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This paper is devoted to the design of new chaotic Pseudo Random Number Generator (CPRNG). Exploring several topologies of network of 1-D coupled chaotic mapping, we focus first on two dimensional networks. Two topologically coupled maps are studied: T T L RC non-alternate, and T T L SC alternate. The primary idea of the novel maps has been based on an original coupling of the tent and logistic maps to achieve excellent random properties and homogeneous /uniform/ density in the phase plane, thus guaranteeing maximum security when used for chaos base cryptography. In this aim two new nonlinear CPRNG: M T T L SC 2 and N T T L2 are proposed. The maps successfully passed numerous statistical, graphical and numerical tests, due to proposed ring coupling and injection mechanisms.

I. INTRODUCTION

T HE tremendous development of new IT technologies, e-banking, e-purchasing, etc. nowadays increases incessantly the needs for new and more secure cryptosystems. The latter are used for information encryption, pushing forward the demand for more efficient and secure pseudo-random number generators [START_REF] Menezes | Handbook of applied cryptography[END_REF]. At the same time, chaotic maps show up as perfect candidates able to generate independent and secure pseudo-random sequences (used as information carriers or directly involved in the process of encryption/decryption). However, the majority of well-known chaotic maps are not naturally suitable for encryption [START_REF] Li | Period extension and randomness enhancement using high-throughput reseedingmixing prng[END_REF] and most of them don't exhibit even satisfactory properties for encryption. To deal with this open problem, we propose the unusual idea to couple tent and logistic map, and to add an injection mechanism to keep bounded the escaping orbits.

In 1973, sir Robert May, a famous biologist introduced the nonlinear, discrete time dynamical system called logistic equation:

x n+1 = rx n (1 -x n ) (1) 
as a model for the fluctuations in the population of fruit flies in a closed container with constant food [START_REF] May | Stability and complexity in model ecosystems[END_REF]. Since that early time this logistic equation has been extensively studied especially by May [START_REF] May | Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos[END_REF], and Mitchell Feigenbaum [START_REF] Feigenbaum | The universal metric properties of nonlinear transformations[END_REF] under the equivalent form:

x n+1 = f µ (x n ) (2) 
where

f µ (x n ) ≡ L µ (x) = 1 -µx 2 (3) 
Another often studied discrete dynamical system is defined by the symmetric tent map:

f µ ≡ T µ = 1 -µ|x| (4) 
In both cases, µ is a control parameter that has impact to chaotic degree, and those mappings are sending the onedimensional interval [-1, 1] into itself.

Those two maps have also been fully explored with the hope of generating pseudo-random numbers [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF]. However the collapsing of iterates of dynamical systems or at least the existence of very short periodic orbits, their non constant invariant measure, and the easily recognized shape of the function in the phase space should lead to avoid the use of such one-dimensional map (logistic, baker, or tent, etc.) or two dimensional map (Hénon, standard or Belykh, etc.) as a pseudo-random number generator (see [START_REF] Lozi | Can we trust in numerical computations of chaotic solutions of dynamical systems?[END_REF] for a survey). However, the very simple implementation in computer program of chaotic dynamical systems led some authors to use it as a base of cryptosystem [START_REF] Ariffin | Modified baptista type chaotic cryptosystem via matrix secret key[END_REF]. They are topologically conjugate, that means they have similar topological properties (distribution, chaoticity, etc.) however due to the structure of number in computer realization their numerical behaviour differs drastically. Therefore the original idea here is to combine features of tent (T µ ) and logistic (L µ ) maps to achieve new map with improved properties, trough combination of several network topologies. In this paper we propose new ideas of tent and logistic maps coupling, based on the analogy between mathematical circuits and electrical circuits [START_REF] Lozi | Designing chaotic mathematical circuits for solving practical problems[END_REF].

II. EXPLORING TOPOLOGIES OF NETWORK OF COUPLED CHAOTIC MAPS

Ring and auto-coupling of chaotic maps (or circuits) enables to combine the individual circuit's dynamics, and therefore, to obtain more complex dynamic behaviour. For instance, different ways of coupling several Chua's circuits gives rise to hyperchaos [START_REF] Lozi | Designing chaotic mathematical circuits for solving practical problems[END_REF]. It should be emphasized that these representations (Fig. 1) are also a perfect tool to investigate the topology of the map.

Looking at the equations we can inverse the shape of the graph of the tent map T on the step of logistic map L. Thus, our proposition has the form:

f µ (x) ≡ T L µ (x) = µ|x| -µx 2 = µ(|x| -x 2 ) (5) 
Recall that both logistic and tent maps have never been used in cryptography because they have weak security (collapsing Fig. 1. Circuits of ultra-weak coupling of chaotic Chua's circuits effect) [START_REF] Yuan | Collapsing of chaos in one dimensional maps[END_REF], [START_REF] Lanford | Informal remarks on the orbit structure of discrete approximations to chaotic maps[END_REF] if applied alone. Thus, systems are often used in modified form to construct PRNG [START_REF] Wong | A modified chaotic cryptographic method[END_REF], [START_REF] Nejati | A realizable modified tent map for true random number generation[END_REF]. The Lozi system [START_REF] Rojas | New alternate ring-coupled map for multi-random number generation[END_REF] provides method to increase randomness properties of the tent map over its coupling. In another way, we propose to couple T µ map over combination with T L µ map [START_REF] Feigenbaum | The universal metric properties of nonlinear transformations[END_REF]. When used in more than one dimension, T L µ map can be considered as a two dimensional map:

T L µ (x (1) , x (2) ) = µ(|x (1) | -(x (2) ) 2 ) ( 6 
)
Hence it is possible to define a mapping

M p from [-1, 1] p → [-1, 1] p M p       x (1) n x (2) n . . . x (p) n       =       x (1) n+1 x (2) n+1 . . . x (p) n+1       =            T µ (x (1) n ) + T L µ (x (1) n , x (2) 
n ) T µ (x (2) n ) + T L µ (x (2) n , x (3) n 
) . . . T µ (x (p) n ) + T L µ (x (p) n , x (1) 
n ) (7) Note that the system dynamics is unstable and trajectories quickly spread out. Therefore, to solve the problem of holding dynamics in the bound [-1, 1] p the following injection mechanism has to be used:

if x (i) n+1 < -1 then add 2 if x (i) n+1 > 1 then substract 2 (8) in this case for 1 ≤ i ≤ p, points come back from [-3, 3] p to [-1, 1] p .
Auto and ring-coupling between states (Fig. 2) of the map and injection mechanism influence the system dynamics making its dynamics complex enough for our application purposes.

Used in conjunction with T µ the T L µ function allows to establish mutual influence between system states. The function is attractive because it performs contraction and stretching distance between states improving chaotic distribution. Thus, T L µ function is a powerful tool to change dynamics.

The coupling of the simple states has excellent effect on chaos achieving, because:

• Simple states interact with global system dynamics, being a part of it. • The states interaction has a global effect. Hence, if we use T L µ to make impact on the dynamics of simple maps, then excellent effect on chaoticity and randomness could be achieved. The proposed function improve the complexity of a simple map.

Note that the system ( 7) can be seen in the scope of a general point of view, introducing constants k i which generalize considered topologies. It is called alternate if

k i = +1, 1 ≤ i ≤ p, or non-alternate if k i = (-1) i , 1 ≤ i ≤ p; or k i = -1, 1 ≤ i ≤ p.
It can be a mix of alternate and non-alternate if k i = +1 or -1 randomly. As well it has been already shown that the coupling could improve the performances of well known chaotic attractors (Chua, Lorenz, Rossler, etc.) for application purposes [START_REF] Lozi | Designing chaotic mathematical circuits for solving practical problems[END_REF].

M p       x (1) n x (2) n . . . x (p) n       =       x (1) n+1 x (2) n+1 . . . x (p) n+1       =            T µ (x (1) n ) + k 1 × T L µ (x (1) n , x (2) 
n ) T µ (x (2) n ) + k 2 × T L µ (x (2) n , x (3) n ) . . . T µ (x (p) n ) + k p × T L µ (x (p) n , x (1) n ) (9)
In this paper we will discuss only systems exhibiting the best properties for CPRNG. Therefore, we will consider only two 2-D systems:

T T L RC µ (x (2) 
n , x

n ) non-alternate:

T T L RC µ : x (1) n+1 = 1 -µ|x (1) 
n | + µ(|x (2) 
n | -(x (1) 
n ) 2 ) x (2) n+1 = 1 -µ|x (2) n | + µ(|x (1) n | -(x (2) n ) 2 ) (10) and T T L SC µ (x (1) n , x (2) 
n ) alternate:

T T L SC µ :
x

(1) n+1 = 1 -µ|x (1) n | -µ(|x (1) 
n | -(x (2) n ) 2 ) x (2) n+1 = 1 -µ|x (2) n | + µ(|x (1) n | -(x (2) n ) 2 )
(11) Here RC stand for ring-coupling and SC for standard coupling. We are now assessing the randomness of both selected maps. The associated dynamical system is considered to be random and could be applied to cryptosystems if the chaotic generator meets the requirements 1-8 on Fig. 3. If one of the criterion is not satisfied, the behavior is less random than expected. As it has been summarized in the scheme (Fig. 3) a generator could be taken into consideration for cryptography application if and only if each criterion is satisfied.

III. RANDOMNESS STUDY OF THE NEW MAPS T T L RC

Chaotic map behavior primarily depends on the initial guess x 0 and "control" parameter µ. However, the dependence versus the initial guess, x 0 has less importance when the global phase portrait is scrutinized. Thus, to study the dependency of parameter µ a bifurcation diagram is an appropriate tool. To create the diagram for the new map, a particular initial value of x 0 is randomly selected, and the map is iterated for a given µ. A certain number of firstly generated points is cut off to remove the transient part of the iterated points, and the following points are plotted. Afterwards, the process is repeated incrementing slightly µ.

To For both graphs starting from µ = 0 to µ = 0.25, we can observe a period 1 (i.e. a fixed point). Then the steadystate response undergoes a so-called pitchfork bifurcation to period 2. Following bifurcation undergoes multiple periods. At higher µ values, the behavior is generally chaotic. However, for T T L RC µ near µ = 1.1 (Fig. 4.a) periodic windows appear. The subsequent intervals show perfect chaotic dynamics.

The Lyapunov exponent (LE) is a measure of the system sensitivity to initial conditions. The function of Lyapunov exponent λ is the characteristic of chaotic behavior in nonlinear maps. If λ > 0 the system exhibits chaotic behaviour.

Let us observe the graphics of Lyapunov exponent for T T L RC µ non-alternate (Fig. 5.a) and T T L SC µ alternate (Fig. 5.b) maps. For the plotting 10, 000 iterations were taken into account for every value of µ. The µ parameter is selected from 0.5 to 2. The list of points formed with µ is described on horizontal coordinate and the measure λ is on the vertical The study demonstrates that T T L RC µ non-alternate (Fig. 5.a) and T T L SC µ alternate (Fig. 5.b) maps exhibit the best chaotic behavior characteristics when µ = 2, therefore we will continue our study fixing the parameter to this value. On the graphs for any given initial point x 0 trajectories will look like chaotic. Hence, we can study an attractor in phase space and phase delay.

Let us plot the attractor in the phase space: x

(1) n versus x The graphs of the attractor in phase space for T T L RC 2 nonalternate (Fig. 6a) and T T L SC 2 alternate (Fig. 6b) maps are quite different. The first one has well scattered points on all the pattern, but there are some more "concentrated" regions forming curves on the graph.

The quality of the entire cryptosystem mostly depends on PRNG and one of the most important things for robust PRNG is uniform distribution of generated values in the space (Criterion 5, Fig. 3). An approximated invariant measure gives the best picture of probability. Thus, the invariant measure [START_REF] Lozi | Chaotic pseudo random number generators via ultra weak coupling of chaotic maps and double threshold sampling sequences[END_REF] is used for precise study of the points distribution. Good results are demonstrated with two different kinds of coupling, simple and ring-coupling in dimension 2, thus increasing the complexity of the system. However as those results are not completely satisfactory, an improved geometry of coupling is introduced allowing us to describe a new 2-D Chaotic Pseudo Random Number Generator (CPRNG). It was noticed that some parts of the graph are perfectly joined, giving us idea to improve points density using some correction in equations.

IV. TWO NEW 2-D CHAOTIC PRNG

Considering the results of section III it seems possible to improve the randomness of the 2-D topology. First, let us rewrite the mapping T T L SC µ alternate [START_REF] Lanford | Informal remarks on the orbit structure of discrete approximations to chaotic maps[END_REF] where µ = 2 as follows:

T T L SC 2 (x (1) n , x (2) 
n ) = x (1) n+1 = 1 + 2(x (2) n ) 2 -4|x (1) n | x (2) n+1 = 1 -2(x (2) n ) 2 + 2(|x (1) n | -|x (2) n |) ( 12 
)
The first problem is that top green coloured region occurs after injection is applied. Thus, we develop the system (15) in such a way that green coloured region "stays" in such position without injection mechanism. Secondly, we need to reduce the width of the region. Obviously, it is possible to achieve this need by reducing the impact of the state x 1 , with the new following map:

M T T L SC 2 (x (1) n , x (2) 
n ) = x (1) n+1 = 1 + 2(x (2) n ) 2 -2|x (1) n | x (2) n+1 = 1 -2(x (2) n ) 2 + 2(|x (1) n | -|x (2) n |) (13) 
with the injection mechanism (8) used as well, but restricted to 3 phases:

if x (1) n+1 > 1 then substract 2 if x (2) n+1 < -1 then add 2 if x (2) n+1 > 1 then substract 2 (14)
The results of the modifications are demonstrated on Figs. 8,7.a and 7.b. The injection mechanism in 3 phases (Fig. 8) matched regions in an excellent way. The techniques used, greatly improve the points density in the phase space (Figs. 7). The numerical results of the errors distributions (Fig. 10) shows excellent distribution till 10 9 points which is limited by the classical computer power. Moreover, the largest Lyapunov exponent is equal to 0.5905 indicating strong chaotic behavior.

The graph (Fig. 10) shows straight error reducing that proves, uniform points distribution when the number of iterates increases. Fig. 10. Approximate distribution errors, for the system [START_REF] Nejati | A realizable modified tent map for true random number generation[END_REF] The points distribution of the attractor in phase delay is quite good as well (Fig. 11), where the plotting of 10 9 points are generated. In Fig. (11.b) tent distribution is recognized for x (2) variable but for encryption we need only output of one state (in our case x (1) ). Both states make strong impact on itself and for the global dynamics reaching significant points distribution on the torus and chaoticity. 

n , x

n+1 ) b) (x (2) n , x (1) 
n+1 )

The M T T L SC 2 alternate map is ring-and auto-coupled. Since one state takes part on creating dynamics of other one, both auto-correlation and cross-correlation have to be analysed for dependency and repeatability. The results of the 2-dimensional system are represented in Fig. 12. The same excellent results are in Fig. 12.a for autocorrelation, and in Topologically mixing means the system capability to progress over a short period of time. The system from any given initial region or open set of its phase space will ultimately be mixed up with any other region so that it is impossible to predict system evolution.

Here we represent graphical analysis of the 2-D M T T L SC 2 alternate map for topological mixing. The square [0, 1] 2 is divided into 4 quadrants and each of them are split into 15 boxes as well (A2, B2, C2, • • • , O2). 5 × 10 3 points have been generated in each of the boxes (Fig. 13). It is showed where the points from the initial boxes (A1, B1, C1, • • • , O1) of quadrant are mapped. From the Fig. 13 it can be seen that points are distributed everywhere over the square, and it is hard to predict the next point or to find the previous one. The system is perfectly mixing because the regions are superimposed to each other. For example the blue colored region which is the image of the A2 box passes through the boxes O1, I1, P 1, C1, B1, E1, H1, M 4, N 4 (Fig. 13). Colours and letters overlapping on the graphs vividly demonstrate that arbitrarily close points in some periods of time will have vastly different behaviors which means mixing. Both states of the generator successfully passed NIST tests (Fig. 14) demonstrating strong randomness and robustness against numerous statistical attacks.

We introduce now another structurally simple 2-D map using another topology. The map is described as follow:

N T T L SC 2 (x (1) 
n , x

n ) = x (1) n+1 = 1 -2|x (2) n | x (2) n+1 = 1 -2(x (2) n ) 2 -2(|x (2) n | -|x (1) n |) (2) 
applying injection mechanism (Fig. 15) to hold dynamics in

[-1, 1] 2 : if x (2) n+1 < -1 then add 2 if x (2) n+1 > 1 then substract 2 (16) 
The N T T L 2 exhibits excellent density in phase delay for both states (Fig. 16), being very promising in real application.

The N T T L 2 map exhibits complex dynamics capable to refuse statistical attacks since it successfully passed NIST tests (Fig. 17).

The future work will be devoted to the investigation of topologies in 3 dimensional space where the complexity of 

n , x

n+1 ) b) (x (1) 
n , x

Fig. 17. N T T L 2 map successfully passed NIST tests dynamical phenomena are expected to exhibit even better performances, though being more intricate [START_REF] Manjunath | A 3-dimensional piecewise affine map used as a chaotic generator[END_REF] V. CONCLUSION

In this paper we have proposed the original idea to couple two well-known chaotic maps (tent and logistic one), which considered separately -don't exhibit the required features for encryption purposes because they have weak security (collapsing effect) when applied alone. The new coupling changed qualitatively the overall system behavior, because the maps used with injection mechanism and coupling between states increased their complexity.

We have explored several topologies and finally proposed two new 2-D CPRNG. The proposed models with injection mechanism allow to puzzle perfectly the pieces of the chaotic attractor, like a true random generator. To achieve the best distribution in the phase space, the modified form M T T L SC 2 alternate map has been proposed. The new map exhibits excellent features due to the injection mechanism and enables the uniform density in the state space. The system exhibits strong nonlinear dynamics, demonstrating great sensitivity to initial conditions. It generates an infinite range of intensive chaotic behavior with large positive Lyapunov exponent values. Moreover, M T T L SC 2 successfully passed all required tests: cross-correlation, autocorrelation, LLE, NIST tests, uniform attractor on the phase space and phase delay. The system analysis and the dynamics evolution by bifurcation diagram and topological mixing proved the complex behavior. The system orbits exhibited complex behavior with perfect mixing. The study demonstrated totally unpredictable (for any intruder) dynamics making the system strong-potential candidate for high-security applications. Another CPRNG candidate based on N T T L SC 2 map was proposed that successfully passed all required statistical, graphical and numerical results for both states components. The N T T L SC
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map demonstrates complex dynamics being very promising to real scale cryptography application.