some computational experiments carried out to

compare the two formulations presented in sections 2 and 4. We created 5 sets of randomly

generated instances. The instances diff er with respect to the following characteristics:

• Problem dimension: The problem dimension is represented by the number of prod-

ucts N and the number of periods T. We use three diff erent combinations:

(N , T ) ∈ {(10, 6 0), (25, 50), (30, 100)}.

• Multi-attribute p roduct structure: The product structure is described by the number

of attributes M and the number of possible values V m for each attribute m. We

use five diff erent combinations, leading to 5 sets of instances. Table 4 gives the

characteristics of the generated instances for each set. For set C and E instances,

we have
∏M

m=1 V m > N . Therefore we used the following procedure to generate

matrix A:

1. We generated a matrix A′ with
∏M

m=1 V m columns. A′ describes all possible

combinations of the attribute values.

2. For each column i of A′, we randomly generated a weight wi from a discrete
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uniform DU(1,
∏M

m=1 V m) distribution.

3. The matrix A is generated by selecting the N columns of A′ corresponding to

the N smallest weight wi.

• Inventory holding costs: For each item, inventory holding costs have been generated

randomly from a discrete uniform DU(5, 10) distribution.

• Production capacity utilization: Production capacity utilization ρ is defined as the

ratio of the total cumulated demand on the total cumulated available capacity. We

experimented different values for ρ: 0.5, 0.7 and 0.9.

• Demand pattern: Binary demands for each item have been randomly generated

according to the procedure described in [24].

• C hangeover costs : For each attribute m, changeover costs Cm
lk have been randomly

generated from a discrete uniform DU(Cm
min , C

m
ma x ) distribution. We tested several

possibilities: the changeover costs for all attributes can either be taken from the

same interval or the changeover costs for the first attribute are greater than for the

other(s). In our study, we define the ratio r as: r = C1
mean

Cm
mean

where Cm
me a n denotes

the mean of interval [Cm
min , C

m
ma x ]. We tested several values for r : 1, 2, 5, 10 and

30. In all instances, the resulting changeover costs between two items belong to the

interval [0,200].

For each possible combination of multi-attribute product structure, production capacity

utilization and changeover costs ratio, 5 problems were generated, resulting in 5×3×5×

5 = 375 instances. All tests were run on a Pentium 4 (2.8 G hz) with 505 Mb of R AM,

running under Windows X P. We used a standard MIP software (CPLEX 8 .1.0) with the

solver default settings, using either formulation DLSP1 or formulation DLSP2.

Tables 5-9 show the computational results obtained with formulations DLSP1* and

DLSP2*, for each set of instances. As the value of the ratio r appears to have an impact

on the results quality, we grouped the instances with respect to the value of r so that each

line corresponds to the average value for 15 randomly generated instances (5 instances

for each value of production capacity utilization). For both series of results, we provide:

• # O pt : for set A, B and C instances, the number of instances out of the corre-

sponding 15 instances that could be solved to optimality within 30 minutes of

computation.

• # F eas : for set D and E instances, the number of instances out of the corresponding

15 instances for which a feasible solution could be found within 30 minutes of

computation.
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• Gap: for the instances that could not be solved to optimality, the average rela-

tive gap value obtained after 30 minutes of computation between the best integer

solution (if one could be found) and the best lower bound found.

We now compare the results obtained with formulations DLSP1* and DLSP2*. The

results from tables 5-9 show that:

• for high values of ratio r (r ≥ 5), i.e. when one attribute has corresponding

changeover costs clearly higher than the other(s) attribute(s), the results obtained

with formulation DLSP2* are better. This can be seen as:

– a feasible solution could be obtained for all instances,

– more instances could be solved to optimality within 30 minutes of computation,

– when a guaranteed optimal solution could not be found within 30 minutes of

computation, the residual gap is smaller.

• for small values of the ratio r (r ≤ 2), formulation DLSP1* provides better results

for medium-sized instances (sets A, B and C). However, this is not the case for the

larger instances in sets D and E. Namely, for these instances,

– a feasible solution could not always be found with formulation DLSP1* whereas

at least one feasible solution could be found for each instance with formulation

DLSP2*.

– the residual gap is significantly smaller on some instances with formulation

DLSP2*.

Comparison between the results obtained with the two formulations thus shows that

using formulation DLSP2*, we are able to improve the effi ciency of the Branch & Bound

procedure, especially for the high values of ratio r and for the largest instances. This can

be explained by two main factors:

• U sing formulation DLSP2*, the problem size (i.e. the number of variables and

constraints) is significantly reduced. As a consequence, the time spent at each node

of the Branch & Bound tree to solve the linear relaxation is shorter and more nodes

can be explored within 30 minutes of computation.

• The formulation enhancement obtained thanks to the valid inequalities adapted

for formulation DLSP2 gives better results when ratio r has a high value. More

precisely, for high values of r, the lower bounds provided by formulation DLSP2*

are higher than the ones provided by formulation DLSP1*. O n the contrary, for
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small values of r, the lower bounds provided by the formulation DLSP1* are higher

than the ones provided by formulation DLSP2*.

Thus the combined advantages of a reduced problem size and of tighter lower bounds

enable the formulation DLSP2* to outperform the formulation DLSP1* on many in-

stances.

6 Conclusion

We presented a new formulation for the DLSP with sequence-dependent setup costs.

The main idea is to use a possible product description as combinations of a number of

physical attributes. When such a structure is present in the industrial context under

study, we have shown how to exploit it to reduce the size of the mixed integer linear

program to be solved and improve the efficiency of the solution process. Computational

experiments show that the proposed DLSP2 formulation performs better than the tight

DLSP1 formulation we chose as a reference for comparison, especially in cases where one

of the physical attributes has corresponding changeover costs higher than the other(s)

attribute(s).

Finally, future research on this topic could be aimed at extending the proposed MIP

formulation DLSP2* to take into consideration additional relevant industrial concerns

such as the presence of multiple resources that need to be planned simultaneously (see

e.g. [3], [18], [22] or [25]) or the integration of positive changeover times (see e.g. [14],

[24], [28]or [29]). It would also be worth investigating whether a multi attribute product

structure could be used to solve lot sizing problems such as the ELSP where different

modelling assumptions are used.
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item 0 1 2 3 4

a ttrib u te 1: b o ttle size 0 1 1 2 2

a ttrib u te 2: liq u id c o mp o sitio n 0 1 2 1 2

p ro d u c t d esc rip tio n (0,0) (1,1) (1,2) (2,1) (2,2)

in v en to ry h o ld in g c o sts 0 7 8 5 10

T a b le 1: P ro d u c t d esc rip tio n u sin g tw o a ttrib u tes

0 1 2 0 1 2

0 0 100 200 0 0 10 10

1 0 0 200 1 0 0 20

2 0 100 0 2 0 10 0

T a b le 2: C h a n g eo v er c o sts fo r tra n sitio n s b etw een b o ttle sizes (left) a n d b etw een liq u id

c o mp o sitio n (rig h t)

p erio d 1 2 3 4 5 6 7 8 9 10

item 1 0 1 0 0 1 0 0 1 0 0

item 2 0 0 0 0 0 0 0 0 0 1

item 3 0 0 0 0 1 1 0 1 0 1

item 4 0 0 0 1 0 0 0 0 0 0

T a b le 3 : D ema n d o n p ro d u c ts

N T M V
m

set A 10 6 0 2 V
1 = 2, V

2 = 5

set B 25 5 0 2 V
1 = 5 , V

2 = 5

set C 25 5 0 3 V
1 = 3 , V

2 = 3 , V
3 = 3

set D 3 0 100 3 V
1 = 2, V

2 = 3 , V
3 = 5

set E 3 0 100 5 V
1 = 2, V

2 = 2, V
3 = 2, V

4 = 2, V
5 = 2

T a b le 4 : M u lti-a ttrib u te p ro d u c t stru c tu re: ch a ra c teristic s o f g en era ted in sta n ces

Tables



Formulation DLSP1* Formulation DLSP2*

V ariables 8520 3960

Constraints 1921 1681

# V I 1191 2108

ratio r #Opt Gap #Opt Gap

r=1 1 3 3 % 5 9 %

r=2 1 0 6 % 5 5 %

r=5 2 1 2 % 6 4 %

r=10 0 2 1 % 1 1 3 %

r=3 0 1 1 4 % 1 5 0 %

T ab le 5 : R e su lts fo r se t A in stan c e s

F o rm u latio n D L S P 1 * F o rm u latio n D L S P 2 *

V ariab le s 3 6 3 5 0 6 1 5 0

C o n strain ts 3 8 5 1 2 4 5 1

#V I 8 3 8 1 4 5 3

ratio r #Opt Gap #Opt Gap

r=1 3 7 % 0 1 7 %

r=2 0 1 6 % 0 1 6 %

r=5 0 2 6 % 4 1 1 %

r=10 0 3 1 % 7 4 %

r=3 0 0 3 6 % 1 1 5 %

T ab le 6 : R e su lts fo r se t B in stan c e s

F o rm u latio n D L S P 1 * F o rm u latio n D L S P 2 *

V ariab le s 3 6 3 5 0 4 9 5 0

C o n strain ts 3 8 5 1 2 4 5 1

#V I 8 4 0 1 6 5 3

ratio r #Opt Gap #Opt Gap

r=1 5 1 1 % 0 2 0 %

r=2 3 1 3 % 0 2 1 %

r=5 0 2 4 % 0 1 4 %

r=10 0 2 4 % 9 1 0 %

r=3 0 0 3 9 % 8 7 %

T ab le 7 : R e su lts fo r se t C in stan c e s



Formulation DLSP1* Formulation DLSP2*

Variables 102200 12200

Constraints 9201 5601

#VI 2792 2865

ratio r #Feas Gap #Feas Gap

r=1 10 38% 15 40%

r=2 7 42% 15 42%

r=5 10 48% 15 35%

r=10 10 57% 15 29%

r=30 10 62% 15 24%

Table 8: Results for set D instances

Formulation DLSP1* Formulation DLSP2*

Variables 102200 10600

Constraints 9201 6001

#VI 2792 2911

ratio r #Feas Gap #Feas Gap

r=1 12 29% 15 31%

r=2 10 34% 15 36%

r=5 9 47% 15 33%

r=10 10 54% 15 29%

r=30 12 59% 15 26%

Table 9: Results for set E instances


