
HAL Id: hal-01170156
https://hal.science/hal-01170156

Submitted on 21 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Understanding Business Trends from Data Evolution
with Tornado

Azhar Ait Ouassarah, Nicolas Averseng, Xavier Fournet, Jean-Marc Petit,
Romain Revol, Vasile-Marian Scuturici

To cite this version:
Azhar Ait Ouassarah, Nicolas Averseng, Xavier Fournet, Jean-Marc Petit, Romain Revol, et al..
Understanding Business Trends from Data Evolution with Tornado. International Conference on
Data Engineering, Apr 2015, Seoul, South Korea. pp.1456-1459, �10.1109/ICDE.2015.7113400�. �hal-
01170156�

https://hal.science/hal-01170156
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


Understanding Business Trends from Data
Evolution with Tornado

Azhar Ait Ouassarah∗ †, Nicolas Averseng†, Xavier Fournet†,
Jean-Marc Petit∗, Romain Revol † and Vasile-Marian Scuturici ∗

∗Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205
20 avenue Albert Einstein, F-69621 Villeurbanne Cedex, France

†Systar
171 Rue Bureaux de la Colline, 92210 St Cloud, France

Abstract—Nowadays, every company could understand how its
business evolves from the data (deluge) generated by its activities.
Roughly speaking, two types of data co-exist: historical data
and real-time data from which business analysts have to take
their decisions in a timely fashion. In this context, the notions of
time (application time and transaction time) and traceability turn
out to play a crucial role to understand what happened in the
company and what is currently happening. Tornado offers a full-
fledged platform to deal with such data and is based on two key
features: 1) a bi-temporal DB specifically designed for handling
historical and real-time data, 2) a GUI that aims to facilitate
query formulation for business analysts. In this demonstration,
we provide the key resources to let the visitors play with the
Tornado functionalities to interact with predefined data.

I. INTRODUCTION

Companies are operating in very dynamic and complex
environments that require from their managers agility and
ability to make proactive operational decisions, in order to
maintain or improve their business. Traditionally managers
rely on Business Activity Monitoring (BAM) [1] to take
operational decisions. BAM aims to provide real-time access
to critical business performance indicators. Thus managers
can have a deep insight of what is currently happening in
their business and then take rapid and effective decisions.
BAM gathers its information in real-time by analysing data
streams from multiple sources. BAM solutions often rely on
Complex Event Processing (CEP) [2] can also detect inter-
esting patterns of events, e.g if events A and B happen then
C happens too. Nevertheless these technologies are limited
because they only focus on real time information rather than
using existing historical data. Exploiting historical data is
covered by the Business Intelligence (BI) domain [3] which
provides access to past performance indicators by analysing
information stored in data warehouses. It enables users to
understand what happened in the past and help them to prevent
the mistakes in the future. Tornado, a platform developped
by Systar (http://www.systar.fr/), addresses analyst’s needs to
cover BI and real-time monitoring use cases. Even if some
contributions exist in the Data Stream Management to deal
with real-time and historical streams [4], [5], Tornado is, to the
best of our knowledge, the first comprehensive data-intensive
decision support system allowing to exploit real-time data
streams and historical data in a transparent manner.

Tornado has been designed to be easily deployable. Thus
it do does not require specific hardware equipment and can
be deployed on commodity hardware at a low cost ownership.
Creating or updating applications does not require deep tech-
nical knowledge. Tornado embeds a proprietary NoSQL bi-
temporal and column-oriented database management system
(2TDBMS) that is continuously fed with data by external
data sources. In order to cope with real-time constraints the
query processing engine uses different types of continuous
queries. Analysts with limited technical skills can create new
analyses, tailor their dashboards and see the results of their
modifications immediately on production data. Thus these
applications evolve as user’s needs evolve to meet the business
evolution.
As Tornado combines both real-time monitoring and BI func-
tionalities, it enables analysts to consider operational data in
the past, present, or future using the same tool. It provides
consolidated views of traditional real-time analyses with com-
plete temporal historical analyses. The query engine allows
typical user scenarios as:

• Replay of past situations with exactly the same informa-
tion as when they occurred live;

• Investigation for audit and traceability to provide:
– In depth analysis of a situation that occurred in the

past, which could include answers to questions such
as what happened, when, why and where specific
actions are taken;

– On demand simulations of the evolution of past
situations;

– Parallel comparison of the evolution in time of two
situations, such as a present time process and the
behavior of the same process yesterday;

• Risk assessment evaluations which may be:
– Based on past events and data;
– Based on forecasted events and data.

Tornado has to face two main performance issues: process-
ing high volume of data generated by business activities and
guaranteeing fast response time for users monitoring business
activities through a GUI interaction.

In this demonstration we will highlight the two main fea-
tures of Tornado: 1) An unified GUI to query and visualize



both real-time and historical data. 2) A proprietary NoSQL,
Bitemporal and column-oriented DBMS (2TDBMS) that is
specifically designed to handle both historical and real-time
data.

II. TORNADO DESCRIPTION

A. Architecture

Tornado is based on a service oriented, event-driven imple-
mentation using JavaTM language. It is structured into three
loosely coupled functional layers: Absorption Layer, Logic
Layer and User Interface Layer. Absorption Layer: Tornado
uses unobtrusive, agentless technology to collect, process and
analyse real-time data as well as historical data. It is based
on the Apache Camel engine that offers a wide range of
possibilities to pull data from various types of sources.
Logic Layer: The logic layer embeds a 2TDBMS specifically
designed and optimized for Tornado. The power of that DBMS
is its ability to handle both real-time streams and historical
data and provide an unique interface to access to them.
User interface layer: The user interface layer allows any web
browsers using Adobe Flash technology to display information
and from the logic layer. This layer is fully integrated with
the logic layer interface to offer seamless and rich interaction
with the analysts with visual data manipulation, navigation,
as well as analyses (Fig. 1) based on its needs.

B. Bi-temporal and Column-oriented Features

The underlying DBMS is bitemporal, i.e it supports two
orthogonal time dimensions: the transaction time [6], or
system time, (tt) and the valid time [7], or application time.
The support of transaction time enables to maintain a history
of all modifications that occurred in the DB. The support of
the valid time enables to maintain the history of data as it
evolves in the modeled reality.

The DBMS has the particularity of being column-oriented
[8], [9] which means that each attribute is stored in a separate
column and its values are stored successively on disk. This
contrasts with the row-oriented DBMS where attributes of the
same tuples are stored consecutively. There are two reasons be-
hind choosing a column-oriented database management system
rather than a row oriented one. First, column stores outperform
row oriented database system on analytical workloads such as
those found in business intelligence and decision support ap-
plication [10]. Secondly, the column oriented approach enables
creation/suppression of columns with limited performance
impacts, simplifying the data model update.
Tornado stores data in an append-only mode. Each attribute
is timestamped with two temporal attributes: 1) a valid time
interval, provided by the application, that indicates the time
during which the attribute’s values are valid, 2) a transaction
time, implicitly provided by the system during the transaction
commit, that indicates when attribute’s values are inserted into
the DB.

The query engine integrated in the logical layer is optimized
for three classes of temporal queries:

1) Time Travel: Time travel is a feature that enables to
build a view of a subpart of the database at a particular
state considering a valid time and a transaction time instant.
It consists of all valid and accessible data at that state. As
an example, a user might be interested in all unpaid orders
in September 2nd 2014 midnight as database is currently
recorded.

2) Temporal Aggregation: Tornado enables to compute
aggregation functions over valid time while the transaction
time is fixed to an instant. We consider two cases: aggregations
over an instant and over a temporal range. In the first case,
termed also Instantaneous Aggregation [11], we aggregate
all valid tuples at an instant, e.g what is the number of
payments with status=’in process’ in September 2nd 2014? In
the second case, we aggregate all tuples associated to a time
range using a temporal predicate. If we consider Kaufmann
and al’s classification of time ranges in temporal aggregations
in [12] which uses the window concepts from data streams
systems [13], Tornado supports three types of time ranges :
1) Tumbling Window, i.e aggregation is performed on non
overlapping intervals (e.g the number of new payments per
day). 2) Sliding Window (e.g the number of new payments
every day for the last 10 days), 3) Landmark Window, i.e the
intervals share the same interval begin (e.g the number of new
payments from the beginning of the month up to each day).

3) Temporal Join: Tornado implements temporal join that
simply extends the classical join with an additional predicate
over the valid time intervals. Thus two tuples match if they
satisfy two conditions: 1) the predicate over the non temporal
attributes is satisfied and 2) the valid time intervals satisfy
the temporal predicate. Tornado proposes 7 predicates like A
intersects B, A beging during B, ...

C. Temporal Query Engine

Tornado uses a dashboard as an user interface primitive
allowing the analysts to visualize analyses and to navigate
in time to understand how they evolve. A dashboard is
composed of one or several graphical elements (diagrams,
charts, datagrids, . . . ) termed pagelets. Each graphical element
displays data returned by underlying queries. The use of an
interactive GUI requires short response time from the database
system to avoid any unpleasant display lags. In order to
display a complete dashboard, the update time of associated
queries must respect these performance constraints, despite
their complexity and the growth of the DB size. In our case, all
queries are completely specified once dashboards are created
or modified. Our strategy consists in computing all defined
analyses as data is collected by Tornado and storing results in
the DB for a future use. Thus in Tornado an analytical query,
e.g as TPC-H ones, is executed as:

• several simple persisted continuous queries [14].
• one more elaborated on-demand query to provide the

answer to the pagelet.



Fig. 1. Screenshot of a dashboard

1) Persisted Continuous Queries: For each analysis, one
query is implemented and is binded to a rhythm. We define a
rhythm as a partition of the valid time domain into contiguous
and equal-length time intervals, and a new attribute is added
to the data model. For each interval of that rhythm Tornado
executes the query on data associated to it considering their
most recent state according to the transaction time. The result
is valid on the computation interval and is stored in its
dedicated attribute in the database for future uses. This type of
queries are continuously executed by Tornado’s query engine
as data is available, i.e either collected by the system from
external sources or produced by another analyses.

2) On-demand Queries: This type of queries is executed as
long as it is necessary to refresh the pagelet it is bind to. The
refresh can either be automatic or caused by the analyst when
he interacts with the GUI. The on-demand queries perform
time travels and temporal joins against the DB that contain
both collected data and the results of the continuous queries.

III. DEMONSTRATION

For our demonstration we use an application inspired by
Systar’s real-life workloads that was specifically implemented
for demonstration and test purposes. It corresponds to a fictive
organization in charge of supervising payment transactions
between companies (Fig. 2). This application contains a set of
dashboards representative for the platform capabilities. Besides
it embeds a configurable data generator used to evaluate
Tornado’s behaviours to handle large data sizes. We use
two parameters to set the size of generated data: vt instant
start of the simulation and number payments/minute. The
simulator works in two successive phases. First it injects
into the platform historical data from vt instant start to the
present time. Then the generator injects real-time data from

vt instant start. At the rate of 250 payments/minute, the total
size of data stored in the DB is 1.7GB/day: 0.2GB/day is the
data collected by Tornado and the rest are the results of the
persisted continuous queries
We assume that the application has reached the real-time step
at the beginning of the the demonstration. The visitor of the
demonstration will have the opportunity to understand Tornado
through predefined queries. Then she will be invited to design
its own pagelet and then explore analyses.

Fig. 2. Graphical data model of the scenario



A. Exploring Analyses

In the first part of the demonstration, the visitor will use the
dashboards to monitor the company’s activity and experiments
the platform capabilities. By default, the dashboards display
the real-time values of analyses. The visitor can display the
historical values thanks to the time machine (Fig 3). It is a
graphical feature that enables to navigate through time (accord-
ing to both valid time and transaction time) and consider the
dashboard at a certain time. Thus the visitor can for example
replay past situations with the same conditions as they occured.

Fig. 3. Screenshot of the time machine

B. Designing a Pagelet

In the second part, we design a pagelet that displays, e.g the
number of new payments up to each day for the last 5 days
computed every hour. The design of a pagelet is in two steps:
1) implementing analyses 2) designing the pagelet’s GUI.

1) Defining Analyses: We implement, using the GUI, all
continuous queries that we will need for our pagelet. For each
of them we specify the aggregation function to perform, the
type of window to use, the rhythm... Considering the previous
example, we define one continuous query that computes every
hour the number of new payments since the beginning of the
day.

2) Designing Graphics: In the second step, we define first
the on-demand query in charge of returning results that are
displayed on the pagelet. Then we also define the type of
graphic to display these analyses.

IV. CONCLUSION

We have introduced Tornado, a platform embedding a
column-store bi-temporal database system, devoted to histori-
cal and real-time bi-temporal data. Its main feature is to bring
on manager’s desktop precise and relevant indicators on its
business. Tornado relies on two kind of technique: first, the
data are summarized with relatively simple continuous queries
and second, more elaborated queries providing key indicators
to managers.

We plan to conduct experiments of Tornado with the TCP-
BiH benchmark [15], which is a bi-temporal extension of
the TPC-H benchmark. We are also working on multi-query

optimization techniques, and also incremental pre-computation
mechanism introduced in [16].

REFERENCES

[1] D. W. McCoy, “Business activity monitoring: Calm before the storm,”
Gartner Research, 2002.

[2] D. Luckham, The power of events. Addison-Wesley Reading, 2002,
vol. 204.

[3] H. J. Watson and B. H. Wixom, “The current state of business intelli-
gence,” Computer, vol. 40, no. 9, pp. 96–99, 2007.

[4] S. Chandrasekaran and M. Franklin, “Remembrance of streams past:
Overload-sensitive management of archived streams,” in Proceedings of
the Thirtieth international conference on Very large data bases-Volume
30. VLDB Endowment, 2004, pp. 348–359.

[5] F. Reiss, K. Stockinger, K. Wu, A. Shoshani, and J. M. Hellerstein,
“Enabling real-time querying of live and historical stream data,” in
Scientific and Statistical Database Management, 2007. SSBDM’07. 19th
International Conference on. IEEE, 2007, pp. 28–28.

[6] R. T. Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner, “Adding
transaction time to sql/temporal,” ISO-ANSI SQL/Temporal Change
Proposal, ANSI X3H2-96-152r ISO/IEC JTC1/SC21/WG3 DBL, vol.
1101, p. 143, 1996.

[7] R. Snodgrass, M. Böhlen, C. Jensen, and A. Steiner, “Adding valid
time to sql/temporal. ansi x3h2-96-151r1, iso–ansi sql/temporal change
proposal, iso,” IEC JTC1/SC21/WG3 DBL MCI-142, Tech. Rep., 1996.

[8] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil et al., “C-store:
a column-oriented dbms,” in Proceedings of the 31st international
conference on Very large data bases. VLDB Endowment, 2005, pp.
553–564.

[9] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-
pipelining query execution.” in CIDR, vol. 5, 2005, pp. 225–237.

[10] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs. row-
stores: how different are they really?” in Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM,
2008, pp. 967–980.

[11] C. Dyreson, F. Grandi, W. Käfer, N. Kline, N. Lorentzos, Y. Mitsopoulos,
A. Montanari, D. Nonen, E. Peressi, B. Pernici, J. F. Roddick, N. L.
Sarda, M. R. Scalas, A. Segev, R. T. Snodgrass, M. D. Soo, A. Tansel,
P. Tiberio, and G. Wiederhold, “A consensus glossary of temporal
database concepts,” SIGMOD Rec., vol. 23, no. 1, pp. 52–64, Mar.
1994. [Online]. Available: http://doi.acm.org/10.1145/181550.181560

[12] M. Kaufmann, P. Vagenas, P. M. Fischer, D. Kossmann, and F. Färber,
“Comprehensive and interactive temporal query processing with sap
hana,” Proceedings of the VLDB Endowment, vol. 6, no. 12, pp. 1210–
1213, 2013.

[13] L. Golab, S. Garg, and M. T. Özsu, “On indexing sliding windows over
online data streams,” in Advances in Database Technology-EDBT 2004.
Springer, 2004, pp. 712–729.

[14] A. Arasu, S. Babu, and J. Widom, “An abstract semantics and concrete
language for continuous queries over streams and relations,” 2002.

[15] M. Kaufmann, P. M. Fischer, N. May, A. Tonder, and D. Kossmann,
“Tpc-bih: A benchmark for bitemporal databases,” 2013.

[16] M. Armbrust, E. Liang, T. Kraska, A. Fox, M. J. Franklin, and
D. A. Patterson, “Generalized scale independence through incremental
precomputation,” in Proceedings of the 2013 international conference
on Management of data. ACM, 2013, pp. 625–636.


