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Chapter 1
New nonlinear CPRNG based on tent and
logistic maps

Abstract This paper is devoted to the design of new chaotic Pseudo Random Num-
ber Generator (CPRNG). Exploring several topologies of network of 1-D coupled
chaotic mapping, we focus first on two dimensional networks. Two coupled maps
are studied: T T LRC non-alternative, and T T LSC alternative. The primary idea of the
novel maps has been based on an original coupling of the tent and logistic maps
to achieve excellent random properties and homogeneous /uniform/ density in the
phase plane, thus guaranteeing maximum security when used for chaos base cryp-
tography. In this aim a new nonlinear CPRNG: MT T LSC

2 is proposed. In addition,
we explore higher dimension and the proposed ring coupling with injection mecha-
nism enables us to achieve the strongest security requirements.

1.1 Introduction

The tremendous development of new IT technologies, e-banking, e-purchasing, etc.
nowadays increases incessantly the needs for new and more secure cryptosystems.
The latter are used for information encryption, pushing forward the demand for
more efficient and secure pseudo-random number generators [?]. At the same time,
chaotic maps show up as perfect candidates able to generate independent and secure
pseudo-random sequences (used as information carriers or directly involved in the
process of encryption/decryption). However, the majority of well-known chaotic
maps are not naturally suitable for encryption [?] and most of them don’t exhibit
even satisfactory properties for encryption. To deal with this open problem, we pro-
pose the revolutionary idea to couple tent and logistic map, and to add an injection
mechanism to bound the escaping orbits. Good results are demonstrated with two
different kinds of coupling, simple and ring-coupling in dimension 2, thus increasing
the complexity of the system. However as those results are not completely satisfac-
tory, an improved geometry of coupling is introduced allowing us to describe a new
2-D Chaotic Pseudo Random Number Generator (CPRNG).

1



2 1 New nonlinear CPRNG based on tent and logistic maps

The various choice of the PRNG and crypto algorithms is necessary to provide
continuous, reliable security system. We describe a software approach because it is
easy to change cryptosystem to support protection whereas hardware requires more
time and big expenses. For instance, after the secure software application called Wi-
Fi Protected Access (WPA) protocol have been broken it was simply updated and
no expensive hardware needed to be bought.

In the history, there are periods of popular algorithms, cryptographic methods
and approaches until the moment they are broken. It is a usual thing in information
security one algorithm replaces another because information technologies and math-
ematics make progress. The one of today’s open mathematical problem is factoring
the product of two large prime numbers which is foundation for RSA algorithm.
The RSA was created by Ron Rivest, Adi Shamir and Leonard Adleman in 1977
and since that time was implemented in widespread applications, is used for an in-
dependent cryptographic production [?]. Open coding based on the RSA algorithm
is utilized in popular encryption package PGP, operating system Windows, various
Internet browsers, banking computer systems. Moreover, there exist various inter-
national standards for public key cryptography and digital signatures. However, we
expect the new cryptographical standards soon, because there are several evidences
of weakness of those methods. Recently was known about a ”back-door” in PRNG
(Dual EC DRBG) which is implemented in RSA algorithm by default.

The second reason is that modern mathematical technology could give a possibil-
ity to break the process of obtaining cryptographic keys. In addition, there are many
hackers attacks to RSA encryption, thus it could be broken in the nearest future.

Moreover, there is another important problem to be solved. RSA is a public keys
system that is much simpler than a system with private keys such as: René Lozi and
Estelle Cherrier [?], Safwan El Assad [?], Singh Ajit and Gilhotra Rimple [?].

Consequently, it is necessary to have an alternative way of secure information
transmission. Chaos based methods are very promising for application in informa-
tion security. One of the evidences is that needs for data protection are increased
and encryption procedures requires to generate pseudo-random sequences with very
long periods. The chaotic maps when used in stirling way could generate not only
chaotic number but also pseudo-random numbers as we will show here.

Methods of nonlinear dynamics allow to create with relatively little effort a fun-
damentally new type of behavior, capable of holding, encrypting and process given
information. Foundations of it are that chaotic attractors could contain an infinite
set of unstable periodic behaviors. Nowadays there are different ways of chaos ap-
plication to design symmetric and asymmetric cryptosystems. The methods based
on circuits synchronization have been applied to numerous chaotic systems [?, ?].
Nonlinear dynamics is a promising direction to solve the problem of information
processing and organization of secure information transmission through the use of
systems exhibiting chaotic dynamics.

Here we represent an original idea combining of tent and logistic maps for new
chaotic PRNG design. Since, it is a very responsible and challenging task to design
CPRNG applicable to cryptography, numerous analysis have been fulfilled. Essen-
tially we focus on 2-D map as a more difficult task achieving excellent chaotic and
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randomness properties. The 3-steps injection mechanism, ring- and auto-coupling
techniques are used to achieve complex and uniform dynamics. We demonstrate
excellently puzzled chaotic dynamics in the space exhibiting sufficient randomness
properties only for 2-D map. The most significant tests were successfully passed.
Moreover, higher dimensional system here proposed as well. The systems provide
also good candidates for CPRNG.

1.2 CPRNG indistinguishable from random

Let us consider a CPRNG that produces binary bits G : K → {0,1}n, where K be-
longs to keyspaceA, n is a number of bits. In real life, for any given K ∈A intruder
should not distinguish it from random. Usually, statistical tests are used to the binary
sequence analysis. The results could disclose some weakness in generated random
sequences or at least refuse the truly random nature of the generator. Whereas sta-
tistical tests prove the behavior of the generator as being like truly random, which
implies robustness against attacks based on such kind of analysis.

The statistical test is an algorithm that takes its inputs and as an output gives
0 or 1. The given sequence is supposed to be not random whereas output equals
0. In opposite case, where output equals 1 we assume that the given input is ran-
dom, according to the test. All statistical tests are used to determine either the given
sequence that produced by some generator G(K) looks random or it does not look
random. However, the well-known fact is when statistical test could make the wrong
decision relatively to the sequence [?]. Therefore, it is preferable to define PRNG
advantage [?].

The generator G exhibits weakness if the statistical test ϒ was able to distinguish
the output from random. However, if the advantage is close to zero Adv 6= 0 then the
pseudo-random inputs have the same behavior as truly random within statistical test
ϒ . Therefore, ϒ could not distinguish the generator from random.

Generator G : K→{0,1}n is a secure PRNG if for every efficient statistical tests
ϒ : AdvPRNG[ϒ ,G] is negligible or the statistical tests cannot distinguish its output
from random.

There are hundreds of statistical tests that confirm or refuse randomness. When
for all the tests a given string looks like random, the generator is considered as
robust. Due to the tests it will not be able to use statistical attacks on the algorithm
if intruder cannot distinguish PRNG from truly random.

Chaotic functions deal with floating points, thus statistical tests are not directly
efficient to define if a CPRNG is robust or not. The laws and standards for binary
strings cannot fully guarantee robustness since the nature is different. Chaotic PRNG
can be used in appearance of noise e.g. in the CSK, CMA, CMI models or as binary
string in XOR-function. Therefore, there are more requirements to CPRNG to prove
indistinguishability from truly random generator. Note that, today there is no stan-
dards on CPRNG analysis, but the primary tests are described in the next section.
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1.2.1 Some tests for robustness

There are no standards of security verification, making it difficult to determine
whether the system is truly secure. This is the crucial reason why chaos is till not
officially used in cryptography. However we represent the main and the most im-
portant security tests to chaotic systems.

Progress has been made to the point that chaos can be applied to secure commu-
nication [?, ?] and many papers focused on robust chaotic generator design [?, ?, ?].
There are several criteria respected by the community to the chaotic generators:
Largest Lyapunov exponent [?], Chaotic attractor in the phase space [?, ?], phase
delay [?, ?], Topological mixing [?, ?], Reactivity to small changes in initial condi-
tions (chaotic sensitivity) [?, ?], Uniform distribution [?, ?], Autocorrelation [?, ?],
Crosscorrelation [?], NIST tests [?, ?].

To prove robustness and ability to cryptosystems applications the chaotic system
should demonstrate excellent randomness and chaoticity results. Even if there is no
exact and unique chaos definition, the system is considered to be chaotic and could
be applied to cryptosystems when the chaotic generator behaves as a performed
PRNG (generated sequences must all be unitarily independent etc.). Therefore the
following requirements should be fulfilled [?]:

• Random pattern : passes statistical tests of randomness;
• Long period : goes as long as possible before repeating;
• Efficiency : executes rapidly and requires little storage;
• Repeatability : produces same sequence if started with same initial conditions;
• Portability : runs on different kinds of computers and is capable of producing

same sequence on each.

Therefore, for chaotic PRNG we use the following test: Largest Lyapunov expo-
nent, autocorrelation, cross-correlation, test for uniform distribution, chaotic attrac-
tor in phase space and phase delay and finally NIST tests.

1.2.2 Uniform distribution.

Randomness is often associated with unpredictability. However, it is difficult to say
if a sequence is predictable or no, thus it is considered as unpredictable if each of
the points on the range interval has equal chance to be chosen. The test of uniform
distribution gives the answer about probability of the points choice. If all points have
equal probability then the chance to predict the next point is very small. Thus, this
test is important to analyse whether the sequence is unpredictable.

An excellent PRNG looks like truly random, means unpredictable or there are
any correlation between points that have equal chance to be chosen. If the generator
is capable to produce the sequences uniformly distributed in phase space and phase
delay then the system behavior is like truly random.
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There are different tools to analyse points distribution i.e histogram, cumulative
distribution. However they give very general information. In order to assess numer-
ical computations more accurately and to qualitatively study the chaotic systems
an approximation density function [?] is preferable. The approximation PM,N(x) is
defined of the invariant measure (the probability distribution function) linked to the
1-dimensional map f going from the interval J ⊂R into itself, when computed with
floating numbers. The regular partition of M small intervals (boxes) ri of J is defined
by

si =−1+
2i
M
, i = 0,M (1.1)

ri = [si,si+1[ i = 0, M−2 and rM−1 = [sM−1,1] (1.2)

the length of each box is equal to 2
M and the ri intervals form a partition of the

interval J

J =
M−1⋃

0

ri (1.3)

All iterates f (n)(x) belonging to these boxes are collected, after a transient regime
of Q iterations decided a priori, (i.e. the first Q iterates are neglected). Once the
computation of N +Q iterates is completed, the relative number of iterates with
respect to N/M in each box ri represents the value PN(si). The approximated PN(x)
defined is then a step function, with M steps. As M may vary, it is defined by

PM,N(si) =
M
N
(]ri) (1.4)

where ]ri is the number of iterates belonging to the interval ri. PM,N(x) is normalized
to 2 on the interval J = [−1,1].

PM,N(x) = PM,N(si),∀x ∈ ri (1.5)

If the chaotic system is combined of p-coupled maps, then it is important to anal-
yse distribution of each component x1,x2,x2

1, ...,x
p of X and variable X itself in Jp

as well. The approximated probability distribution function , PM,N(x j) associated to
one among several components of F(X). It is used equally Ndisc for M and Niter for
N, when they are more explicit.

The discrepancies E1 (in norm L1 ), E2(in norm L2 ) and E∞ (in norm L∞) between
PNdisc,Niter(x

j) and the Lebesgue measure, which is the invariant measure are defined
by

E1,Ndisc,Niter(x
j) = ‖PNdisc,Niter(x

j)−1‖L1 (1.6)
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E2,Ndisc,Niter(x
j) = ‖PNdisc,Niter(x

j)−1‖L2 (1.7)

E∞,Ndisc,Niter(x
j) = ‖PNdisc,Niter(x

j)−1‖L∞
(1.8)

The numerical calculation of the uniform distribution allows us to judge about
system unpredictability.

1.2.3 NIST tests.

Currently, NIST (National Institute of Standard and Technology) tests are the most
powerful and widely used tool to test the sequences for randomness [?]. The stan-
dard includes 15 tests which on output give 188 results. The methodology allows
with hight probability to make conclusion about existing randomness in the se-
quences. According to the NIST tests the sequences are analysed as follow:

1 Zero hypothesis H0 is putting forward. The sumption that the given binary se-
quence is random.

2 Statistic is calculated.
3 The probability value P ∈ [0,1] is calculated.
4 The probability value P is compared with significance level α, α ∈ [0.001;0.01].

If P≥ α then the hypothesis is accepted, otherwise another hypothesis is taken.

The results of the tested sequence take form of probability vector P= {P1,P2, . . . ,
P188}. The Pi test indicates the weakness of the sequence. The standard recommends
the sequence of 100 blocks per 106 bits. Thus, the sequence length should be equal
to 108 bits. Each of the given 100 blocks passes the analysis. The testing results are
consolidated to the summarised table when in front of the each test there is for ex-
ample the value 97/100, that means that 97 is the number of blocks that successfully
passed the test out of 100. The threshold of fail blocks are 3.

1.3 Exploring topologies of network of coupled chaotic maps

In 1973, sir Robert May, a famous biologist introduced the nonlinear, discrete time
dynamical system called logistic equation:

xn+1 = rxn(1− xn) (1.9)

as a model for the fluctuations in the population of fruit flies in a closed container
with constant food [?]. Since that early time this logistic equation has been ex-
tensively studied especially by May [?], and Mitchell Feigenbaum [?] under the
equivalent form:



1.3 Exploring topologies of network of coupled chaotic maps 7

xn+1 = fµ(xn) (1.10)

where

fµ(xn)≡ Lµ(x) = 1−µx2 (1.11)

Another often studied discrete dynamical system is defined by the symmetric tent
map:

fµ ≡ Tµ = 1−µ|x| (1.12)

In both cases, µ is a control parameter that has impact to chaotic degree, and
those mappings are sending the one-dimensional interval [−1,1] into itself.

Those two maps have also been fully explored in the hope of generating pseudo-
random number easily [?]. However the collapsing of iterates of dynamical systems
or at least the existence of very short periodic orbits, their non constant invariant
measure, and the easily recognized shape of the function in the phase should space
should lead to avoid the use of such one-dimensional map (logistic, baker, or tent,
etc.) or two dimensional map (Hénon, standard or Belykh, etc.) as a pseudo-random
number generator (see [?] for a survey). However, the very simple implementation
in computer program of chaotic dynamical systems led some authors to use it as
a base of cryptosystem [?, ?]. They are topologically conjugate, that means they
have similar topological properties (distribution, chaoticity, etc.) however due to the
structure of number in computer realization their numerical behaviour differs dras-
tically. Therefore the original idea here is to combine features of tent ( Tµ ) and
logistic ( Lµ ) maps to achieve new map with improved properties, trough combina-
tion in several topologies of network.

Looking to the equations we can inverse the shape of the graph of the tent map
T on the step of logistic map L. Thus, our proposition has the form:

fµ(x)≡ T Lµ(x) = µ|x|−µx2 = µ(|x|− x2) (1.13)

Recall that both logistic and tent maps are never used in cryptography because
they have weak security (collapsing effect) [?, ?] if applied alone. Thus, systems
are often used in modified form to construct PRNG [?, ?]. The Lozi system [?]
provides method to increase randomness properties of the tent map over its coupling.
In another way, we propose to couple Tµ map over combination with T Lµ map
(??). When used in more than one dimension, T Lµ map can be considered as a two
variable map:

T Lµ(x(1),x(2)) = µ(|x(1)|− (x(2))2) (1.14)

Hence it possible to define a mapping Mp from [−1,1]p→ [−1,1]p
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Mp


x(1)n

x(2)n
...

x(p)
n

=


x(1)n+1

x(2)n+1
...

x(p)
n+1

=


Tµ(x

(1)
n )+T Lµ(x

(1)
n ,x(2)n )

Tµ(x
(2)
n )+T Lµ(x

(2)
n ,x(3)n )

...

Tµ(x
(p)
n )+T Lµ(x

(p)
n ,x(1)n )

(1.15)

Note that, the system dynamics is unstable and trajectories quickly spread out.
Therefore, to solve the problem of holding dynamics in the bound [−1,1]p the fol-
lowing injection mechanism has to be used:

i f x(i)n+1 <−1
then add 2
i f x(i)n+1 > 1

then substract 2

(1.16)

in this case for 1≤ i≤ p, points come back from [−3,3]p to [−1,1]p.
Used in conjunction with Tµ the T Lµ function allows to establish mutual influ-

ence between system states. The function is attractive because it performs contrac-
tion and stretching distance between states improving chaotic distribution. Thus,
T Lµ function is a powerful tool to change dynamics.

The coupling of the simple states has excellent effect on chaos achieving, be-
cause:

• Simple states interact with global system dynamics, being a part of it.
• The states interaction has the global effect.

Hence, if we use T Lµ to make impact on dynamics of the simple maps then excel-
lent effect on chaoticity and randomness could be achieved. The proposed function
improve complexity of a simple map. The question is how to study the received
system. Poincaré was one of the first who used graphical analysis of the complex
systems. We will use also graphical approach to study new chaotic systems, but not
only, other theoretical assessing functions are involved in our study.

Note that the system (??) can be seen in the scope of a general point of view,
introducing constants ki which generalize considered topologies. It is called alter-
native if ki = +1, 1 ≤ i ≤ p, or non-alternative if ki = +1, 1 ≤ i ≤ p; or ki = −1,
1 ≤ i ≤ p. It can be a mix of alternative and non-alternative if ki = +1 or −1 ran-
domly.

Mp


x(1)n

x(2)n
...

x(p)
n

=


x(1)n+1

x(2)n+1
...

x(p)
n+1

=


Tµ(x

(1)
n )+ k1×T Lµ(x

(1)
n ,x(2)n )

Tµ(x
(2)
n )+ k2×T Lµ(x

(2)
n ,x(3)n )

...

Tµ(x
(p)
n )+ kp×T Lµ(x

(p)
n ,x(1)n )

(1.17)

In this paper we will discuss only systems exhibiting the best properties for
CPRNG.
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1.3.1 2-D topologies

The initial purpose of new CPRNG design was to obtain excellent uniform distri-
bution, successfully passing randomness and chaoticity tests. Thus we propose to
consider firstly two 2-D models: alternative (k1 = −1, k2 = 1) and non-alternative
(k1 = k2 = 1). However, coupling between states by T Lµ can be made in different
ways:

1 Ring coupling with two choices:

T LRC
µ (x(1),x(2)) =

{
Tµ(x(1))−Lµ(x(2))
Tµ(x(2))−Lµ(x(1))

(1.18)

or

T LRC
µ (x(2),x(1)) =

{
Tµ(x(2))−Lµ(x(1))
Tµ(x(1))−Lµ(x(2))

(1.19)

2 Simple coupling with also two choices:

T LSC
µ (x(1),x(2)) =

{
Tµ(x(1))−Lµ(x(2))
Tµ(x(1))−Lµ(x(2))

(1.20)

or

T LSC
µ (x(2),x(1)) =

{
Tµ(x(2))−Lµ(x(1))
Tµ(x(2))−Lµ(x(1))

(1.21)

The general form of the new 2-D map we consider is as follow:

Mp

(
x(1)n

x(2)n

)
=

(
x(1)n+1

x(2)n+1

)
=

{
Tµ(x

(1)
n )+ k1×T Lµ((x(i),x( j)))

Tµ(x
(2)
n )+ k2×T Lµ((x(i

′),x( j′)))

with i, j, i′, j′ = 1 or 2 and T Lµ being either T LRC
µ or T LSC

µ . Remark: Ring-coupling
can be expected to higher dimensions but not the single case because we obtain the
same expression of the function.

However, it is undesirable to use T LSC
µ (x(1),x(2)) because (??) implies

Mp

(
x(1)n

x(2)n

)
=

(
x(1)n+1

x(2)n+1

)
=

{
Tµ(x

(1)
n )+ k1(Tµ(x

(1)
n )−Lµ(x

(2)
n ))

Tµ(x
(2)
n )+ k2(Tµ(x

(1)
n )−Lµ(x

(2)
n ))

⇔

{
x(1)n+1 = k1Lµ(x

(2)
n )

x(2)n+1 = k2Lµ(x
(2)
n )

which is trivial.
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If one uses T LRC
µ (x(2),x(1)) alternative system then one of the states will have

more ”power” than another one, loosing good distribution of points property. For
the same reason T LSC

µ (x(1),x(2)) or T LSC
µ (x(2),x(1)) non-alternative (k = 1) and

T LSC
µ (x(2),x(1)) alternative are not recommended to use.

Therefore, we will consider only two 2-D systems: T T LRC
µ (x(2)n ) non-alternative:

T T LRC
µ :

{
x(1)n+1 = 1−µ|x(1)n |+µ(|x(2)n |− (x(1)n )2)

x(2)n+1 = 1−µ|x(2)n |+µ(|x(1)n |− (x(2)n )2)
(1.22)

and T T LSC
µ (x,y) alternative:

T T LSC
µ :

{
x(1)n+1 = 1−µ|x(1)n |−µ(|x(1)n |− (x(2)n )2)

x(2)n+1 = 1−µ|x(2)n |+µ(|x(1)n |− (x(2)n )2)
(1.23)

Both systems were selected because they have balanced contraction and stretch-
ing process between states allowing to achieve uniform distribution of the chaotic
dynamic.

1.3.2 Randomness study of the new maps T T LRC
µ and T T LSC

µ

We are now assessing the randomness of both selected maps. The associated dy-
namical system is considered to be random and could be applied to cryptosystems
if the chaotic generator meets the requirements 1-8 on Fig.?? which are described
in Sec.1.3. If one of the criterion is not satisfied the behavior is less random than
expected.

Fig. 1.1 The main criteria for PRNG robustness

As it has been summarized in the scheme (Fig.??) a generator could be taken into
consideration for cryptography application if and only if every criterion is satisfied.

Chaotic map behavior primarily depends on the initial guess x0 and ”control”
parameter µ . However, the dependence versus the initial guess, x0 has less impor-
tance when the global phase portrait is scrutinized. Thus, to study the dependency
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of parameter µ a bifurcation diagram is an appropriate tool. To create the diagram
for the new map, a particular initial value of x0 is randomly selected, and the map
is iterated for a given µ . A certain number of firstly generated points is cut off to
remove the transient part of the iterated points, and the following points are plotted.
Afterwards, the process is repeated incrementing slightly µ .

To plot the bifurcation diagram for the 2-D systems T T LRC
µ non-alternative (Fig.

??) and T T LSC
µ alternative (Fig. ??), 10,000 iterations are generated for each initial

value and the first 1000 points are cut off as transient. Thus, 9,000 points are plotted
for each µ parameter. The graphs are the same for x(1) and x(2).

Fig. 1.2 Bifurcation diagram of 2-D new map: T T LRC
µ non-alternative (??)

For both graphs starting from µ = 0 to µ = 0.25, we can observe a period 1 (i.e.
a fixed point). Then the steady-state response undergoes a so-called pitchfork bifur-
cation to period 2. Following bifurcation undergoes multiple periods. At higher µ

values, the behavior is generally chaotic. However, for T T LRC
µ near µ = 1.1 (Fig. ??)

periodic windows appear. The subsequent intervals show perfect chaotic dynamics.
Bifurcation diagrams are very useful analysis tools for studying the behavior of

nonlinear maps as well as control parameters impact on the dynamic. A comple-
mentary study of chaos is the graph of Lyapunov exponent.

The Lyapunov exponent is a measure of the system sensitivity to initial condi-
tions. The function of Lyapunov exponent λ is the characteristic of chaotic behavior
in nonlinear maps. If λ > 0 the system exhibits chaotic behaviour.

Let us observe the graphics of Lyapunov exponent for T T LRC
µ non-alternative

(Fig. ??) and T T LSC
µ alternative (Fig. ??) maps. For the plotting 10,000 iterations

were taken. The µ parameter is selected from 0.5 to 2. The list of points formed
with µ is described on horizontal coordinate and the measure λ is on the vertical
coordinate.
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Fig. 1.3 Bifurcation diagram of 2-D new map: T T LSC
µ alternative (??)

Fig. 1.4 Largest Lyapunov exponent for 2-D T T LRC
µ non-alternative map (??)

Graphs of the Lyapunov exponent are in exact agreement with bifurcations one.
The measure λ is positive indicating chaotic dynamics which increases demonstrat-
ing the strongest chaos at µ = 2.

The study demonstrates that T T LRC
µ non-alternative (Fig. ??) and T T LSC

µ alter-
native (Fig. ??) maps exhibit the best chaotic behavior characteristic when µ = 2,
therefore we will continue our study fixing the parameter to this value. On the graphs
for any given initial point x0 trajectories will look like chaotic. Hence, we can study
an attractor in phase space and phase delay.

Let us plot the attractor in phase space: x(1)n versus x(2)n to analyse the points dis-
tribution. Observing graphs of chaotic attractor we can make decision about com-
plexity, notice weakness or infer the randomness nature. To plot the attractor 3×104

points have been generated, 104 points of the transient regime have been cut off.
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Fig. 1.5 Largest Lyapunov exponent for 2-D T T LSC
µ alternative map (??)

a) b)

Fig. 1.6 Phase space attractor of 2-D new maps, 2× 104 points are generated a) T T LRC
2 non-

alternative (??) b) T T LSC
2 alternative (??)

The graphs of the attractor in phase space for T T LRC
2 non-alternative (Fig. ??a)

and T T LSC
2 alternative (Fig. ??b) maps are quite different. The first one has well

scattered points on all the pattern, but there are some more ”concentrated” regions
forming curves on the graph. We will search answer to the questions: ”Why there
are more concentrated regions? From where curves creates?”, by considering the
injection mechanism.

Without this mechanism dynamics goes out of the square [−1,1]2 (Fig. ??a). The
maximal distance that points are reaching is 3 and the minimal is -3. Thus, equations
(??) are preserved, however their influence to the dynamics is different versus the
Lozi system [?]. For the plotting, 2× 104 points have been generated, 77 % of the
points are scattered out of the [−1,1]2. The mechanism consists of p-steps for a p-
dimensional system in each step the value 2 is added or subtracted to the variables if
the dynamics goes out of the bounds (??). On the first step 69 % points are injected
to the interval (Fig. ??.b) after passing second injection step (Fig. ??.c) all points
are driven base to the square [−1,1]2 (Fig. ??.d). Therefore mechanism adds non-
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linearity and complexity to the system which is an advantage from the security point
of view, in the case of cryptographic use.

a) b)

c) d)

Fig. 1.7 Injection mechanism [−3,3]2 ⇒ [−1,1]2 for T T LRC
2 non-alternative map a) 2-D chaotic

map without adding / substruction b) injection x(1)n to the torus [−1,1]2 c) injection x(2)n to the torus
[−1,1]2 d) results after passing injection mechanism

The graphs of the attractor in phase space for T T LSC
2 alternative map looks uni-

formly distributed on the plain pattern without any visible concentrated regions
(??.b.). The injection mechanism impact on the points distribution is given on the
Fig. ??

The quality of the entire cryptosystem mostly depends on PRNG and one of the
most important things for robust PRNG is uniform distribution of generated values
in the space (Criterion 5, Fig. ??). An approximated invariant measure gives the best
picture of probability. Thus, the invariant measure (??) is used for precise study of
the points distribution. Using the approximate density function the best picture of
points density can be achieved. The graph of the function demonstrate distribution
comparison between regions. The size of each of the boxes is measured by step.
In other words the plain is divided boxes[i, j] with square step2 after the counts the
number of points enter into the box box[i, j] is counted.

For the approximation function the pattern was divided for 200 boxes or step =
0.01, 109 points were generated. Note that those values are the maximal possible
used to calculate with a laptop computers. The graphs (Figs. ??, ??) of the detail
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a) b)

c) d)

Fig. 1.8 Injection mechanism [−3,3]2⇒ [−1,1]2 for T T LSC
2 alternative map a) 2-D chaotic map

without adding / substruction b) injection x(1)n to the torus [−1,1]2 c) injection x(2)n to the torus
[−1,1]2 d) results after passing injection mechanism

a) b)

Fig. 1.9 Approximate density function of T T LRC
2 non-alternative map, where step = 0.01, 109

points are generated

points distribution demonstrates that both systems have not excellent distribution in
phase space.
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a) b)

Fig. 1.10 Approximate density function of T T LSC
2 alternative map, where step = 0.01, 109 points

are generated

It was noticed that some parts of the graph (??.b) are perfectly joined, giving us
idea to improve points density using some correction in equations.

1.3.3 A new 2-D chaotic PRNG

Considering the results of section 1.3.2. it seems possible to improve the random-
ness of the 2-D topology. We observe that two regions (top-green and right-red) on
the Fig. ??.b could be pretty connected. First, let us rewrite the mapping T T LSC

µ

alternative (??) where µ = 2 as follow:

T T LSC
2 (x(1)n ,x(2)n ) =

{
x(1)n+1 = 1+2(x(2)n )2−4|x(1)n |
x(2)n+1 = 1−2(x(2)n )2 +2(|x(1)n |− |x(2)n |)

(1.24)

The first problem is that top green coloured region occurs after injection is ap-
plied. Thus, we develop the system (??) in such way that green coloured region
”stays” in such position without injection mechanism. Secondly, we need to reduce
the width of the region. Evidently, it is possible to achieve this need by reducing the
impact of the state x1, with the new following map:

MT T LSC
2 (x(1)n ,x(2)n ) =

{
x(1)n+1 = 1+2(x(2)n )2−2|x(1)n |
x(2)n+1 = 1−2(x(2)n )2 +2(|x(1)n |− |x(2)n |)

(1.25)

and the injection mechanism (??) is used as well, but restricted to 3 phases:
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i f x(1)n+1 > 1 then substract 2
i f x(2)n+1 <−1 then add 2

i f x(2)n+1 > 1 then substract 2

(1.26)

The results of the modifications are demonstrated on Figs. ??, ?? and ??. The
injection mechanism in 3 phases (Fig. ??) pulled regions in an excellent way. The
techniques used, greatly improve the points density in the phase space (Figs. ??,
??).

Fig. 1.11 Injection mechanism (??) of MT T LSC
2 alternative map

The numerical results of the errors distributions (Fig. ??) shows excellent distri-
bution till 109 points which is limited by the classical computer power. Moreover,
the largest Lyapunov exponent is equal to 0.5905 indicating strong chaotic behavior.

Table 1.1 Approximate distribution errors (??, ??, ??), for the system (??) in phase space

Points x(i)x( j) ErrorL1 ErrorL2 ErrorL3
104 x(1)x(2) 1.55830000000011 3.9967999999983 16
106 x(1)x(2) 0.158120000000055 0.395695199999969 1.56
108 x(1)x(2) 0.0159890999999995 0.0401757055999971 0.1748
109 x(1)x(2) 0.00505406199999996 0.00401402468000009 0.04916

The graph (Fig. ??) shows straight error reducing that proves uniform points
distribution.

The points distribution of the attractor in phase delay is quite good as well (Figs.
??, ??), where the plotting of 109 points are generated. On the Fig. (??b) tent distri-
bution is recognized for x(2) variable but for encryption we need only output of one
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Fig. 1.12 Approximate density function of MT T LSC
2 alternative map, where step = 0.01, 109

points are generated

state (in our case x(1)). Both states make strong impact on itself and for the global
dynamics reaching significant points distribution on the torus and chaoticity.

The MT T LSC
2 alternative map is ring- and auto-coupled. Since one state takes part

on creating dynamics of other one, both auto-correlation and cross-correlation have
to be analysed for dependency and repeatability. The results of the 2-dimensional
system are represented on the Fig. ?? and Fig. ??. The same excellent results are on
the Fig. ?? for autocorrelation, and on the Fig. ?? for cross-correlation, where the
sequences on the graphs are near zero.

Topologically mixing means the system capability to progress over a short period
of time. The system from any given initial region or open set of its phase space will
ultimately mixed up with any other region so that it is impossible to predict system
evolution.

Here we represent graphical analysis of the 2-D MT T LSC
2 alternative map for

topological mixing. The square [0,1]2 is divided into 4 quadrants and each of them
are split in boxes as well (A2,B2,C2, · · · ,O2). 5× 103 points have been generated
in each of the boxes (Fig. ??) and on the Fig.??.a-e it is showed where the points
from the initial boxes (A1,B1,C1, · · · ,O1) of quadrant are mapped.

From the Fig. ?? it can be seen that points are distributed everywhere over the
square, and it is hard to predict the next point or to find the previous one. The system
is perfectly mixing because the regions are superimposed to each other. For example
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Fig. 1.13 Approximate density function in 3D of MT T LSC
2 alternative map, where step = 0.01,

109 points are generated

Fig. 1.14 Approximate distribution errors (??), for the system (??)
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Fig. 1.15 Attractor in the phase delay ((x(1)n ,x(1)n+1)), 109 points are generated, for the system (??)

Fig. 1.16 Attractor in the phase delay ((x(1)n ,x(1)n+1)), box-method, 109 points are generated, for the
system (??)
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a)
b)

Fig. 1.17 Attractor in the phase delay, 109 points are generated a) (x(2)n ,x(2)n+1) b) Box-method

Fig. 1.18 State auto-correlation analysis of the MT T LSC
2 alternative map

if we take some point of the A2 box (Fig. ?? the next point will fall down to the A2
region (Fig. ??.a). The blue coloured region on the Fig. ??.a passes through the
boxes: O1, I1,P1,C1,B1,E1,H1,M4,N4 (Fig. ??), that means the next points will
fall down somewhere on the regions corresponding to these boxes (Fig.??.a-e). With
all next iterations, they mix more complexely; the behavior becomes unpredictable
and eventually looks like scattered points everywhere across the space. Colours and
letters overlapping on the graphs vividly demonstrate that arbitrarily close points
in some periods of time will have vastly different behaviors which means mixing.
This phenomenon is quantified through the value of Largest lyapunov exponent.
The arbitrarily taken points which are far alone will ultimately approach looking
nearly the same only for several iterations means mixing as well. Since the new
map implies of strong chaos, the phase space is thoroughly mixed together after a
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Fig. 1.19 Correlation between states of the MT T LSC
2 alternative map

Fig. 1.20 Initial boxes (A,B,C, · · · ,O) in the four quadrants

quite short time. In a forthcoming paper we will quantify this mixing, building a
corresponding Markov transition matrix as in [?].

NIST tests are used to verify randomness and system capability to resist main
attacks. As it was earlier discussed the advantage of the binary sequences has to be
approximately the same as of the truly random number generator. NIST tests are
more fully cover the statistical tests. Long time the tests are used to prove PRNG
robustness. NIST tests require only binary sequences, thus 4×106 points were gen-
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a) b)

c) d)

e)

Fig. 1.21 Topological mixing

erated, the first 5× 105 were cut off. The rest of the sequence was converted to
binary form according to the standard IEEE-754 (32 bit single precision floats).

Both states of the generator successfully passed NIST tests demonstrating strong
randomness being robustness against numerous statistical attacks (Fig. ??). More-
over, we can say that generated sequences look like truly random. Thus, if the ad-
versary looks at the sequence it will be difficult to distinguish it from a truly random
generator.
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Fig. 1.22 Mixing boxes (A . . .O) and regions (coloured) in the phase space (x(1)n ,x(2)n )

1.4 A new higher-dimensional map

Higher dimensional systems allow to achieve the best randomness, chaoticity and
points distribution, because there are more perturbations and nonlinear mixing in it.
Usually, 3 or more dimensions are enough to create robust random sequences. Thus,
it is an advantage if the system could increase its dimensions. Since, MT T LSC

2 alter-
native map cannot be in higher dimension, we describe how to improve randomness,
best points distribution and more complex dynamics than T T LRC

2 (x(2),x(1)) alterna-
tive map (??).

The best way to achieve randomness from chaos is to couple states with auto and
ring-coupling [?]. After applying the conditions the higher dimension map takes
form as follow:

T T LRC
2 :


x(1)n+1 = 1−2|x(1)n |+2(|x(2)n |− (x(1)n )2)

x(2)n+1 = 1−2|x(2)n |+2(|x(3)n |− (x(2)n )2)
...

x(p)
n+1 = 1−2|x(p)

n |+2(|x(1)n |− (x(p)
n )2)

(1.27)

The injection is applied as well by verifying each of the state for diverging, in the
case if, the injection is used.

Note, each of the states has to satisfy requirements and chaoticity. Therefore, the
3-D and 4-D system were studied for criteria 1-8 (Fig. ??) independently for the
each states and in correlation between them. All of the tests have been successfully
passed with improving results whereas dimension is higher. Here we demonstrate
only more significant and important tests.
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a)

b)

Fig. 1.23 MT T LSC
2 alternative map successfully passed NIST tests a) x(1) b) x(2)

First of all, the points distribution is the best tool to demonstrate the system
evolution with increasing dimension. Therefore, to draw the plot 109 points were
generated for: 2-D, 3-D and 4-D system. The invariant measure was calculated with
distribution error results fixing on the iterations: 104, 106, 108 and 109. The graph
(Fig. ??) shows improving the points distribution the space.

After generating 106 points for 2-D system sequences become repeatable be-
cause the errors no longer decrease. This phenomenon may be due to long periodic
orbits attracting the behaviour of iterated points. For 3-D system period is longer
but is locked after 109 generated points because errors should be reduced 10 times
on each 100× length. Note, when length goes to infinity (length = 1011, for ex-
ample) the error no longer decreases. The systems distribution errors comparison is
demonstrated on Fig. ??.

The robust PRNG implies the points to have equal chance to be chosen. Thus,
the system appears to be unpredictable. The precise comparison can be made by
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Fig. 1.24 Density error (??) for: 2-D, 3-D and 4-D T T LRC
2 (x(2),x(1)) alternative map

numerical calculation to compare deviation from etalon distribution: ErrorL1 (??),
ErrorL2 (??) and ErrorL3 (??). The table (??) displays numerical results for 3-D
map and in (Tab. ??) for 4-D T T LRC

2 (x(2),x(1)) alternative map are demonstrated.

Table 1.2 Numerical results of the error points distribution for 3-D T T LRC
2 (x(2),x(1)) alternative

map

Points x(i)x( j) ErrorL1 ErrorL2 ErrorL3
104 x(1)x(2) 1.55695000000012 3.98719999999827 16
104 x(1)x(3) 1.55960000000011 4.02879999999834 16
104 x(2)x(3) 1.55850000000012 4.0111999999983 16
106 x(1)x(2) 0.160244000000057 0.406133599999969 1.56
106 x(1)x(3) 0.159324000000056 0.400406399999964 1.72
106 x(2)x(3) 0.159722000000056 0.401812799999966 1.64
108 x(1)x(2) 0.0175167799999997 0.0483318551999966 0.1788
108 x(1)x(3) 0.0176578999999997 0.0488421623999967 0.1784
108 x(2)x(3) 0.0176171399999997 0.0485752623999967 0.1836
109 x(1)x(2) 0.00908920799999996 0.0125199035839995 0.0772
109 x(1)x(3) 0.00903516200000002 0.0124306507039994 0.08368
109 x(2)x(3) 0.00907240999999998 0.0124629701279995 0.07804

The numerical results demonstrate harmony of the points density between states.
Moreover, the NIST tests prove it randomness (Fig. ??).
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Table 1.3 Numerical results of the error points distribution for 4-D T T LRC
2 (x(2),x(1)) alternative

map

Points x(i)x( j) ErrorL1 ErrorL2 ErrorL3
104 x(1)x(2) 1.55720000000011 3.9991999999983 16
104 x(1)x(3) 1.55655000000012 3.96879999999831 16
104 x(1)x(4) 1.55495000000012 3.95519999999832 20
104 x(2)x(3) 1.5581000000001 4.0063999999983 16
104 x(2)x(4) 1.5576000000001 4.0047999999983 16
104 x(3)x(4) 1.55395000000012 3.93519999999834 16
106 x(1)x(2) 0.158570000000055 0.398432799999969 1.64
106 x(1)x(3) 0.159702000000056 0.404377599999966 1.68
106 x(1)x(4) 0.160002000000056 0.405107199999971 1.64
106 x(2)x(3) 0.158936000000056 0.399593599999971 1.52
106 x(2)x(4) 0.159348000000055 0.401847999999965 1.68
106 x(3)x(4) 0.158972000000057 0.399148799999965 1.72
108 x(1)x(2) 0.0159831399999994 0.0400194487999969 0.1608
108 x(1)x(3) 0.0160255399999995 0.040381923199997 0.1772
108 x(1)x(4) 0.0160366599999995 0.0404230903999969 0.1852
108 x(2)x(3) 0.0160441999999995 0.0403678407999969 0.1732
108 x(2)x(4) 0.0158792799999996 0.0396031839999973 0.1612
108 x(3)x(4) 0.0158101199999993 0.039183199999997 0.164
109 x(1)x(2) 0.00507232799999997 0.00404898352000012 0.0524
109 x(1)x(3) 0.00515058999999998 0.00415637283200005 0.05388
109 x(1)x(4) 0.00504731199999992 0.00399370235200004 0.05932
109 x(2)x(3) 0.00505795999999996 0.00400627627200004 0.05516
109 x(2)x(4) 0.00514836599999991 0.00416637750400014 0.05228
109 x(3)x(4) 0.00503734799999993 0.00397888753600011 0.05112

1.5 Conclusion

In this paper we have proposed the original idea to couple two well-known chaotic
maps (tent and logistic one), which considered separately - don’t exhibit the re-
quired features for encryption purposes. However, the new coupling changed qual-
itatively the overall system behavior, because the maps used with injection mecha-
nism and coupling between states increas their complexity.

We have explored several topologies and finally proposed a new 2-D CPRNG.
The proposed model with injection mechanism allows to puzzle perfectly the pieces
of the chaotic attractor, like a true random generator. To achieve the best distribution
in the phase space, the modified form MT T LSC

2 alternative map has been proposed.
The new map exhibits excellent features due to the injection mechanism and en-
ables the uniform density in the state space. The system exhibits strong nonlinear
dynamics, demonstrating great sensitivity to initial conditions. It generates an in-
finite range of intensive chaotic behavior with large positive Lyapunov exponent
values. Moreover, MT T LSC

2 successfully passed all required tests: cross-correlation,
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b)

c)

Fig. 1.25 NIST tests for b) 3-D T T LRC
2 (x(2),x(1)) alternative map b) 4-D T T LRC

2 (x(2),x(1)) alter-
native map

autocorrelation, LLE, NIST tests, uniform attractor on the phase space and phase
delay. The system analysis and the dynamics evolution by bifurcation diagram and
topological mixing proved the complex behavior. The system orbits exhibited com-
plex behavior with perfect mixing. The study demonstrated totally unpredictable
dynamics making the system strong-potential candidate for high-security applica-
tions. Finally, the dimension of the T T LRC

µ non-alternative map is easily increased
whenever it is necessary to reach the strongest security requirements as shown in
Sec.1.4.
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