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Abstract: The modified Lozi system is analyzed as chaotic PRNG and synchronized via observers.
The objective of the study is to investigate chaotic-based encryption method that preserves CSK
model advantages, but improves the security level. The CSK model have been discussed to mes-
sage encryption because it implies better resistance against noise, but there are many evidences
of the model weaknesses. The investigation provides the original CSK model analyses of secure
message transmission over the communication channel by examining identifiability and observabil-
ity; switched regimes detection; sensitivity to initial conditions and session key; NIST tests of the
encrypted signal; correlation between wrong decrypted messages; system ergodicity. The proposed
model has a significant effect on the security level of the transmitted signal that successfully passed
chaotic and randomness tests. The results suggest that the original CSK model can be used for
information security applications.

Keywords: Generator, Security, Encryption, Switched chaotic model, Generators shifting.

1. INTRODUCTION
Cryptographic protection is one of the information systems security directions that is used in ATMs,
digital television, Internet payments, etc. The cryptographic methods of information security could
be realized by both ways: software or hardware. Software implementation of encryption is cheaper
and practical. In almost all cases, software encryption is based on pseudo random number gener-
ators (PRNG). Consequently, PRNG must have excellent randomness properties and to be robust
against attacks. In addition, the original information (data, message) is mixed up with the PRNG
dynamics that are challenging for the chaos-based cryptosystem implementation. In the case of
chaotic PRNG, essential cryptogram modifications of the same text appear while the initial condi-
tions (starting points) are even slightly incorrect. Chaotic generators application is a challenging task
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to the secure information transmission. The chaotic application is represented in different models
[15, 25], that are based on chaotic synchronization to decrypt the ‘information’ (digital text informa-
tion, pin codes, images, etc.) on the receiver part. Due to chaotic reactiveness to the initial condition,
synchronization is required to be precisely performed; otherwise the synchronization error increases
with every next step, which leads to incorrect message recovery. Thus, several models like [32] have
been proposed to use an additional communication channel but making difficult real-life implemen-
tation. In addition there are other requirements for cryptosystems such as: confidentiality (saving
secrecy), integrity (changes should be made only by permission of the object and to use the allowed
mechanisms), availability (information is useless if it is not available), speed performance, robust-
ness against noise, etc. One of the most difficult tasks on the key-stream chaotic cryptosystem way
is observer design. The role of the observer is to guarantee the system state recovery of the trans-
mitter from the output signal. If the states are restored, the signal could be synchronized (obtaining
the same dynamics) on the receiver part as on the transmitter part. Synchronization is applied to
recover the message on the receiver part of a secure system. Successful synchronization performing
is determined by high accuracy because of chaos sensitivity.

The papers [1, 23] prove that identifiable parameters of the chaotic system are not suitable for
secure message transmission. The papers demonstrate techniques on possibilities to refund secret
parameters from the output signal. However, there are some cases where identifiable parameters are
required [1, 5]. The papers explain moments when non-identifiable parameters simplifies attacks
fulfilling to the system. It is demonstrated that non-identifiable parameters reduce the set of possible
secret key simplifying for adversary brute-force attack. Nevertheless, from control theory point of
view, synchronization is achieved via observer design: the chaotic generator has to be observable
and its parameters to be known (identifiable).

For the first time, the parameters of the Lozi system are analyzed on observability and identifi-
ability. The synchronization results are used for the message decryption in an original model. The
original model with generators shifting ensures the secure message transmission either the system
is identifiable or non-identifiable.

The paper is organized as follows: after a problem statement (Section 2), we deal with the sys-
tem identifiability analysis (Section 3) and synchronization via observers design (Section 4). Then
we propose an original chaos encryption scheme based on z-shifting chaotic generators (Section 5)
and apply required criteria to prove the excellent statistical system properties (Section 6) compared
of the original one (Section 7).

2. PROBLEM STATEMENT
From control theory point of view to perform signal synchronization between the transmitter and
the receiver, the system has to be observable. The system parameters are used as a secret key, precise
knowledge of which is required. From the information security point of view the system has to be
verified for identifiability [1, 6, 38] to avoid weakness when the secret key can be recovered from
the output signal.

The chaotic dynamics is easily influenced by any changes. Consequently, noise in the com-
munication channel is the challenging issue to achieve synchronization. Chaotic shift keying or
switching model (CSK) is considered by numerous authors [16, 18, 34] due to its better resistance
to noise than others models [15, 43]. The general model is based on two chaotic generators that are
used to encrypt binary message. The first generator encrypts the bit ‘1’ and the second bit ‘0.’ The
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Figure 1. Chaotic generator and sine wave application for message encryption in the CSK model.

switch-modulated method is proposed in [36] based on switching regimes where each of the gener-
ators corresponds for encryption by pair-bits. The multiple chaotic generators application from one
hand increases signal complexity [39], on the other hand, makes chaotic synchronization perform
too slow and fragile in the presence of noise. Thus, the mentioned model is not robust.

In the interest of confidentiality, it is preferable that the generators in the CSK model start
from different initial conditions, but the qualitative features have to be identical. The difference in
generators’ dynamics leads to the possibility to detect message without knowing chaos generator
structure and initial conditions [41]. Let us consider an example with two generators: the first one
is chaotic which is applied to encrypt the bit ‘1’; the second is sine wave which encrypts the bit ‘0’
(Figure 1). Bernoulli binary block is used to simulate a binary message because of its good statistical
and distribution properties. The approach is highly insecure due to the difference in generators
dynamics. The message is recognizable without any additional methods only by looking on the
signal (Figure 2). It is possible to determine when switching was performed, therefore, to detect

Figure 2. Decryption message from the signal.

page 3



Figure 3. Injection mechanism of the trajectories back to the torus ([−2, 2]2 ⇒ [−1, 1]2): (a) if x (1)
n > 1 then x (1)

n − 2 or if
x (1)

n < −1 then x (1)
n + 2; (b) if x (2)

n > 1 then x (2)
n − 2 or if x (2)

n < −1 then x (2)
n + 2.

bits of the message. No doubt, the switching regime detection between two chaotic generators is
the challenging task. However, the approach of breaking CSK model with two chaotic generators
is given in the paper [42]. The method uses spectrogram and filters for the differences detection in
the signal that are corresponding to the message bits. The paper proved its week security that is an
additional evidence of the CSK model insecurity.

The encrypted message mc (Figure 1) by the chaotic generator and sine wave can be visually
recovered because of their different dynamics (Figure 2). To avoid such kind of risk the switched
chaotic generators must have qualitatively identical statistical and spectral properties.

The new Lozi alternate system with auto-coupling and ring-coupling [27] has been selected
because it satisfies the above conditions. Moreover, the system has good randomness and high
chaoticity [13]. It has passed successfully statistical and numerical tests such as auto-correlation;
cross-correlation; uniform distribution; chaoticity where x ∈ R p, T p = [−1, 1]p by the map Mp =
T p → T p:

Mp :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1
n+1 = 1 − 2|x1

n | + k1((1 − e1)x2
n + e1x1

n )

x2
n+1 = 1 − 2|x2

n | + k2((1 − e2)x3
n + e2x2

n )
...

x p
n+1 = 1 − 2|x p

n | + k2((1 − ep)x1
n + epx p

n )

(1)

yn = Cx1
n

where the parameters k j = (−1) j+1, ep ∈ [0, 1] and yn is the output signal used for the message
encryption. The output equals only to one of the system states. The graph of the map −2|x p

n | is the
tent map. It should be pointed that the map Mp is normally diverging. To avoid divergence (Figure
3) the following injection mechanism has to be fulfilled that trajectories are fed back to the torus
[−1, 1]p:

i f x j
n+1 < −1 then add 2

i f x j
n+1 > 1 then substract 2

(2)
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Figure 4. Auto and ring-coupling between states of the Lozi system.

The injection mechanism (2) allows us to keep the system dynamics in the interval [−1, 1] and
makes it more complex.

A challenging problem is to synchronize the generator because it exhibits complex nonlinear
dynamics. Auto and ring-coupling between states (Figure 4) of the system makes the difficult task
to recover the system state on the receiver part from a simple output y. Note that y equals to only
one of the states x p. Moreover, the injection mechanism influence on the dynamics making difficult
to predict the region where the points occurs in each next iteration. In addition, chaotic dynamics is
quickly reflected by slight changes in parameters e j . Consequently, observer design requires a novel
approach application to achieve synchronization.

The next section is devoted to the system parameters identifiability and observability analysis.

3. IDENTIFIABILITY
3.1. Identifiability and Observability in Nonlinear (Dynamical) System
For the first time, identifiability of Lozi system with ring- and auto-coupling (1 – 2) is studied.
Identifiable parameters are those which affect the value of the data and can be estimated with some
degree of certainty. The system is not identifiable:

i f e1 �= e2

yn(e1) �= yn(e2)
(3)

A dynamical system is usually first modelled as a system of the following form, called the ‘state-
space’ form:

xn+1 = f (xn, p, mn, σ )

yn = g(xn, mn)

where Un = mn is a vector of input variables (in our case mn is the message), p is a vector
of parameters (p = {e1, e2, σ }, σ = session key is an implicit parameter), x is a vector of state
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variables (things that cannot be observed or measured directly) while y is the vector of output vari-
ables that will be observed (the transmitted signal, in our case).

To analyse strengths and weaknesses of the system (1) we have to answer the questions:

� Can we compute m directly from y?
� Are the parameters ei identifiable or can be computed from U and y (by brute force attack

for instance)?
� Is the system ‘observable’ or can the values of x be deduced from the value of x , y and their

iterates at any time?

Let us consider a simple example of methodology on how to verify the system observability
and identifiability for the system: {

x1
n+1 = θx2

n

x2
n+1 = 0

(4)

To check the identifiability, first we have to iterate the system y1,2,3 = m:⎧⎪⎪⎨
⎪⎪⎩

yn = x1
n

yn+1 = θx2
n

yn+2 = 0

1. The system is observable if the rank is equal to the order:

rank
∂(yn, yn+1, ..., yn+k)

∂(x1
n , x2

n )
= 2

rank
[

1 0
0 θ

]
= 2

2. The system is identifiable if the rank is equal to the searched parameters:

rank
∂(yn, yn+1, ..., yn+k)

∂θ
= 1

rank
[

0
x2

n

]
= 1

3. The system is observable and identifiable if the rank is equal to all unknowns:

rank
∂(yn, yn+1, ..., yn+k)

∂(x1
n , x2

n , θ )
= 3

rank

⎡
⎣ 1 0 0

0 θ x2
n

0 0 0

⎤
⎦ = 2
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3.2. Can We Find the Secret Key (ei ) from the Output y?
If x1

n and x2
n of the system (1) are known we can find the secret key (epsilons):

yn =
(

x1
n

x2
n

)
⇒ ∂yn+1

∂(e1, e2)
=
[

x1
n − x2

n 0
0 x2

n − x1
n

]
(5)

for all n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e1 = x1
n+1 − 1 + 2|x1

n | − x1
n

x2
n − x1

n

e2 = x2
n+1 − 1 + 2|x2

n | − x2
n

x1
n − x2

n

(6)

Case 1. When the secret key and only x1
n are known. In the model (Figure 10) it is shown that the

secret key is exchanged over a secure channel. Thus, we investigate in this case:{
yn = x1

n

yn+1 = 1 − 2|x1
n | + ((1 − e1)x1

n + x2
n en))

(7)

Consequently, it is possible to find x2
n⎧⎪⎨

⎪⎩
x1

n+1 = yn

x2
n+1 = yn+1 − 1 + 2|yn| − (1 − e1)yn

en

(8)

Case 2. When the secret key is unknown we have to iterate the system more times because there is
one more unknown variable:

yn+2 = 1 − 2|1 − 2|yn| + (1 − e1)yn + x2
n en| + [(1 − e1){1 − 2|yn| + (1 − e1)yn + x2

n e1}
+{1 − 2|x2

n | − (1 − e1)x2
n + yne2e1}] (9)

Hence, we have to verify if the matrix rank is equal to the number of unknown conditions:[
e1

e2

]
= F(yn, yn+1, yn+2) (10)

rank
∂(yn, yn+1, yn+2)

∂(e1, e2)
= 2 (11)

rank

⎡
⎢⎢⎣

0 0

x1
n − x2

n 0

γ δ

⎤
⎥⎥⎦ = 2
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where

γ = 2(2*|x1
n | − e1x1

n + x2
n (e1 − 1) − 1)*(x1

n − x2
n )

+x1
n (2|2|x2

n | + e2x2
n − x1

1 (e2 − 1) − 1| − 1)(e1 − 1)

+e1x1
n (2|2|x2

n | + e2x2
n − x1

n (e2 − 1) − 1| − 1)

δ = −2e1x1
n (2|x2

n | + e2x2
n − x1

n (e2 − 1) − 1)(x1
n − x2

n )(e1 − 1)

when e1 �= e2, e j �= 0 the system is identifiable.
Our proposition is to raise to a power 2 the epsilons the system (1) to be not identifiable:{

x1
n+1 = 1 − 2|x1

n | + ((1 − e2
1)x2

n + e2
1x1

n )

x2
n+1 = 1 − 2|x2

n | − ((1 − e2
2)x3

n + e2
2x2

n )
(12)

1. The system is still observable

rank
[

1 0
−2* (1 − e2

1)

]
= 2

if e1 �= ±1, α �= 0. The system iteration are below:

yn = x1
n

yn+1 = 1 − 2|x1
n | + ((1 − e2

1)x2
n + e2

1x1
n )

yn+2 = 1 − 2|1 − 2|yn| + ((1 − e2
1)x2

n + e2
1 yn|

+(1 − e2
1)(1 − 2|x2

n | − (1 − e2
2)x1

n + e2
2x2

n )e2
1x1

n

where the rank is less than searched parameters:

rank
∂(yn, yn+1, yn+2)

∂(e1, e2)
= 2 (13)

rank

⎡
⎢⎣

0 0
2(x1

n − x2
n )e1 0

γ δ

⎤
⎥⎦ = 2

where

γ = 2(2*|x1
n | − e2

1x1
n + x2

n (e12 − 1) − 1)*(2e1x1
n − 2e1x2

n )

+2e13x1
n (2|2|x2

n | + e2
2x2

n − x1
1 (e2

2 − 1) − 1| − 1)

+2e1x1
n (e2

1 − 1)(2|2|x2
n | + e2

2x2
n − x1

n (e2
2 − 1) − 1| − 1)

δ = −2e2
1x1

n (2|x2
n | + e2

2x2
n − x1

n (e2
2 − 1) − 1)(e2

1 − 1)(2e2x1
n − 2e2x2

n )

The epsilons are close to zero; thus the system rank can fall dawn.
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3.3. Section to Discuss if Identifiability is Desirable or Not
Identifiable parameters are those which could be estimated with some degree of certainty. Non-
identifiable parameters are those which affect the value of the data, but which cannot be determined
accurately. From the security point of view the system should be not identifiable [37], means that the
secret key could not be recovered from the signal. But in reality, if the system is not identifiable, it
is easier to perform brute-force attack. Let us consider a case study of the system: yn+1 = xn + α2,
where α is the secret key {according to the definition (equation (3)) it is not identifiable}. Hence, the
secret key from the output signal cannot be discovered. However, for brute-force attack it is enough
to use only positive values that reduce by half ( 1

2 ) (negative) the choice of the secret key. Thus, it
will make the easier task for an intruder.

While the identifiability question rests an open problem, we propose the original model with
generators shifting. The model is one of the solutions to ensure the secure message transmission
either the system is identifiable or non-identifiable.

4. OBSERVER DESIGN
The system (1) exhibits high nonlinear dynamics complicated by the injection mechanism. There-
fore, observer design requires a particular approach to achieve synchronization. Moreover, the pio-
neering idea in that paper is to use the system (1) with parameter a that allows us to increase
executing speed [13]. The modified Lozi system (15) uses parameter a to change system dynamics
according to the binary bit of the message 0/1:

a =
{

1, m = 1

ω, m = 0
(14)

where m is a message bit equals to ‘1’ or ‘0’, ω is a parameter bounded [−1, 1] and ω �= 0. Thus,
we rewrite (1) with parameter a, such as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1
n+1 = 1 − 2|x1

n | + ak1((1 − e1)x2
n + e1x1

n )

x2
n+1 = 1 − 2|x2

n | + ak2((1 − e2)x3
n + e2x2

n )
...

x p
n+1 = 1 − 2|x p

n | + ak2((1 − ep)x1
n + epx p

n )

(15)

The a parameter of the system (15) should be near ‘1’ first to support identical statistical properties
and second to avoid determinism. The injection mechanism also has to be fulfilled:

i f x j
n+1 < −1 then add 2

i f x j
n+1 > 1 then substract 2

(16)

Observers (Figure 5) are used on the receiver part to recover xn , the system states. The knowledge
of the system states allows us to obtain the same chaotic dynamics on the receiver part as on the
transmitter side. To effectively synchronize the system it has to be rewritten from the control point
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Figure 5. General model of the system states synchronization by the observer application.

of view (for simplicity we consider the second-order system):{
xn+1 = Ai xn + B

yn = C j xn
(17)

Where xn is the state vector, y is the output vector, B =
[

1
1

]
, C1 = 1 0, C2 = 0 1 for i ∈

{1, 4}, j ∈ {1, 2} then the system (15) takes the form[
x1

n+1
x2

n+1

]
=
[

ae1 a(1 − e1)
a(−1 + e1) −e2a)

] [
x1

n
x2

n

]
+
[

ae1x1
n − 2|x1

n | + 1
−a(1 − e2)x2

n + 1

] [
0
−2|x2

n |
]

(18)

yk = 1 0xn

Where yn = x1
n , e1 and e2 are chosen parameters e1 = 0.1 × 108, e2 = 2e1 for instance. The system

(15) is autonomous discrete-time piece-wise linear system or there are four linear states that in
effect generate nonlinear dynamics. Consequently, we need four Ai matrices corresponding to the
state x1, x2:

A1 =
(

ae1 − 2 a(1 − e1)
a(−1 + e2) −e2a − 2

)
for x1 ∈ [0, 1] and x2 ∈ [0, 1]

A2 =
(

ae1 + 2 a(1 − e1)
a(−1 + e2) −e2a − 2

)
for x1 ∈ [−1, 0[ and x2 ∈ [0, 1]

A3 =
(

ae1 + 2 a(1 − e1)
a(−1 + e2) −e2a + 2

)
for x1 ∈ [−1, 0] and x2 ∈ [−1, 0]

A4 =
(

ae1 − 2 a(1 − e1)
a(−1 + e2) −e2a + 2

)
for x1 ∈ [0, 1] and x2 ∈ [−1, 0]

The observability concept for the linear systems is introduced by Kalman under which the system is
observable if the rank of the observability matrix O equals to the system’s dimension, in our case:

rank(O) = rank
(

C j
C j Ai

)
= 2

rank
[

1 0
−2 + αe1 α(1 − e1)

]
= 2
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Figure 6. Possibilities of region switching from xn point.

for i ∈ {1, 4}, j ∈ {1, 2}. The system is observable because 0 < {e1, e2} < 1 and a �= 0. Conse-
quently, we can build observers in general form

x̂n+1 = Âi x̂n + B + K j
i (ŷn − yn) (19)

Where Âi is a state matrix on the receiver part, ŷn is the output of the system on the receiver part.
The extended Luenberger observer has to be modified as it described in [9]. Even if the states of
the system are stable the global dynamic is unstable and for two-dimensional system there are 16
possibilities of point switching. Thus attended Luenberger observer should be applied for each of
the regions.

In Figure 6, it is also demonstrated that if xn−1 fells down to the region II it could switch after
to any other locally observable region at the point (b, c, d) or remain to the same region at a. If the
point (c) goes out of the interval [−1, 1]p it is feed back by performing equations (16). The novelty
here is the double complexity of the system, defined by the state coupling and injection mechanism
(16) which makes its influence on the system dynamics.

From control theory it is known that the n-order discrete-time observer converges in n itera-
tions [28]. We have dealt with two-dimensional system, so synchronization in two steps could be
achieved: the first synchronization is performed with x1

n+1 and we calculate the error:

en+1 = (An + KnC)en

on the second with x2
n+1 where the error is defined by

en+2 = (An+1 + Kn+1C)(An + KnC)en

Stable observer design requires K -matrix respecting the region of xn . Thus for each region Ai with
i ∈ {1, 4}, j ∈ {1, 2}, C1 0, we have K j

i matrices:

K 1
1 =

⎛
⎝ 4 − ae1 + ae2

4 − a2 + a2e1 + 4ae2 + a2e1e2 + a2e2
2

a(−1 + e1)

⎞
⎠ K 2

2 =
⎛
⎝ −4 − ae1 + ae2

−4 a2 − a2e1 − a2e2 + a2e1e2 − a2e2
2

a(−1 + e1)

⎞
⎠

K 1
2 =

⎛
⎝ −ae1 + ae2

−4 + a2 − a2e1 − a2e2 + a2e1e2 − a2e2
2

a(−1 + e1)

⎞
⎠ K 1

3 =
⎛
⎝ −4 − ae1 + ae2

4 − a2 + a2e1 − 4ae2 + a2e2 − a2e1e2 + a2e2
2

a(−1 + e1)

⎞
⎠
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K 2
1 =

⎛
⎝ −ae1 + ae2

4 − a2 + a2e1 + 4ae2 + a2e2 − a2e1e2 + a2e2
2

a(−1 + e1)

⎞
⎠

K 2
3 =

⎛
⎝ −ae1 + ae2

−4 + a2 − a2e1 − a2e2 + a2e1e2 − a2e2
2

a(−1 + e1)

⎞
⎠ K 2

4 =
⎛
⎝ −4 − ae1 + ae2

−4 + a2 − a2e1 − a2e2 + a2e1e2 − a2e2
2

a(−1 + e1)

⎞
⎠

K 1
4 =

⎛
⎝ −ae1 + ae2

4 − a2 + a2e1 − 4ae2 + a2e2 − a2e1e2 + a2e2
2

a(−1 + e1)

⎞
⎠

The message bits recovery could be performed on the receiver part after the synchronization is
achieved. In Figure 7, the synchronization result for x1 is demonstrated. Transmitter and receiver
trajectories become to be identical in only two iterations.

High precision in synchronization mode could be obtained when x1 and x2 for the two-
dimensional system have minimal error:

en =
√

(x1
n − x̂1

n )2 + (x2
n − x̂2

n )2

Graphical synchronization error results are shown in Figure 8.
However, the observer design is a necessary but not sufficient condition for secure message

transmission. Next sections are devoted to the original encryption scheme that improves the security.

5. CSK MODEL WITH IMPLEMENTED CHAOTIC SHIFTING
The CSK breaking methods are based on the detection of the signal dynamics differences [41].
Changes in signal dynamic mean switching between bits 0 and 1. This new method has to ensure
the encryption process: first, with uniform dynamics otherwise the original message (information)
will be easily recovered; second, even if generators switching is detected, it should not indicate
switching between bits.

Figure 7. Synchronization results of (a) x1 and x̂1; (b) x2 and x̂2.
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Figure 8. Synchronization error.

The first requirement is satisfied using the chaotic system (15). To solve the second problem
we propose to use z-order shifting generators, where z ≥ 3. Note, the more amount z of generators
are used, the larger number of possible combinations is.

This idea provides advantages:

� Increases security level. The use of several shifting generators where each of them implies
nonlinear dynamics with similar spectral and statistical properties complicates general sys-
tem dynamics.

� Resolves CSK weakness. Even if the generator’s switching has been detected it does not
correspond to message bits. Thus it is impossible to break the encryption model by switching
regimes detection (change 1 ⇒ 0 or 0 ⇒ 1). Moreover, shifting between two-dimensional
chaotic systems is sufficient to reach satisfied randomness.

� Increases speed performance. Synchronization could be achieved in only two steps for the
two-dimensional system. Moreover, a parameter allows quickly switch between generators.

� Preserves robustness of the CSK model against noise.

5.1. Original CSK Model Description
The observer has been successfully designed (Section 4) for the chaotic generator (15). Thus, we
can do detail analysis of the original model. The original idea is to use z-chaotic generators and shift
them according to the session key at each iterating. The main advantage is the improved security
since the same generator can be used to encrypt 0 or 1, depending on the session key. The session
key is a single-use symmetric key applied for message encryption in one communication session
[22]. We propose to use chaotic shifting combination as a session key.

Let us consider the following example with three shifting generators (Figure 9, Table 1).
Switching between two always active generators is realized according to the message bit 1/0. The
session key indicates which generators are active in the current iteration. At each iteration, the bit
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Figure 9. Chaotic generators cycle switching and shifting.

encryption is performing as in the traditional CSK model by switching between two active genera-
tors according to the bit. At each iteration generators also are shifting according to the session key
(generators order).

For instance, session key 1 ⇒ 2 ⇒ 3 means that generators 1 and 2 are active at time t , then
2 and 3 are active at t + 1, etc. The first generator (G1) with parameter a = 1, the second (G2)
with a = 0.1, the third (G3) with a = −1. Moreover session key 1 ⇒ 2 ⇒ 3 means also that at the
first iteration G1 corresponds to the bit ‘1’ and G2 to the bit ‘0’, G3 is inactive. If the message is
represented in binary form: ‘1000’, then we use G1 to encrypt ‘1’ at the first iteration, for the next
bit ‘0’ G1 is used as well because of generators switching order, the next ’0’ → G3, next ’0’ → G2
by the same principle.

At each iteration only two generators are active. Moreover, the generator shifting order is con-
sidered as the additional parameter (selected by the chaotic generator). Note that the session key has
to be concerted over the secure channel.

The example demonstrates that even if switching regimes were detected it does not mean
switching between bits ‘0’ and ‘1’. The example shows that at time t + 1, G1 was used to encrypt
the bit ‘0’. However, at the next t + 2, G3 was used to encrypt also bit ‘0’. Thus, generated dynam-
ics was changed, but the same bit ‘0’ was encrypted. Moreover, if the same generator is used for
encryption it does not mean that at that time the same bit is encrypted. It is demonstrated in example
when at time t , G1 was used to encrypt message bit ‘1’ and at the next t + 1, also G1 was used

Table 1. Original CSK model encryption process

Generator t t + 1 t + 2

G1 1 0 Inactive
G2 0 Inactive 1
G3 Inactive 1 0
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but to encrypt bit ‘0’. Thus, there is no changes in generated dynamics because the same generator
was used however to encrypt different bits. The proposed chaotic encryption approach significantly
increases security of the CSK model.

5.2. Implementation Original CSK Model to Symmetric Encryption Algorithm
Let us consider the implementation original CSK model to symmetric encryption method (Figure
10). The method uses the secret key with which both parts (transmitter and receiver) exchange
confidential information. the secret parameters are used to encrypt/decrypt the message. The main
purpose of the symmetric encryption algorithms is high-speed encryption of large amounts data
[13]. In our case of two-dimensional system (15) the secret key are initial conditions (e1, e2, a, x0)
of the system (15). Moreover, the proposition to use z-order shifting generators plays two crucial
roles. First, to increase the security level of the transmitted signal, and second it is used as a session
key. The original encryption CSK model with session and encryption keys exchange is demonstrated
in Figure 10.

Note that the session key needs to be exchanged between two communicating parties in a secure
way. An example is to use public-key cryptographic algorithms such as RSA or elliptic curve cryp-
tography (ECC) to exchange a 128-bit session key for use in advanced encryption standard (AES)
symmetric-key ciphers. However, it is not the purpose of the paper but could be found in the refer-
ence [40].

The transmitter and the receiver are exchanging the secret key (e1, e2, . . . , en) over the secure
channel and match up the session key (Figure 10). The message is converted into a binary form. Two
generators are used for encryption one bit 0/1 as it is proposed in the general model and the third
chaotic generator is non-active. The generators are changing their order in each next bit to ensure
secure transmission. In this case the same generator could encrypt bit ‘1’ and ‘0’ as it was described
earlier. Encrypted message (cipher text) (Figure 10) is transmitted over the insecure channel. On the
receiver part, observers are used to decrypt the message. For message encryption only one of the
states is used (e.g. x1, Figure 5) and transmits over the communicational channel. From the output
y, the observer recovers all systems states for successful synchronization performing.

One observer (the system sates reconstruction) application is enough in theory for CSK model
to recover the message. The observer performs full chaotic synchronization, and if the error diverges

Figure 10. Symmetric encryption algorithm with implemented original CSK model for secure message transmission.
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Figure 11. Message recovery by using two chaotic observers.

from 0, the ‘1’ bit is indicated otherwise ‘0’. In real life, two different observers are used because
existence of noise in the communication channel influences qualitative synchronization, and both
would be divergent from 0. Consequently, the errors are compared after the observers reach a full
chaotic synchronization. The smallest error indicates which generator has been used for the bit
encryption (Figure 11).

The original CSK model also requires two active observers to recover the message where
smaller error indicates the generator that was encrypted the bit (Figure 12). Observers are changing
the order on the next iteration according to the session key.

One of the information security requirements is message decryption. The encryption method
is pointless if it is impossible to recover the message. The successful message recovering by errors
comparison depends on hight precision of the synchronization.

6. RELIABILITY TESTS OF THE ORIGINAL CSK MODEL
In this section, several tests of the model reliability are demonstrated: sensitivity to initial conditions
and session key; NIST tests of the encrypted signal; correlation between wrong decrypted messages;
system ergodicity.

Note that each of the generators is independent of the others. The parallel switches depend on
the session key but also on the message itself. Thus, for each different message (i.e. different binary
sequences), there will be different output. Moreover, the session key (generated by another chaotic

Figure 12. The signal of encrypted message mc .
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Figure 13. Slightly different secret key error at the first generator.

generator) depends on each communication (run). The session key is generated by another chaotic
generator to avoid brute-force attack.

For the experiments three generators were taken as the most critical combination. However,
in practice it is recommended to use more generators to minimise the risk of brute-force attack.
Note that the increasing number of generators increases security but has not influence on speed
performance and is as simple in implementations as in the case of three generators.

1. System sensitivity to initial conditions

In Figure 13, an example is shown where the generator structure, session key (chaotic switching
order), epsilons are known on the both sides of the communication channel except one epsilon of
the generator G1 out of tree. The epsilon has slightly other parameter (e1 = 0.100001 instead of
0.1). The model quickly reacts to any changes. Thus, the error in the initial condition only of one of
the generators leads to wrong message recovery (Figure 14).

2. System sensitivity to error in the session key

For the original CSK model with z-number shifting generators, there are z! possibilities of the
session keys. If the key is wrong (Figure 15) the message recovery leads to strongly different results

Figure 14. Decryption results while the secret key error: (a) plain text; (b) wrong decryption.
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Figure 15. Slightly different secret key error at the first generator.

Figure 16. Decryption results while the session key error: (a) plain text; (b) wrong decryption.

as it have to (Figure 16). Numerous generators could be easily implemented and do not influence to
speed performance.

3. Correlation between wrong decrypted messages

Moreover, errors in session keys are not correlated to each other. The results of unknown session
keys lead to totally different messages decryption (Figure 17).

Figure 17. Errors in the session key do not correlate to each other: (a) incorrect session key (2-1-3); (b) incorrect session
key (3-1-2).
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Figure 18. The generators shifting while the message encryption is performing.

4. Shifting test

In Figure 18 it is shown that each of the generators is used to encrypt bit ‘1’ and ‘0’ or rest non-
active ‘−1’. Such method improves the model security because even if it will be detected switching
generators regimes it would not break encryption.

5. System ergodicity

The model advantage is also that the transmitted signal is ergodic. It means that even if the session
key and/or initial conditions are different but the system behavior is preserved, demonstrating nearly
the same histogram in all cases. The importance is based on the preventing illegal message recovery
by histogram comparison of the messages, where m1 = 00000 (only zeros) and m2 = 11111 (only
ones). For the experiment 105 bites were generated with session key 1 ⇒ 2 ⇒ 3. The approximate
density function [27, 4] has been used as more demonstrative for the system analyzes. The graph of
the chaotic attractor was divided for 20 × 20 ‘boxes’ and points in it were calculated (Figure 19).

6. NIST tests for randomness [29]

The sequences of the three shifting generators model is checked for randomness by NIST tests
to prove secure signal transmission. The original CSK model has been applied to encrypt 4 × 106

randomly produced bits. The results of the successfully passed NIST tests are represented in Table 2.

7. CSK, SM, OCSK MODELS COMPARISON
Progress has been made to the point that chaos can be applied to secure communication [10,44] and
many papers focused on robust chaotic generator design [2,7,21]. There are several criteria respected
by the community to the chaotic generators: largest Lyapunov exponent [30], chaotic attractor in the
phase space [8,14], phase delay [12,24], topologically mixing [20,33], reactivity to small changes
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Figure 19. Approximate density function for encrypted message mc (105 bites) in the chaotic signal where (a) all bits of the
message m are 0 (b) all bits of the message m are 1.

in initial conditions (chaotic sensitivity) [3,31], uniform distribution [4,19], autocorrelation [11,19],
cross-correlation [17], NIST tests [35]. Short description each of the criteria is given below:

C1 – Positive largest Lyapunov exponent (LLE). A positive largest Lyapunov exponent indicates
chaotic behavior and the value of this index defines the chaoticity degree: the larger is LLE, the

Table 2. Successful NIST tests of the transmitted signal

Test name Proportion of the successful tests

Frequency 98/100
Block frequency 97/100
Cumulative sums 98/100
Runs 99/100
Longest run 100/100
Rank 98/100
FFT 98/100
Non-overlapping template 99/100
Overlapping template 98/100
Universal 98/100
Approximate entropy 99/100
Random excursions 61/61
Random excursions variant 61/61
Serial 98/100
Linear complexity 100/100
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stronger chaotic dynamics exhibits the system. LLE characterizes the average rate of exponential
divergence of closely initialized phase trajectories consequently it demonstrates sequences unpre-
dictability in the short term.
C2 – Chaotic attractor in the phase space (dense everywhere). Phase plot (space) is a space in which
all possible states (dimensions) of a system are represented at trajectory (xi

n, x j
n ), with each possible

state of the system is relevant to one unique point in the phase space. The phase space graph signifies
good randomness if the probability of the scattered points is uniformly distributed.
C3 – Chaotic attractor in phase delay (dense everywhere). The delay plot (recurrence plot) is very
close to the phase space but is used only for one dimension of the system. The delay plot is rep-
resented by cartography of the chaotic attractor with time delay (xi

n, xi
n+1). The phase delay graph

indicates good randomness if the probability of the scattered points is uniformly distributed.
C4 – Topological mixing. Topological mixing in the theory of chaos means a system extension when
one part of the attractor at some moment is superimposed on any other part of the area.
C5 – Reactivity to small changes in initial conditions. A slight change in initial parameters leads to
generating new random sequences. The shorter time of the transient period the system exhibits the
better reactivity is.
C6 – Uniform distribution. Distribution histograms allow us to estimate samples partition in the
studied sequence and to determine the frequency of occurrence of a particular distribution value.
For the random sequences, the frequency character should be about the same.
C7 – Autocorrelation (near zero). The autocorrelation function is used as a qualitative tool for
checking randomness. The random sequence has autocorrelations near zero for all time-lag. If one
or more of the autocorrelations sharply deviate from zero, it indicates non-randomness except one
autocorrelation peak when the shift equals to the signal length.
C8 – Cross-correlation (near zero). The cross-correlation function measures the dependence of the
values of one signal x1

n on another x2
n .

C9 – NIST tests (successful). NIST statistical tests are used as a tool to verify sequences produced
by generator for randomness. For each test, a conclusion is drawn about acceptance or refusal.

As it has been summarized in the scheme (Figure 20) each of the criteria should be successfully
passed; otherwise the system cannot be used in cryptography.

Figure 20. Criteria for chaotic PRNG design.
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Figure 21. Software design to chaotic signal analysis.

The described criteria were used to study chaotic generators dynamics; however this research
is focused on the entire model dynamics. To our best knowledge we are the first who studies system
dynamics in a whole when several generators are applied. The objectives are to acquire knowledge
how to increase signal complexity and security, what type of chaotic generators could be combined
and which initial conditions have to be chosen. The software has been designed (Figures 21 and 22).

In order to assess numerical computations more accurately and to qualitatively compare the
systems by criteria C2, C3 and C6, an approximation density function is applied. The approximation
PM,N (x) is defined of the invariant measure (the probability distribution function) linked to the 1-
dimensional map f , when computed with floating numbers [26]. The regular partition of M small

Figure 22. Selection chaotic generator, model and initial conditions in the software to signal analysis.
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intervals (boxes) ri of J is defined by

si = −1 + 2i
M

, i = 0, M (20)

ri = [si , si+1[ i = 0, M − 2 and rM−1 = [sM−1, 1] (21)

the length of each box is equal to 2
M and the ri intervals form a partition of the interval J

J =
M−1⋃

0

ri (22)

All iterates f (n)(x) belonging to these boxes are collected, after a transient regime of Q iterations
decided a priori , (i.e. the first Q iterates are neglected). Once the computation of N + Q iterates is
completed, the relative number of iterates with respect to N/M in each box ri represents the value
PN (si ). The approximated PN (x) defined is then a step function, with M steps. As M may vary, it
is defined

PM,N (si ) = M
N

(#ri ) (23)

where #ri is the number of iterates belonging to the interval ri . PM,N (x) is normalized to 2 on the
interval J :

PM,N (x) = PM,N (si ),∀x ∈ ri (24)

The system (1) is combined of p-coupled maps; thus it is important to analyze distribution of each
component x1, x2, x2

1 , . . . , x p of X and variable X itself in J p as well. The approximated probabil-
ity distribution function , PM,N (x j ) associated to one among several components of F(X ). It is used
equally Ndisc for M and Niter for N , when they are more explicit.

The discrepancies E1 (in norm L1 ), E2(in norm L2 ) and E∞ (in norm L∞) between
PNdisc,Niter (x j ) and the Lebesgue measure, which is the invariant measure associated to the symmetric
tent map, are defined by

E1,Ndisc,Niter (x
j ) = ∥∥PNdisc,Niter (x

j ) − 1
∥∥

L1
(25)

E2,Ndisc,Niter (x
j ) = ∥∥PNdisc,Niter (x

j ) − 1
∥∥

L2
(26)

E∞,Ndisc,Niter (x
j ) = ∥∥PNdisc,Niter (x

j ) − 1
∥∥

L∞
(27)

All tests are of large scale; therefore we propose to consider the summary table (Table 3). In the table
chaotic switch keying (CSK), switch-modulated (SM) [36] and Original CSK (OCSK) are com-
pared by criteria C1–C9, encryption time, decryption time, robustness against noise, reliable against
switching regimes detection. For the last tests the model breaking method when the observers have
different initial conditions from the conditions on the transmitter part was used [42].

The model signal dynamics depends on, primarily, from the generators are applied in it, that’s
why the models are successfully passed the tests on criteria C1–C9 with no significant differences.
Thus, we define (+) when the system has the best statistical properties, (±) or (−) if the results are
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Table 3. CSK, SM, OCSK models comparison

Test name CSM SM OCSK

Largest Lyapunov exponent 0.655 0.6552 0.6564
Chaotic attractor in the phase plane ± + +
Chaotic attractor in phase delay ± + +
Topologically mixing ± ± +
Reactiveness to small changes in IC + + +
Uniform distribution ± + +
Autocorrelation + + +
Cross-correlation + + +
NIST tests − ± +
Encryption time (1000 bits) 1.589758 0.97418 1.596321
Decryption time (1000 bits) 1.460496 1.454114 1.472562
Robustness against noise (variance) 10−5 10−21 10−5

Switching regimes detection − − +

worse. The firm side of the CSK model as it was described earlier is robust against noise, while the
security level is low (−). The best feature of the SMM model is encryption time performing because
the model encrypts by pair bits; nevertheless the model requires four active observers on the receiver
part that is time-consuming. Consequently, total encryption/decryption time is nearly the same of
the CSK, SMM and OCSK models. Even if signal complexity of the SMM model is higher than
in the CSK model but it also exhibits weakness against switching regimes detection attacks (−).
The OCSK model demonstrates high signal complexity, secure level; the model is reliable against
switching regimes detection attacks, preserves CSK model advantage: the robustness against noise.
We would like to emphasize that CSK and OCSK models perform full correct message recovery
while noise variance is 10−5 compared with SMM where noise variance should be no more than
10−21.

8. CONCLUSION
This paper is focused on improving the security level of the classical CSK model. The identifia-
bility and observability have been discussed as necessary (but not sufficient) conditions for suc-
cessful secure synchronization. The proposed original idea of z-generators shifting exhibits more
complex signal dynamics and solves the problem of switching regimes detection. The number of
generators that are implemented in the model should be sufficient to avoid brute-force attack. How-
ever, The number of generators does not influence speed performance and is simple in implemen-
tation. The transmitter signal as an example with three shifting generators has been successfully
verified for robustness by: sensitivity to initial conditions and session key; NIST tests; correlation
between wrong decrypted messages; system ergodicity. The paper provides the observer design
to autonomous discrete-time piece-wise linear chaotic system implying only two steps to reach
synchronization. Further research is concentrated on the system dynamics study while structurally
different chaotic generators are applied.
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