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On the Equivalence of Interleavers for Turbo Codes
Ronald Garzón Bohórquez, Student Member, IEEE, Charbel Abdel Nour, Member, IEEE,

and Catherine Douillard, Senior Member, IEEE

Abstract—Three of the most common interleavers for Turbo
Codes (TCs) are Dithered Relative Prime (DRP) interleavers,
Quadratic Permutation Polynomial (QPP) interleavers and Al-
most Regular Permutation (ARP) interleavers. In this paper it is
shown that DRP and QPP interleavers can be expressed in the
ARP interleaver function form. Furthermore, QPP interleavers
can be seen as a particular case of ARP interleavers, in which
the values of the periodic shifts follow the quadratic term of
the QPP interleaver function. Some application examples of
the equivalent expressions are provided. Particularly, in the
QPP interleaver case, the different instances in the Long Term
Evolution (LTE) standard are considered. Obtained results are
useful when investigating a suitable and general permutation
model for TCs.

Index Terms—Turbo codes, ARP interleaver, DRP interleaver,
QPP interleaver, equivalence.

I. INTRODUCTION

THE interleaver is a key component of Turbo Codes (TCs).
Its role is twofold. First, it has an important impact on

the achievable minimum Hamming distance of the TC [1].
Second, due to its scattering properties, it also acts on the
correlation of exchanged extrinsic information during the iter-
ative decoding process [2]. In practical turbo coded systems,
algebraic permutations are preferred to random-based permu-
tations. In this case, permuted addresses can be computed via
the application of a mathematical expression avoiding the use
of storage elements or a look-up table. Therefore, they are
easier to specify and implement. Three of the most popular
interleavers with the above mentioned properties are Dithered
Relative Prime (DRP) interleavers [3], Quadratic Permutation
Polynomial (QPP) interleavers [4] adopted in LTE [5], and
Almost Regular Permutation (ARP) interleavers [6] adopted
in the DVB-RCS/RCS2 [7], [8] and WiMAX [9] standards.
Until now, no generic permutation model for TCs has been
established. In this paper, we show that a relation exists among
these three families of interleavers. Indeed, we demonstrate
that any DRP or QPP interleaver can be expressed as an ARP
interleaver.

II. ALGEBRAIC INTERLEAVER MODELS FOR TCS

This section gives an overview of the algebraic interleavers
analyzed in this letter.

A. The ARP Interleaver

The ARP interleaver was proposed by Berrou et al. [6]. It
is based on a regular permutation of period P and a vector of

The authors are with the Electronics Department, Institut Mines-Telecom,
Telecom Bretagne, CNRS UMR 6285 Lab-STICC, CS 83818 - 29238 Brest
Cedex 3, France (e-mail: ronald.garzonbohorquez@telecom-bretagne.eu;
charbel.abdelnour@telecom-bretagne.eu; catherine.douillard@telecom-
bretagne.eu).

shifts S. The interleaving function is defined as:

ΠARP(i) = (P ·i+ S(imodQ))modK (1)

where i = 0, ...,K− 1 denotes the address of the data symbol
after interleaving and ΠARP(i) represents its corresponding
address before interleaving. P is a positive integer relatively
prime to K, K being the interleaver size. The disorder cycle
or disorder degree in the permutation is denoted by Q, which
corresponds to the number of shifts in S. K must be a multiple
of Q.

B. The DRP Interleaver

As introduced by Crozier and Guinand [3], the DRP inter-
leaver is composed of three interleaving stages:

Πa(i) = R bi/Rc+ r(imodR) (2)
Πb(i) = (s+ P ·i) modK (3)
Πc(i) = W bi/W c+ w(imodW ) (4)

where bxc denotes the closest lower integer value with respect
to x; r and w are the read and write dither vectors with lengths
R and W , respectively. The interleaver length K must be
a multiple of the length of both dither vectors. P denotes
the regular interleaver period, relatively prime to K, and s
represents a constant shift. Then, the complete interleaver
function is defined as:

ΠDRP(i) = Πa(Πb(Πc(i))) (5)

where i = 0, ...,K− 1 is the address of the data symbol after
interleaving and ΠDRP(i) represents its corresponding address
before interleaving.

C. The QPP Interleaver

QPP interleavers, proposed by Sun and Takeshita [4], are
based on permutation polynomials over the integer ring ZK
where K corresponds to the interleaver length. Such an
interleaver is completely defined by the algebraic expression:

ΠQPP(i) = (f1i+ f2i
2)modK (6)

where i = 0, ...,K− 1 denotes the address of the data symbol
after interleaving and ΠQPP(i) represents its corresponding
address before interleaving. For even data sequence lengths,
the necessary and sufficient condition for the polynomial in
(6) to define a valid permutation (i.e., one to one mapping)
can have two different expressions [10], [11]:

1) 2n divides K for n> 1: then, f1 is relatively prime to
K and all prime factors of K are also factors of f2.

2) 2n divides K for n=1, but not for n>1: then, f1 + f2
is odd, f1 is relatively prime to K

2 and all prime factors
of K, excluding 2, are also factors of f2.
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According to these conditions, K and f2 can be factorized in
their prime factors as:

K = 2αK,1

ω(K)∏
i=2

p
αK,i

i (7)

f2 = 2αf,1

ω(K)∏
i=2

p
αf,i

i

ω(f)∏
i=ω(K)+1

p
αf,i

i (8)

where ω(K) and ω(f) represent the number of different prime
factors of K and f2, respectively. αf,1 = 0 for αK,1 = 1 and
αf,1>1 for αK,1>1.

III. A UNIFIED DESCRIPTION FORM OF ALGEBRAIC
INTERLEAVERS BASED ON THE ARP MODEL

In this section it is shown that DRP and QPP interleavers
can be expressed as ARP interleavers.

A. DRP Interleavers Expressed as ARP Interleavers

Noting that for natural integers n and k, n bk/nc is equal
to k−kmodn, expressions (2) and (4) can be rewritten as:

Πa(i) = (i− imodR+ r(imodR)) modK (9)
Πc(i) = (i− imodW + w(imodW )) modK (10)

Then, the term Πb(Πc(i)) in (5) can be expressed as:

Πb(Πc(i)) = (s+ P (i− imodW + w(imodW ))) modK

= (P ·i+s+P (w(imodW )−imodW )) modK (11)

Therefore, a vector with W periodic shifts, SW, can be
defined as:

SW (imodW ) =(s+ P (w(imodW ) − imodW )) modK (12)

and (11) can be expressed as:

Πb(Πc(i)) = (P ·i+ SW (imodW )) modK (13)

Substituting (13) and (9) into (5) gives the overall expres-
sion of the DRP interleaver:

ΠDRP(i) = (P ·i+ SW (imodW )−
(P ·i+ SW (imodW )) modR+

r((P·i+SW (imodW ))modR)) modK (14)

Let M be the Least Common Multiple (LCM) of R and W .
Then, a vector with M periodic shifts, SM, can be defined as:

SM(imodM) = (SW (imodW )− (P ·i+SW (imodW )) modR

+ r((P·i+SW (imodW ))modR)) modK (15)

Finally, (14) can be expressed in the form:

ΠDRP(i) = (P ·i+ SM(imodM))modK (16)

Given that K is a multiple of both M and Q, we can take
Q = M and the expression in (16) corresponds to the ARP
interleaver function in (1). Therefore, it is shown that any DRP
interleaver can be expressed in the ARP interleaver function
form.

B. QPP Interleavers as Special Cases of ARP Interleavers

It can be shown that the QPP interleaver is a particular
case of the ARP interleaver. Let us first recall the addition
property of congruence [12]: if a≡ bmodn and c≡dmodn
then ax+ cy≡bx+ dymodn for all integers x and y.

Therefore, a sufficient condition for the existence of an
ARP-equivalent form of a valid QPP interleaver is that the
following equations hold:{

(P ·i)modK = (f1i)modK (17)
S(imodQ)modK = (f2i

2)modK (18)

(17) holds for:
P = f1 (19)

(18) holds for the trivial case in which Q = K. However,
it is not a suitable value for implementation purposes, since
K shift values have to be stored. It can be shown that a valid
value for Q, smaller than the trivial case Q=K, can be found.
Given that S is a vector of Q periodic shifts, equation (18) is
satisfied for:

(f2i
2)modK = (f2(i+Q)2)modK (20)

(f2i
2)modK = (f2i

2 + 2f2Qi+ f2Q
2)modK

Then, it must be verified that:

(2f2Qi+ f2Q
2)modK = 0 (21)

which holds for: {
(2f2Qi)modK = 0 (22)
(f2Q

2)modK = 0 (23)
(22) implies that:

2f2Q = lK, l ∈ N+ (24)

which is satisfied for:

Q = (lK)/(2f2) (25)

Let us factorize l in its prime factors as:

l = 2αl,1

ω(K)∏
i=2

p
αl,i

i

ω(f)∏
i=ω(K)+1

p
αl,i

i (26)

Then, (25) with Q as a divisor of K holds for:
αl,1 ∈ {0, 1} , for αK,1 = 1 (27)
αf,1−αK,1+1 ≤ αl,1 ≤ αf,1+1, for αK,1 > 1 (28)
αf,i−αK,i ≤ αl,i ≤ αf,i, i = 2, ..., ω(K) (29)
αl,i=αf,i, i = ω(K)+1, ..., ω(f) (30)

(23) implies that:

f2Q
2 = mK, m ∈ N+ (31)

With Q as defined in (25), (31) evaluates to:

(l/2)2(K/f2)K = mK (32)

According to (32), (l/2)2(K/f2) ∈ N+, which holds for:
αl,1 = 1, for αK,1 = 1 (33)
αf,1−αK,1

2
+1 ≤ αl,1, for αK,1 > 1 (34)

αf,i−αK,i
2

≤ αl,i, i = 2, ..., ω(K) (35)
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Afterwards, we have to find a range for the exponents of the
prime factors of l, αl,i, validating the conditions that verify
equations (25) and (32).

First, αl,1 = 1 validates both conditions (33) and (27) for
αK,1 =1. Then, for αK,1 > 1, two cases have to be considered:{

αK,1<αf,1 : the valid range for αl,1 is given by (28)

αK,1 ≥ αf,1 :
αf,1−αK,1

2
+1 ≤ αl,1 ≤ αf,1+1 (36)

The same applies for αl,i, i = 2, ..., ω(K):{
αK,i < αf,i : the valid range for αl,i is defined by (29)

αK,i ≥ αf,i :
αf,i−αK,i

2
≤ αl,i ≤ αf,i (37)

Finally, for αl,i, i = ω(K)+1, ..., ω(f), the exponent values
are obtained from (30). It is noteworthy that negative lower
bounds for αf,i, in (36) or (37) must be replaced with zero
since αf,i ∈ N0.

Therefore, an equivalent ARP function for a valid QPP
interleaver is obtained by choosing P equal to f1 with a
vector of shifts S of length Q. The possible values for Q
are determined by (25), for l defined in (26). Let Qs be the
smallest possible value for Q. It corresponds to the minimum
disorder degree for which an equivalent ARP can be found.
Other possible values for Q are then multiples of Qs provided
that K remains a multiple of Q. Then, the Q periodic shifts of
S are obtained from (18) for i = 0, ..., Q−1. Note that the shift
values of S for multiples of Qs are just periodic repetitions of
those obtained for Qs. Then, only the shift values for Qs have
to be found. Thus, the QPP interleaver is a particular case of
the ARP interleaver in which the values of the periodic shifts
follow the relation (18).

IV. ADVANTAGES OF THE PROPOSED UNIFIED
REPRESENTATION OF INTERLEAVERS FOR TCS

As shown in [13], differences seem to exist between achiev-
able Hamming distances of QPP and DRP-based interleavers
(mostly in favor of DRP ones). Since any DRP or QPP
interleaver can be represented by an ARP interleaver (the other
way around is not necessarily true), the Hamming distances
achievable by these former structures are attainable by the
ARP interleaver. Thus, one can argue that the corresponding
values set a lower bound on the achievable distances by ARP-
based interleavers. Furthermore, since TCs have found their
way to several standards with different interleaving structure
in each (e.g., QPP for LTE and ARP for WiMAX and DVB-
RCS), unifying the interleaving structure have an advantage for
implementation purposes. Indeed, for a hardware implementa-
tion, one can design an ARP interleaver that can be used for
ARP interleavers and that can support QPP ones. Therefore,
the overall complexity can be reduced when both interleaving
structure have to be supported in the same chip.

V. APPLICATION EXAMPLES

The obtained equivalent expressions of DRP and QPP
interleavers in the form of the ARP are applied in some
examples.

TABLE I
PARAMETERS OF THE DRP INTERLEAVERS.

DRP K s P r w

I 784 73 25 (2, 5, 1, 0, 4, 6, 3) (6, 3, 2, 4, 0, 1, 5)

II 784 13 33 (1, 0, 3, 5, 2, 4, 6) (3, 2, 6, 4, 5, 1, 0)

III 6144 14 263 (1, 0) (2, 1, 0)

IV 6144 19 107 (1, 0, 2) (1, 0)

TABLE II
EQUIVALENT ARP INTERLEAVERS TO THE DRP FROM TABLE I.

ARP Q S(0) S(1) S(2) S(3) S(4) S(5) S(6)

I 7 220 127 73 99 754 759 47

II 7 113 47 144 45 48 663 599

III 6 541 13 5633 539 15 5631 -

IV 6 127 6055 125 6056 126 6057 -

A. Equivalent ARP interleavers for the DRP Case

In the first application example, a DRP interleaver of length
784 is considered. A length of 7 is selected for the dither
vectors. Two different configurations of these vectors are
analyzed and listed in Table I. The disorder degree Q of
the equivalent ARP interleavers is set to the dither vector
size value. The regular permutation period P of each ARP
interleaver is the same as the one used in the original DRP
version. Then, the 7 shifts of the equivalent ARP interleavers
are obtained from (15) and listed in Table II.

In the second example, a DRP of length 6144 is analyzed.
Two different dither vector lengths, 2 and 3, as well as two
different configurations are considered and listed in Table I.
Then, the disorder degree of the equivalent ARP is set to
6, which corresponds to the LCM of 2 and 3. The regular
permutation period is again selected as the one used in the
DRP interleaver and the 6 shifts of the equivalent ARP
interleavers are given by (15). The corresponding shift values
are listed in Table II. It was verified that the interleaved
addresses obtained with the equivalent ARP interleavers from
Table II are the same as those obtained with the respective
DRP interleavers from Table I.

B. Equivalent ARP interleavers for the QPP Case

In this case, two instances of the QPP interleaver defined
in the LTE standard [5] are detailed. Let us first take the
interleaver of length 216 for which f2 = 36. The inter-
leaver length and f2 are factorized in their prime factors as:
216 = 2333 and 36 = 2232, respectively. Therefore, the
values for l, leading to valid values for Q, are factorized as:
l = 2αl,13αl,2 , following (26). According to (36), the valid
range for αl,1 is 1 ≤ αl,1 ≤ 3. Afterwards, the valid range for
αl,2, 0 ≤ αl,2 ≤ 2, is obtained from (37). Then, from these
ranges, the group of valid values for l is calculated. Finally, the
possible values for Q are obtained from (25). The respective
values for Q are listed in Table III. A minimum disorder degree
of 6 is found. The shift values of S for this interleaver and
for those of length 432, 720 and 1008, for which Qs=6, are
listed in Table IV.
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TABLE III
POSSIBLE VALUES FOR Q IN THE QPP INTERLEAVER WITH K=216,

f1=11 AND f2=36.

l 2 4 6 8 12 18 24 36 72

Q 6 12 18 24 36 54 72 108 216

TABLE IV
EQUIVALENT ARP INTERLEAVERS WITH P = f1 , Qs = 6 AND S(0) = 0.

K 216 432 720 1008

f1 11 47 79 55

f2 36 72 120 84

S(1) 36 72 120 84

S(2) 144 288 480 336

S(3) 108 216 360 756

S(4) 144 288 480 336

S(5) 36 72 120 84

TABLE V
POSSIBLE VALUES FOR Q IN THE QPP INTERLEAVER WITH K=1696,

f1=55 AND f2=954.

l 9 18 36 477 954 1908

Q 8 16 32 424 848 1696

TABLE VI
EQUIVALENT ARP INTERLEAVERS WITH P =f1 , Qs=8, S(0)=S(4)=0.

K 1696 768 3264 5376

f1 55 217 443 251

f2 954 48 204 336

S(1) 954 48 204 336

S(2) 424 192 816 1344

S(3) 106 432 1836 3024

S(5) 106 432 1836 3024

S(6) 424 192 816 1344

S(7) 954 48 204 336

In another example, the interleaver of length 1696, for
which f2 = 954, is considered. K and f2 are factorized
as: 1696 = 25531 and 954 = 2153132, respectively. Thus,
according to (26), the valid values for l are factorized as:
l = 2αl,153αl,23αl,3 . According to (36), the valid range for αl,1
is 0 ≤ αl,1 ≤ 2. Then, the valid range for αl,2, 0 ≤ αl,2 ≤ 1,
is obtained from (37). Finally, αl,3 = 2 as obtained from (30).
Table V lists the possible values for Q, obtained from (25)
with the valid values of l. A minimum disorder degree of 8 is
found. The shift values of S for this interleaver and for those
of length 768, 3264 and 5376, for which Qs=8, are listed in
Table VI.

The minimum disorder degree, Qs, obtained for the 188
different instances of the LTE QPP interleaver, is shown in
Fig. 1. It was verified that the interleaved addresses obtained
with the corresponding ARP interleavers are the same as those
obtained with the respective QPP interleavers.
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Fig. 1. Minimum disorder degree Qs of the equivalent ARP interleavers for
the different sizes K of the LTE QPP interleaver.

VI. CONCLUSION

In this letter, it was shown that DRP and QPP inter-
leavers can be expressed as ARP interleavers. In addition,
QPP interleavers were found to be special cases of ARP
interleavers in which the values of the periodic shifts follow
the quadratic term of the QPP interleaver function. Thus,
the same interleaving properties of DRP or QPP interleavers
can be provided by ARP interleavers. Therefore, the ARP
interleaver is a sufficient permutation model to design TCs
with the achievable asymptotic performance from any of the
three interleaver families.
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