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Abstract—This paper is devoted to the design of new chaotic
Pseudo Random Number Generator (CPRNG). Exploring several
topologies of network of 1-D coupled chaotic mapping, we focus
first on two dimensional networks. Two topologically coupled
maps are studied: TTLRC non-alternate, and TTLSC alternate.
The primary idea of the novel maps has been based on an
original coupling of the tent and logistic maps to achieve excellent
random properties and homogeneous /uniform/ density in the
phase plane, thus guaranteeing maximum security when used for
chaos base cryptography. In this aim two new nonlinear CPRNG:
MTTLSC2 and NTTL2 are proposed. The maps successfully
passed numerous statistical, graphical and numerical tests, due
to proposed ring coupling and injection mechanisms.

Index Terms—Chaos, tent-logistic map, randomness.

I. INTRODUCTION

THE tremendous development of new IT technologies,
e-banking, e-purchasing, etc. nowadays increases inces-

santly the needs for new and more secure cryptosystems. The
latter are used for information encryption, pushing forward the
demand for more efficient and secure pseudo-random number
generators [1]. At the same time, chaotic maps show up as
perfect candidates able to generate independent and secure
pseudo-random sequences (used as information carriers or
directly involved in the process of encryption/decryption).
However, the majority of well-known chaotic maps are not
naturally suitable for encryption [2] and most of them don’t
exhibit even satisfactory properties for encryption. To deal
with this open problem, we propose the unusual idea to couple
tent and logistic map, and to add an injection mechanism to
keep bounded the escaping orbits.

In 1973, sir Robert May, a famous biologist introduced
the nonlinear, discrete time dynamical system called logistic
equation:

xn+1 = rxn(1− xn) (1)

as a model for the fluctuations in the population of fruit flies in
a closed container with constant food [3]. Since that early time
this logistic equation has been extensively studied especially
by May [4], and Mitchell Feigenbaum [5] under the equivalent
form:

xn+1 = fµ(xn) (2)

where

fµ(xn) ≡ Lµ(x) = 1− µx2 (3)

Another often studied discrete dynamical system is defined
by the symmetric tent map:

fµ ≡ Tµ = 1− µ|x| (4)

In both cases, µ is a control parameter that has impact
to chaotic degree, and those mappings are sending the one-
dimensional interval [−1, 1] into itself.

Those two maps have also been fully explored with the
hope of generating pseudo-random numbers [6]. However the
collapsing of iterates of dynamical systems or at least the
existence of very short periodic orbits, their non constant
invariant measure, and the easily recognized shape of the
function in the phase space should lead to avoid the use
of such one-dimensional map (logistic, baker, or tent, etc.)
or two dimensional map (Hénon, standard or Belykh, etc.)
as a pseudo-random number generator (see [7] for a sur-
vey). However, the very simple implementation in computer
program of chaotic dynamical systems led some authors to
use it as a base of cryptosystem [8]. They are topologically
conjugate, that means they have similar topological properties
(distribution, chaoticity, etc.) however due to the structure of
number in computer realization their numerical behaviour dif-
fers drastically. Therefore the original idea here is to combine
features of tent (Tµ) and logistic (Lµ) maps to achieve new
map with improved properties, trough combination of several
network topologies. In this paper we propose new ideas of
tent and logistic maps coupling, based on the analogy between
mathematical circuits and electrical circuits [9].

II. EXPLORING TOPOLOGIES OF NETWORK OF COUPLED
CHAOTIC MAPS

Ring and auto-coupling of chaotic maps (or circuits) enables
to combine the individual circuit’s dynamics, and therefore,
to obtain more complex dynamic behaviour. For instance,
different ways of coupling several Chua’s circuits gives rise to
hyperchaos [9]. It should be emphasized that these representa-
tions (Fig. 1) are also a perfect tool to investigate the topology
of the map.

Looking at the equations we can inverse the shape of the
graph of the tent map T on the step of logistic map L. Thus,
our proposition has the form:

fµ(x) ≡ TLµ(x) = µ|x| − µx2 = µ(|x| − x2) (5)

Recall that both logistic and tent maps have never been used
in cryptography because they have weak security (collapsing
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Fig. 1. Circuits of ultra-weak coupling of chaotic Chua’s circuits

effect) [10], [11] if applied alone. Thus, systems are often
used in modified form to construct PRNG [12], [13]. The
Lozi system [14] provides method to increase randomness
properties of the tent map over its coupling. In another way,
we propose to couple Tµ map over combination with TLµ
map (5). When used in more than one dimension, TLµ map
can be considered as a two dimensional map:

TLµ(x
(1), x(2)) = µ(|x(1)| − (x(2))2) (6)

Hence it is possible to define a mapping Mp from
[−1, 1]p → [−1, 1]p
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Note that the system dynamics is unstable and trajectories

quickly spread out. Therefore, to solve the problem of hold-
ing dynamics in the bound [−1, 1]p the following injection
mechanism has to be used:

if x
(i)
n+1 < −1

then add 2

if x
(i)
n+1 > 1

then substract 2

(8)

in this case for 1 ≤ i ≤ p, points come back from [−3, 3]p to
[−1, 1]p.

Auto and ring-coupling between states (Fig.2) of the map
and injection mechanism influence the system dynamics mak-
ing its dynamics complex enough for our application purposes.

Used in conjunction with Tµ the TLµ function allows to
establish mutual influence between system states. The function
is attractive because it performs contraction and stretching
distance between states improving chaotic distribution. Thus,
TLµ function is a powerful tool to change dynamics.

The coupling of the simple states has excellent effect on
chaos achieving, because:

• Simple states interact with global system dynamics, being
a part of it.

• The states interaction has a global effect.

Fig. 2. Auto and ring-coupling between states of the Mp

Hence, if we use TLµ to make impact on the dynamics of
simple maps, then excellent effect on chaoticity and random-
ness could be achieved. The proposed function improve the
complexity of a simple map.

Note that the system (7) can be seen in the scope of a
general point of view, introducing constants ki which gener-
alize considered topologies. It is called alternate if ki = +1,
1 ≤ i ≤ p, or non-alternate if ki = (−1)i, 1 ≤ i ≤ p;
or ki = −1, 1 ≤ i ≤ p. It can be a mix of alternate
and non-alternate if ki = +1 or −1 randomly. As well it
has been already shown that the coupling could improve the
performances of well known chaotic attractors (Chua, Lorenz,
Rossler, etc.) for application purposes [9].
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In this paper we will discuss only systems exhibiting the

best properties for CPRNG. Therefore, we will consider only
two 2-D systems: TTLRCµ (x
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and TTLSCµ (x
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TTLSCµ :

{
x
(1)
n+1 = 1− µ|x(1)n | − µ(|x(1)n | − (x

(2)
n )2)

x
(2)
n+1 = 1− µ|x(2)n |+ µ(|x(1)n | − (x

(2)
n )2)

(11)
Here RC stand for ring-coupling and SC for standard

coupling.

III. RANDOMNESS STUDY OF THE NEW MAPS TTLRCµ AND

TTLSCµ

We are now assessing the randomness of both selected
maps. The associated dynamical system is considered to be
random and could be applied to cryptosystems if the chaotic
generator meets the requirements 1-8 on Fig.3. If one of the
criterion is not satisfied, the behavior is less random than
expected.
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Fig. 3. The main criteria for PRNG robustness

As it has been summarized in the scheme (Fig.3) a generator
could be taken into consideration for cryptography application
if and only if each criterion is satisfied.

Chaotic map behavior primarily depends on the initial guess
x0 and ”control” parameter µ. However, the dependence versus
the initial guess, x0 has less importance when the global
phase portrait is scrutinized. Thus, to study the dependency
of parameter µ a bifurcation diagram is an appropriate tool.
To create the diagram for the new map, a particular initial
value of x0 is randomly selected, and the map is iterated for
a given µ. A certain number of firstly generated points is cut
off to remove the transient part of the iterated points, and
the following points are plotted. Afterwards, the process is
repeated incrementing slightly µ.

To plot the bifurcation diagram for the 2-D systems TTLRCµ
non-alternate (Fig. 4.a) and TTLSCµ alternate (Fig. 4.b),
10,000 iterations have been generated for each initial value
and the first 1,000 points have been cut off as transient. Thus,
9,000 points are plotted for each µ parameter. The graphs are
the same for x(1) and x(2).

a) b)
Fig. 4. Bifurcation diagram of 2-D new maps a) TTLRCµ non-alternate (10)
b) TTLSCµ alternate (11)

For both graphs starting from µ = 0 to µ = 0.25, we
can observe a period 1 (i.e. a fixed point). Then the steady-
state response undergoes a so-called pitchfork bifurcation to
period 2. Following bifurcation undergoes multiple periods. At
higher µ values, the behavior is generally chaotic. However,
for TTLRCµ near µ = 1.1 (Fig. 4.a) periodic windows appear.
The subsequent intervals show perfect chaotic dynamics.

The Lyapunov exponent (LE) is a measure of the system
sensitivity to initial conditions. The function of Lyapunov ex-
ponent λ is the characteristic of chaotic behavior in nonlinear
maps. If λ > 0 the system exhibits chaotic behaviour.

Let us observe the graphics of Lyapunov exponent for
TTLRCµ non-alternate (Fig. 5.a) and TTLSCµ alternate (Fig.
5.b) maps. For the plotting 10, 000 iterations were taken into
account for every value of µ. The µ parameter is selected
from 0.5 to 2. The list of points formed with µ is described
on horizontal coordinate and the measure λ is on the vertical

coordinate.

a) b)
Fig. 5. Function of the Lyapunov exponent for 2-D new maps a) TTLRCµ
non-alternate map (10) b) TTLSCµ alternate map (11)

Graphs of the Lyapunov exponent are in exact agreement
with bifurcations one. The measure λ is positive indicating
chaotic dynamics which increases showing the strongest chaos
at µ = 2.

The study demonstrates that TTLRCµ non-alternate (Fig.
5.a) and TTLSCµ alternate (Fig. 5.b) maps exhibit the best
chaotic behavior characteristics when µ = 2, therefore we
will continue our study fixing the parameter to this value. On
the graphs for any given initial point x0 trajectories will look
like chaotic. Hence, we can study an attractor in phase space
and phase delay.

Let us plot the attractor in the phase space: x(1)n versus
x
(2)
n to analyse the points distribution. Observing graphs of

chaotic attractor we can make decision about complexity,
notice weakness or infer the randomness nature. To plot the
attractor 3×104 points have been generated, 104 points of the
transient regime have been cut off.

a) b)
Fig. 6. Phase space attractor of 2-D new maps, 2× 104 points are generated
a) TTLRC2 non-alternate (10) b) TTLSC2 alternate (11)

The graphs of the attractor in phase space for TTLRC2 non-
alternate (Fig. 6a) and TTLSC2 alternate (Fig. 6b) maps are
quite different. The first one has well scattered points on all
the pattern, but there are some more ”concentrated” regions
forming curves on the graph.

The quality of the entire cryptosystem mostly depends
on PRNG and one of the most important things for robust
PRNG is uniform distribution of generated values in the space
(Criterion 5, Fig. 3). An approximated invariant measure gives
the best picture of probability. Thus, the invariant measure [15]
is used for precise study of the points distribution. Using the
approximate density function the best picture of points density
can be achieved. The graph of the function demonstrates
distribution comparison between regions. The size of each
of the boxes is measured by step. In other words the plain
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is divided boxes[i, j] with square step2, after the counts the
number of points enter into the box box[i, j] is counted.

a) b)
Fig. 7. Approximate density function, where step = 0.01, 109 points are
generated a) TTLRC2 non-alternate map b) TTLSC2 alternate map

For the approximation function the pattern was divided into
200 boxes or step = 0.01, 109 points were generated. Note
that those values are the maximal possible used to calculate
with a laptop computers. The graphs (Figs. 7a and 7b of the
detail points distribution demonstrates that both systems have
not excellent distribution in phase space.

Good results are demonstrated with two different kinds
of coupling, simple and ring-coupling in dimension 2, thus
increasing the complexity of the system. However as those
results are not completely satisfactory, an improved geometry
of coupling is introduced allowing us to describe a new 2-
D Chaotic Pseudo Random Number Generator (CPRNG). It
was noticed that some parts of the graph are perfectly joined,
giving us idea to improve points density using some correction
in equations.

IV. TWO NEW 2-D CHAOTIC PRNG

Considering the results of section III it seems possible to
improve the randomness of the 2-D topology. First, let us
rewrite the mapping TTLSCµ alternate (11) where µ = 2 as
follows:

TTLSC2 (x
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n , x

(2)
n ) =

{
x
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n+1 = 1 + 2(x

(2)
n )2 − 4|x(1)

n |
x
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(2)
n )2 + 2(|x(1)

n | − |x
(2)
n |)

(12)

The first problem is that top green coloured region occurs
after injection is applied. Thus, we develop the system (15) in
such a way that green coloured region ”stays” in such position
without injection mechanism. Secondly, we need to reduce the
width of the region. Obviously, it is possible to achieve this
need by reducing the impact of the state x1, with the new
following map:

MTTLSC2 (x
(1)
n , x

(2)
n ) =

{
x
(1)
n+1 = 1 + 2(x

(2)
n )2 − 2|x(1)

n |
x
(2)
n+1 = 1− 2(x

(2)
n )2 + 2(|x(1)

n | − |x
(2)
n |)

(13)

with the injection mechanism (8) used as well, but restricted
to 3 phases:

if x
(1)
n+1 > 1 then substract 2

if x
(2)
n+1 < −1 then add 2

if x
(2)
n+1 > 1 then substract 2

(14)

The results of the modifications are demonstrated on Figs.
8, 7.a and 7.b. The injection mechanism in 3 phases (Fig. 8)
matched regions in an excellent way. The techniques used,
greatly improve the points density in the phase space (Figs.
7).

Fig. 8. Injection mechanism (14) of MTTLSC2 alternate map

a)

b)
Fig. 9. Approximate density function of MTTLSC2 alternate map, where
step = 0.01, 109 points are generated a) Boxes method b) 3D

The numerical results of the errors distributions (Fig. 10)
shows excellent distribution till 109 points which is limited by
the classical computer power. Moreover, the largest Lyapunov
exponent is equal to 0.5905 indicating strong chaotic behavior.

The graph (Fig. 10) shows straight error reducing that
proves, uniform points distribution when the number of iterates
increases.

Fig. 10. Approximate distribution errors, for the system (13)

The points distribution of the attractor in phase delay is
quite good as well (Fig. 11), where the plotting of 109 points
are generated. In Fig. (11.b) tent distribution is recognized for
x(2) variable but for encryption we need only output of one
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state (in our case x(1)). Both states make strong impact on
itself and for the global dynamics reaching significant points
distribution on the torus and chaoticity.

a) b)

Fig. 11. a) Attractor in the phase delay, 109 points are generated, for the
system (13) a) (x(1)

n , x
(1)
n+1) b) (x(2)

n , x
(2)
n+1)

The MTTLSC2 alternate map is ring- and auto-coupled.
Since one state takes part on creating dynamics of other
one, both auto-correlation and cross-correlation have to be
analysed for dependency and repeatability. The results of the
2-dimensional system are represented in Fig. 12. The same
excellent results are in Fig. 12.a for autocorrelation, and in
Fig. 12.b for cross-correlation, where the sequences on the
graphs are near zero.

a) b)
Fig. 12. MTTLSC2 alternate map a) State autocorrelation analysis b)
Correlation between states analysis

Topologically mixing means the system capability to
progress over a short period of time. The system from any
given initial region or open set of its phase space will
ultimately be mixed up with any other region so that it is
impossible to predict system evolution.

Here we represent graphical analysis of the 2-D MTTLSC2
alternate map for topological mixing. The square [0, 1]2 is
divided into 4 quadrants and each of them are split into 15
boxes as well (A2, B2, C2, · · · , O2). 5 × 103 points have
been generated in each of the boxes (Fig. 13). It is showed
where the points from the initial boxes (A1, B1, C1, · · · , O1)
of quadrant are mapped.

From the Fig. 13 it can be seen that points are dis-
tributed everywhere over the square, and it is hard to pre-
dict the next point or to find the previous one. The sys-
tem is perfectly mixing because the regions are superim-
posed to each other. For example the blue colored region
which is the image of the A2 box passes through the boxes
O1, I1, P1, C1, B1, E1, H1,M4, N4 (Fig. 13). Colours and
letters overlapping on the graphs vividly demonstrate that
arbitrarily close points in some periods of time will have vastly
different behaviors which means mixing.

Fig. 13. Mixing boxes (A . . . O) and regions (coloured) in the phase space
(x(1)
n , x

(2)
n )

NIST tests are used to verify randomness and system
capability to resist main attacks when used for cryptographic
purpose. They are used to prove PRNG robustness. NIST
tests require only binary sequences, thus 4 × 106 points
were generated, the first 5 × 105 were cut off. The rest of
the sequence was converted to binary form according to the
standard IEEE-754 (32 bit single precision floats).

a)

Fig. 14. MTTLSC2 alternate map successfully passed NIST tests a) x(1)

Both states of the generator successfully passed NIST tests
(Fig. 14) demonstrating strong randomness and robustness
against numerous statistical attacks.

We introduce now another structurally simple 2-D map
using another topology. The map is described as follow:

NTTLSC2 (x
(1)
n , x

(2)
n ) =

{
x
(1)
n+1 = 1− 2|x(2)

n |
x
(2)
n+1 = 1− 2(x

(2)
n )2 − 2(|x(2)

n | − |x
(1)
n |)

(15)

applying injection mechanism (Fig. 15) to hold dynamics in
[−1, 1]2:

if x
(2)
n+1 < −1 then add 2

if x
(2)
n+1 > 1 then substract 2

(16)

The NTTL2 exhibits excellent density in phase delay for
both states (Fig. 16), being very promising in real application.

The NTTL2 map exhibits complex dynamics capable to
refuse statistical attacks since it successfully passed NIST tests
(Fig. 17).

The future work will be devoted to the investigation of
topologies in 3 dimensional space where the complexity of
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Fig. 15. Injection mechanism (14) of NTTL2 alternate map

a) b)

Fig. 16. NTTL2 density in phase delay a) (x(1)
n , x

(1)
n+1) b) (x(2)

n , x
(2)
n+1)

a)

Fig. 17. NTTL2 map successfully passed NIST tests

dynamical phenomena are expected to exhibit even better
performances, though being more intricate [16]

V. CONCLUSION

In this paper we have proposed the original idea to couple
two well-known chaotic maps (tent and logistic one), which
considered separately - don’t exhibit the required features
for encryption purposes because they have weak security
(collapsing effect) when applied alone. The new coupling
changed qualitatively the overall system behavior, because the
maps used with injection mechanism and coupling between
states increased their complexity.

We have explored several topologies and finally proposed
two new 2-D CPRNG. The proposed models with injection
mechanism allow to puzzle perfectly the pieces of the chaotic
attractor, like a true random generator. To achieve the best
distribution in the phase space, the modified form MTTLSC2
alternate map has been proposed. The new map exhibits
excellent features due to the injection mechanism and enables

the uniform density in the state space. The system exhibits
strong nonlinear dynamics, demonstrating great sensitivity to
initial conditions. It generates an infinite range of intensive
chaotic behavior with large positive Lyapunov exponent val-
ues. Moreover, MTTLSC2 successfully passed all required
tests: cross-correlation, autocorrelation, LLE, NIST tests, uni-
form attractor on the phase space and phase delay. The system
analysis and the dynamics evolution by bifurcation diagram
and topological mixing proved the complex behavior. The
system orbits exhibited complex behavior with perfect mixing.
The study demonstrated totally unpredictable (for any intruder)
dynamics making the system strong-potential candidate for
high-security applications. Another CPRNG candidate based
on NTTLSC2 map was proposed that successfully passed all
required statistical, graphical and numerical results for both
states components. The NTTLSC2 map demonstrates complex
dynamics being very promising to real scale cryptography
application.
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