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Abstract. This paper addresses the problem of derivative-free multi-
objective optimization of real-valued functions under multiple inequality
constraints. Both the objective and constraint functions are assumed
to be smooth, nonlinear, expensive-to-evaluate functions. As a conse-
quence, the number of evaluations that can be used to carry out the
optimization is very limited. The method we propose to overcome this
difficulty has its roots in the Bayesian and multi-objective optimization
literatures. More specifically, we make use of an extended domination
rule taking both constraints and objectives into account under a unified
multi-objective framework and propose a generalization of the expected
improvement sampling criterion adapted to the problem. A proof of con-
cept on a constrained multi-objective optimization test problem is given
as an illustration of the effectiveness of the method.

1 Introduction

This paper addresses the problem of derivative-free multi-objective optimization
of real-valued functions under multiple inequality constraints:

{

Minimize f(x)
Subject to x ∈ X and c(x) ≤ 0

where f = (fj)1≤j≤p is a vector of objective functions to be minimized, X ⊂ Rd

is the search domain and c = (ci)1≤i≤q is a vector of constraint functions. Both
the objective functions fj and the constraint functions ci are assumed to be
smooth, nonlinear functions that are expensive to evaluate. As a consequence,
the number of evaluations that can be used to carry out the optimization is
very limited. This setup typically arises when the values f(x) and c(x) for a
given x ∈ X correspond to the outputs of a computationally expensive computer
program.

In this work, we consider a Bayesian approach to this optimization prob-
lem. The objective and constraint functions are modelled using a vector-valued
Gaussian process and X is explored using a sequential Bayesian design of exper-
iments approach. More specifically, we focus on the Expected Improvement (EI)
sampling criterion. This criterion was originally introduced in the context of
single-objective, unconstrained optimization [10,13]. It was later extended to



handle constraints [7,16,18,20,21] and to address unconstrained multi-objective
problems [4,17,23,9]. However, to the best of our knowledge, the general case
of a constrained multi-objective problem has only been addressed very recently
by [22]. In their paper, Shimoyama et al. consider three different Bayesian criteria
for unconstrained multi-objective optimization and study the effect of multiply-
ing the criteria by a probability of feasibility in order to handle the constraints.

The approach we propose to handle the constraints is based on an extended
domination rule, in the spirit of [6,15,19], which takes both objectives and con-
straints into account under a unified framework. The extended domination rule
makes it possible to derive a new expected improvement criterion to deal with
constrained multi-objective optimization problems. Section 2 introduces the pro-
posed method, while Section 3 presents a proof of concept on a classical test case
from the literature. Results and future works are briefly discussed at the end of
Section 3.

2 An expected improvement criterion for constrained

multi-objective optimization

In this section, we present our extended domination rule and introduce a new ex-
pected improvement criterion suitable for constrained and unconstrained multi-
objective problems. The new criterion is equivalent to the original EI on uncon-
strained single-objective problems and to Schonlau’s extension to the constrained
case [21] once a feasible point has been found. It is also similar to the formula-
tion of [23] for unconstrained multi-objective problems and to that of [22] in the
constrained case once a feasible point has been found. As such, it can be seen as
a generalization of the above-mentioned criteria.

Denote by F ⊂ Rp and C ⊂ Rq the objective and constraint spaces respec-
tively, and let Y = F × C. We shall say that y1 ∈ Y dominates y2 ∈ Y, which
will be denoted by y1 ⊳ y2, if ψ(y1) dominates ψ(y2) in the usual Pareto sense,
where

ψ : F× C → R
p
× Rq

(yf , yc) 7→

{

(yf , 0) if yc ≤ 0,

(+∞,max(yc, 0)) otherwise,

In the above system of equations, R denotes the extended real line. For un-
constrained problems, we simply take the usual domination rule on F. Figure 1
illustrates this extended domination rule in different cases.

Assume now that Y is bounded. Much like [4,23,17], we define the improve-
ment yielded by a new observation as the increase of the dominated hyper-
volume:

IN (xN+1) = |HN+1| − |HN | ,

where HN is the subset of Y dominated by the solutions observed so far
(f(x1), c(x1)) , . . . , (f(xN ), c(xN )) and | · | denotes the usual (Lebesgue) volume
measure in Rp+q. The corresponding expected improvement criterion can be
written as
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Fig. 1. Illustration of the extended domination rule in different situations. The region
dominated by each point is represented by a shaded area. Darker shades of gray indicate
overlapping regions. (a) Feasible solutions are compared with respect to their objective
values using the usual domination rule in the objective space. (b) Non-feasible solutions
are compared component-wise with respect to their constraint violations using the usual
domination rule applied in the constraint space. (c) Feasible solutions always dominate
non-feasible solutions; other cases are handled as in the first two figures.

EIN (xN+1) = EN ((IN (xN+1))

= EN

(

∫

Y\HN

1ξ(xN+1)⊳y dy

)

=

∫

Y\HN

PN(ξ(xN+1)⊳ y) dy

where PN denotes the probability conditional to the observations and ξ is a
vector-valued Gaussian model for (f, c).

Even though the integrand of the EI formula can be readily computed ana-
lytically, its integration is not trivial due to the combinatorial nature of the prob-
lem [8,2,5]. To overcome this difficulty, we propose to use a Sequential Monte
Carlo (SMC) approximation [3,11,12,1]:

EIN (xN+1) ≈

n
∑

i=1

wi PN(ξ(xN+1)⊳ yi),



where YN = (wi, yi)1≤i≤n is a weighted sample that targets the uniform density
on Y \HN .

3 Proof of concept

In this paper, we illustrate the behavior of our new optimization strategy us-
ing the Osyczka and Kundu test problem [14] for constrained multi-objective
optimization (d = 6, p = 2, q = 6). The algorithm is initialized using a Latin
Hypercube sample of 18 samples and proceeds using the above mentionned cri-
terion. Figure 2 shows the convergence of the algorithm at different steps of the
optimization.

We are also able to report good results on other challenging test cases
from the literature and future communications will include a comparison of
our method to reference optimization methods. More details about the SMC
procedure will also be proposed.

Osyczka Kundu (N = 20)
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Osyczka Kundu (N = 40)
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Osyczka Kundu (N = 60)
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Fig. 2. Test results on Osyczka and Kundu test problem with, from left to right,
N = 20, 40 and 60 evaluations. Only feasible points are shown on the figures. The
dark dots represent non-dominated observations while the light gray dots represent
dominated ones. The dark curve represents the target Pareto front.
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