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Abstract

This article introduces and analyzes a new adaptive algorithm for solving symmetric pos-
itive definite linear systems in cases where several preconditioners are available or the usual
preconditioner is a sum of contributions. A new theoretical result allows to select, at each
iteration, whether a classical Preconditioned CG iteration is sufficient (i.e. the error decreases
by a factor of at least some chosen ratio) or whether convergence needs to be accelerated by
performing an iteration of Multi Preconditioned CG [4]. We first present this in an abstract
framework with the one strong assumption being that a bound for the smallest eigenvalue
of the preconditioned operator is available. Then, we apply the algorithm to the Balancing
Domain Decomposition method and illustrate its behaviour numerically. In particular we ob-
serve that it is optimal in terms of local solves, both for well conditioned and ill conditioned
test cases, which makes it a good candidate to be a default parallel linear solver.

Keywords: Krylov methods, Preconditioners, Conjugate Gradient, Domain Decomposition,
Robustness, BDD.

1 Introduction

We consider the problem of solving a symmetric positive definite linear system Ax∗ = b with the
Conjugate Gradient (CG) algorithm [22]. Since we consider possibly ill conditioned systems, a
very standard way to accelerate convergence is to use a preconditioner H. This is to say that we
solve HAx∗ = Hb where the condition number λmax/λmin of HA is much smaller than the one of
A (with λmax and λmin denoting respectively the largest and smallest eigenvalue). The reason why
this improves the convergence of the iterative solver is that the relative error at a given iteration
depends on the condition number [34, 24, 42].

One particular type of preconditioning is projection preconditioning [9]. It is closely related to
deflation [36, 43], augmentation [5] and balancing [23]. A review and analysis of these methods can
be found in [48, 14] or [28] with an application to substructuring Domain Decomposition. The idea
is to choose an auxiliary, or deflation space, and precompute the exact solution in this subspace.
Then the iterative solver only needs to be applied on the remainder of the error. If the deflation
space is well chosen the conditioning, and hence the convergence, are greatly improved. In practice
the deflation space is often computed as an approximation of the eigenvectors corresponding to
isolated eigenvalues of the preconditioned operator, for example by recycling information from a
previous linear solve [15, 50, 2, 20] (see also section 2.2).

The method that we propose is based on the Multi Preconditioned CG (MPCG) algorithm [4].
MPCG is itself related to the block CG algorithm [38, 37] and the multi parameter descent method
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[3]. It applies to linear systems for which there are N different preconditioners Hs (s = 1, . . . , N)

or for which the usual preconditioner is a sum
∑N
s=1 Hs. One case where this occurs is domain

decomposition. Indeed the idea behind domain decomposition is to approximate the inverse of
a global matrix by a sum of inverses of smaller local problems. This property has already been
exploited since it has been proposed to compute the deflation space by solving local generalized
eigenvalue problems: see [33] followed by [44, 47, 26, 27] for the substructuring methods FETI
and BDD [12, 29, 31]; [35, 8, 46, 13, 11] for the overlapping Additive Schwarz method [49]; and
[30, 19] for the Optimized Schwarz method. In this article we will use the Balancing Domain
Decomposition method as an illustration for our new algorithms. We refer to section 4.3 for a brief
summary of the deflation space proposed in [47] (called GenEO for Generalized Eigenvalues in the
Overlaps) and the corresponding convergence result. Fast convergence is guaranteed theoretically,
even in hard heterogeneous cases such as the ones exhibited in [39].

The original motivation for the algorithms in this article was to compute the same deflation
space without needing to solve generalized eigenvalue problems. As already mentioned, the frame-
work for our new algorithms is MPCG [4]. MPCG has already been applied to Additive Schwarz
[17] and FETI (Simultaneous FETI algorithm in [40, 16]). In both cases good convergence was
observed. The drawback of these methods is that they generate very many search directions and
the cost of minimizing over these search directions and orthogonalizing future contributions against
them may become prohibitive specially if very many processors are used.

Instead, our algorithms consider each contribution arising from the application of one Hs as a
candidate [2] to augment the space in which we look for the solution (called the minimization space).
A theoretical estimate (4) predicts whether this candidate should augment the minimization space

or whether it should only contribute to it through the global preconditioner
∑N
s=1 Hs. The estimate

is only practical if a lower bound for the eigenvalues of the preconditioned operator is known (e.g.
for the substructuring Domain Decomposition methods λmin ≥ 1 [31, 29, 49]). The idea for the
new algorithms was first briefly introduced in [45](section 7.3) in the FETI framework. We prove
that, given a targeted contraction factor 0 < ρ < 1, and at a given iteration, either the error is
reduced by a factor ρ, or the coarse space is augmented with contributions coming from several
components Hs (with the purpose of accelerating convergence). This guarantees that the iterations
at which the algorithm performs some extra work are exactly those at which it is necessary.

The outline of the article is as follows. In section 2 we introduce some classical results for the
Projected Preconditioned CG algorithm (PPCG) and prove the new estimate (4). In section 3 we
introduce our two new algorithms in a general framework and prove the corresponding theoretical
results. In section 4 we apply the algorithms to BDD. Finally, in section 5, we illustrate their
behaviour and compare them to existing methods.

2 Projected Preconditioned Conjugate Gradient (PPCG)

Let n ∈ N. The three assumptions in this section are:

(A1) A ∈ Rn×n is a symmetric positive definite matrix,

(A2) H ∈ Rn×n is a symmetric positive definite matrix,

(A3) U ∈ Rn×n0 is a full rank matrix with n0 < n.

Throughout the article, we consider the following problem:

Find x∗ ∈ Rn such that Ax∗ = b

for a given right hand side b ∈ Rn. The natural iterative solver is the conjugate gradient (CG)
algorithm. We choose to accelerate it by a (left) preconditioner that we denote by H, as well
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as a (right) projection preconditioner Π induced by the choice of U as follows. Let Π be the
A-orthogonal projection satisfying Ker(Π) = range(U), or explicitly,

Π := I−U(U>AU)−1U>A. (1)

2.1 Description and well known results

Algorithm 1 describes the Projected Preconditioned Conjugate Gradient (PPCG) algorithm [9]
and introduces most of the notation.

Algorithm 1: PPCG algorithm for Ax∗ = b preconditioned by H and Π = I −
U(U>AU)−1U>A for initial guess x00

x0 = Πx00 + U(U>AU)−1U>b; // Improved initial guess

r0 = b−Ax0 ;
z0 = Hr0;
p0 =Πz0; // Projected initial search direction

for i = 0, 1, . . . , convergence do
qi = Api;

αi =
〈ri, zi〉
〈qi,pi〉

;

xi+1 = xi + αipi ;
ri+1 = ri − αiqi;
zi+1 = Hri+1;

βi =
〈zi+1,Api〉
〈pi, Api〉

;

pi+1 = Πzi+1 − βipi; // Projected search direction

end
Return xi+1;

If U is the empty matrix then Π = I and we recover the usual Preconditioned Conjugate
Gradient (PCG) algorithm. Algorithmically there are two differences between PCG and PPCG.
The first is that the initial guess x00 given by the user is improved by computing the exact solution
in the space range(U) (this can be rewritten as a projection): x0 = Πx00 + U(U>AU)−1U>b =
x00 + (I−Π)(x∗− x00). The second difference is a consequence. Indeed, the iterative solver must
only compute the remaining part of the solution (Πx∗) so all search directions are projected into
range(Π). Variants of this process are deflation, balancing and augmentation [9, 36, 43, 5, 23, 14]
(see e.g. [48] for a comparison). In the particular field of domain decomposition the deflation
space range(U) is referred to as the coarse space (see section 3). Next we state a list of well known
results for PPCG [28, 42]:

1. The exact solution is achieved after at most n− n0 (= n− rank(U)) iterations.

2. ‖x∗ − xi‖A = min {‖x∗ − x‖A; x ∈ x00 + range(U) + span{p0, . . . ,pi−1}}.
3. Search directions are pairwise A-orthogonal: 〈pi,Apj〉 = 0 (i 6= j).

4. Residuals are pairwise H-orthogonal: 〈ri,Hrj〉 = 0 for all (i 6= j).

2.2 Choice of the deflation space

Since the approximation given by iteration i of PPCG minimizes the error over all vectors xi ∈
x00 + range(U) + span{p0, . . . ,pi−1} it is natural that augmenting the space range(U) leads to
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better convergence. On the other hand, if the number n0 of columns in U is too large, then the
factorization of U>AU in the definition of Π becomes excessively costly. In other words, it is
necessary to identify carefully which are the vectors that will help accelerate convergence.

One way to estimate the relative error of PCG is to use the following convergence result [34, 24]
(see also [42](Theorem 6.29)):

‖x∗ − xi‖A
‖x∗ − x0‖A

≤ 2

[√
λmax/λmin − 1√
λmax/λmin + 1

]i
, (2)

where λmax and λmin are bounds for the spectrum of the preconditioned operator HA. For PPCG
the same estimate holds but where λmax and λmin are replaced by bounds for the non zero eigen-
values of the projected preconditioned operator HAΠ [9] (or equivalently the eigenvalues of HA
restricted to range(Π)). Consequently, the ideal strategy for choosing U is to first compute all
isolated eigenvalues of HA and use the corresponding eigenvectors as a basis for the deflation space
range(U). This way, the spectrum of HAΠ is clustered and (2) guarantees good convergence. Of
course it is unrealistic to compute the spectrum of HA. Instead it has been proposed to approx-
imate a priori the isolated eigenvalues. An option, popular in domain decomposition, is to solve
auxiliary (less costly) eigenvalue problems [33, 44, 47, 26, 27, 35, 8, 46, 13, 11, 30, 19] (see also
section 4.3).

The algorithms that we propose in this article are very closely related to deflation except that
U is initialized with vectors chosen a priori and then augmented with vectors selected on the fly.
First, we derive an estimate that allows us to do that.

2.3 Monitoring the relative error in PPCG

With the notation from Algorithm 1, and denoting by di the error at iteration i: di = x∗ − xi,
the authors in [1] prove that

‖di‖2A = ‖di−1‖2A − α2
i−1‖pi−1‖2A, for all i = 1, . . . , n− n0 − 1. (3)

The proof holds in three steps: first, by the finite termination property (item 1 in section 2.1),

the exact solution can be written as x∗ = x0 +
∑n−n0−1
j=0 αjpj = xi +

∑n−n0−1
j=i αjpj . Then, the

A-conjugacy between search directions (item 3 in section 2.1) implies that ‖di‖2A = ‖x∗ − xi‖2A =∑n−n0−1
j=i α2

j‖pj‖2A. Finally (3) follows easily by subtraction.

Remark 1. The proof in [1] is for the non projected PCG (n0 = 0) but goes through in the same
way when considering PPCG with the difference that the process finishes in at most n−n0 iterations
(instead of n).

The authors use this to derive some a posteriori error estimates and stopping criteria. Here, we
build on the same starting point to derive two adaptive algorithms with the objective of accelerating
convergence when necessary. Let’s assume that at iteration i we have not yet found the exact
solution (i.e. di 6= 0) then (3) can be rewritten as

‖di−1‖2A
‖di‖2A

= 1 +
‖αi−1pi−1‖2A
‖di‖2A

= 1 +
‖αi−1pi−1‖2A
‖ri‖2H

‖ri‖2H
‖di‖2A

= 1 +
‖αi−1pi−1‖2A
‖ri‖2H

‖di‖2AHA

‖di‖2A
.

Noticing that the last factor is related to a Rayleigh quotient for HA we deduce that

‖di‖2A
‖di−1‖2A

≤
(

1 + λmin
‖αi−1pi−1‖2A
‖ri‖2H

)−1

, (4)
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where λmin is again the smallest eigenvalue of the preconditioned operator HA. Indeed, it holds
that ‖y‖2AHA ≥ λmin‖y‖2A for all y ∈ Rn (see e.g. [49](Lemma C.1)).

From estimate (4) we deduce that, if there exists τ > 0 such that τ‖ri‖2H ≤ ‖αi−1pi−1‖2A at
every iteration i = 1, . . . , j, then ‖dj‖A/‖d0‖A ≤ (1 + λminτ)−j/2. Conversely, to guarantee that
the error decreases at least linearly with a given contraction factor ρ (i.e. ‖di‖/‖di−1‖ ≤ ρ), it is
sufficient to check that:

‖αi−1pi−1‖2A
‖ri‖2H

≥ τ with τ :=
1− ρ2

λminρ2
. (5)

In the next section we introduce two new algorithms that aim at guarantying a targeted convergence
bound. They are based on evaluating, at each iteration, whether (5) holds or not. In the case
where it doesn’t, we propose to accelerate convergence.

Remark 2. After division by ‖di−1‖2A, (3) can also be rewritten as

‖di‖2A
‖di−1‖2A

= 1− 〈ri−1, zi−1〉2
〈Api−1,pi−1〉2

· 〈Api−1,pi−1〉
〈Adi−1,di−1〉

≤ 1− λmin
〈ri−1, zi−1〉
〈Api−1,pi−1〉

.

We mention this estimate because it arises more naturally and we have not seen it before. However
we did not use it in our adaptive algorithms.

Remark 3. The very existence of formula (4) is what motivates the choice of an adaptive MPCG
algorithm over an adaptive Multi Preconditioned GMRES (MPGMRES) algorithm based on MPGM-
RES [18]. Another advantage of MPCG is that the size of the minimization space grows linearly
with the iteration count (we will reduce this even further) whereas with MPGMRES the growth is
exponential. We note however that selective MPGMRES was proposed in [18] to keep the growth
linear.

3 Main Result: New Adaptive Algorithm

We make two extra assumptions on the preconditioned system HAx∗ = Hb:

(A4) a lower bound λmin for the spectrum of HA is known,

(A5) the preconditioner H is a sum of N contributions : H =
N∑
s=1

Hs, with each Hs symmetric

and positive semi definite.

The motivation for these two assumptions is directly connected to the two main ingredients in
the adaption step of our adaptive algorithm. Indeed Assumption (A4) guarantees that the terms
in the relative error estimate (4) can be evaluated and consequently that this estimate can be used
as an indicator of whether we need to adapt the algorithm or not (i.e. accelerate convergence).
Assumption (A5) is just as vital since, when a lack of robustness is detected, convergence will be
improved by searching for the next approximate solution in a space spanned by contributions from
each of the Hs instead of just one contribution corresponding to H.

3.1 Presentation of the New Algorithm

Algorithm 2 presents the new algorithm and introduces some new notation. The new algorithm
is designed to adapt automatically if convergence is too slow. More precisely, given a threshold
τ ∈ R+ chosen by the user, the adaptation step is between lines 7 and 12. We will refer to
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the test in line 8 as the τ–test. If the τ–test returns ti ≥ τ , then the algorithm predicts that
there is no need to adapt and performs a step of PPCG. If the τ–test returns ti < τ , then the
PPCG algorithm is not reducing the error sufficiently and the algorithm performs one step of the
(projected) Multi Preconditioned CG (MPCG) algorithm [4] for the N preconditioners Hs. This
automatically improves the next approximate solution since the error is minimized over a larger
search space that includes the usual search space (see Property 2 in Theorem 1). There are two
extreme choices for τ : if τ = 0 then we recover the usual PPCG iterations and if τ = ∞ then we
recover the (projected) MPCG algorithm.

Algorithm 2: New algorithm for Ax∗ = b preconditioned by

(
N∑
s=1

Hs

)
and Π for initial

guess x00. τ ∈ R+: chosen by user.

1 x0 = Πx00 + U(U>AU)−1U>b; r0 = b−Ax0; Z0 = Hr0; P0 = ΠZ0;
2 for i = 0, 1, . . . , convergence do
3 Qi = APi;

4 ∆i = Q>i Pi; γi = Pi
>ri; αi = ∆†iγi;

5 xi+1 = xi + Piαi ;
6 ri+1 = ri −Qiαi ;

7 ti =
γ>i αi

r>i+1Hri+1
;

8 if ti < τ then // τ-test
9 Zi+1 =

[
H1ri+1 | . . . |HNri+1

]
; // Concatenate the N vectors

10 else
11 Zi+1 = Hri+1;
12 end

13 Φi,j = Q>j Zi+1; βi,j = ∆†jΦi,j for each j = 0, . . . , i;

14 Pi+1 = ΠZi+1 −
i∑

j=0

Pjβi,j ;

15 end
16

Adaptive Multi Preconditioning

Return xi+1;

Each time ti < τ , an N ×N matrix ∆i = PT
i APi must be inverted. Since Pi is the concatena-

tion of contributions from the components Hs in the preconditioner, it is reasonable to expect that
∆i be full-rank. If it is not, then ∆i is only positive semi definite and pseudo-inversion (denoted

by ∆†i ) is necessary. In any case, both γi and the columns in Φj,i are in range(PT
i ) = range(∆i)

so that the iteration is always well defined. The exact same occurs in the Simultaneous FETI and
Block FETI algorithms [16]. There, it is proposed to operate a rank-revealing Cholesky factoriza-
tion (symmetric pivoting) on each ∆i to replace Pi by an A-orthonormal basis Pi of range(Pi)
and simplify future orthogonalization steps.

We have presented the algorithm with full reorthogonalization (lines 13 and 14). It is known
that for MPCG this is necessary but for PPCG it is not (βi,j = 0 as soon as j 6= i) so some
reorthogonalization steps may be skipped. Here we do not comment further on this for several
reasons: (i) we plan for our algorithm to solve the problem in few iterations so the cost of reorthog-
onalization will be low, (ii) for substructuring methods, which is the application that we propose
in the next section, it has been observed that full reorthogonalization is in fact crucial because of
numerical errors.

Remark 4. For clarity we give the size of the different variables (recall that n is the size of the
global problem and the preconditioner has N components):
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• A,Π,H,H0, . . . ,HN ∈ Rn×n,

• x∗,xi, ri,b ∈ Rn,

• Zi+1,Pi+1,Qi+1 ∈ Rn×N or Rn depending on the iteration,

• ∆i ∈ RN×N or R depending on the iteration,

• γi,αi ∈ RN or R depending on the iteration number i,

• Φi,j ,βi,j ∈ RN×N or RN or R1×N or R depending on the iteration numbers i and j,

Note that the quantities Piαi and APiαi are always vectors in Rn. Note also that we only use
the notation 〈·, ·〉 for computing the inner product between two vectors.

3.2 The usual PPCG properties hold for Algorithm 2

In Theorem 1 we prove results similar to the ones stated in section 2.1 for PPCG.

Theorem 1. Algorithm 2 satisfies the five following properties:

1. The exact solution is achieved after at most n− n0 iterations.

2. ‖x∗ − xi‖A = min
{
‖x∗ − x‖A; x ∈ x00 + range(U) +

∑i−1
j=0 range(Pj)

}
.

3. Blocs of search directions are pairwise A-orthogonal: P>j APi = 0 (i 6= j).

4. Residuals are `2-orthogonal to previous search directions: P>j ri = 0 (i > j).

5. Residuals are pairwise H-orthogonal: 〈Hrj , ri〉 = 0 (i 6= j).

Proof. In the following, many simplifications occur thanks to the A-orthogonality of projection
Π. Also note that Π>A = AΠ by definition of Π in (1); ΠPi = Pi since Pi ∈ range(Π); and
Π>ri = ri since ri ∈ range(Π>).

Proof by induction of Properties 3 and 4:

The case i = 1 is simple: P>0 AP1 = P>0 AΠZ1 −P>0 AP0β0,0 = Φ0,0 −∆0∆
†
0Φ0,0 = 0,

and P>0 r1 = P>0 r0 −P>0 Q0α0 = γ0 −∆0∆
†
0γ0 = 0.

Next we assume that both properties hold for a given i ≥ 1 and deduce them for i + 1. Let
j ≤ i, then

P>j APi+1 = P>j AΠZi+1 −
i∑

k=0

P>j APkβi,k = Φi,j −∆j∆
†
jΦi,j = 0,

P>j ri+1 = P>j ri −P>j Qiαi =

{
0 if j 6= i since P>j ri = 0 and P>j Qi = 0,

P>i ri −P>i Qiαi = γi −∆i∆
†
iγi = 0 if j = i.

Proof of Property 5:
By symmetry of H it suffices to prove that 〈Hrj , ri〉 = 0 for all i > j. This follows directly from

〈Hrj , ri〉 = 〈ΠHrj , ri〉 and Property 4 since ΠHrj ∈
j∑

k=0

range (Pk).

Proof of Property 2:
The minimization result is equivalent to the fact that xi − x00 is the A-orthogonal projection of
x∗−x00 onto range(U)+

∑i−1
j=0 range(Pj). With this, the proof comes down to the A-orthogonality

between this space and x∗ − xi = (x∗ − x00)− (xi − x00). We begin with the space range(U) :

U>A(x∗ − xi) = U>ri = U>Π>ri = (ΠU)>ri = 0 since Ker(Π) = range(U).
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For any of the spaces range(Pj) (j = 0, . . . , i − 1) the argument is Property 4: P>j A(x∗ − xi) =

P>j ri = 0.
Proof of Property 1:
The fact that xn−n0

= x∗ follows from the observation that rank (Pi) ≥ 1 at every iteration until
convergence is achieved. This is another way of saying that the algorithm does not break down. In-
deed, assume that rank (Pi) = 0 then ΠHri ∈ span{P0, . . . ,Pi−1} = span{ΠHr0, . . . ,ΠHri−1}.
Equivalently we may write

Hri ∈ span{Hr0, . . . ,Hri−1}+ Ker(Π)
⇔ H1/2ri ∈ span{H1/2r0, . . . ,H

1/2ri−1}+ H−1/2Ker(Π).

By Property 5 it holds that 〈ri,Hrj〉 = 0 for j = 0, . . . , i− 1 and ri ∈ Im(Π>) so ri ⊥ Ker(Π). It
follows that, if rank (Pi) = 0, then the exact solution has been found before iteration n − n0. If
this hasn’t occurred then, by a dimensional argument, at iteration n− n0 the minimization space
is the whole of Rn and xn−n0 = x∗.

3.3 Convergence Results

The following theorems hold.

Theorem 2. If the exact solution has not yet been achieved at iteration i− 1 of Algorithm 2 and
ti−1 ≥ τ then the relative error is bounded by

‖x∗ − xi‖A
‖x∗ − xi−1‖A

≤
(

1

1 + λmin τ

)1/2

.

(Recall that τ ∈ R+ is the threshold chosen by the user and λmin is a lower bound for the smallest
eigenvalue of the preconditioned operator HA.)

Proof. The proof follows the same lines as for the results in section 2. Once more we use the
notation di = x∗−xi for the error at iteration i. By the finite termination property in Theorem 1
(Property 1) , there exists an iteration number I ≤ n − n0 such that xI = x∗ so x∗ = x0 +∑I−1
i=0 Piαi = xi+

∑I−1
j=i Pjαj , or equivalently di =

∑I−1
j=i Pjαj . The blocs of search directions are

pairwise A-orthogonal (Property 3 in Theorem 1) so by subtraction we obtain ‖di‖2A = ‖di−1‖2A−
‖Pi−1αi−1‖2A. Then, recalling that ‖ri‖2H = ‖di‖2AHA ≥ λmin‖di‖2A (by definition of λmin), it
holds that :

‖di−1‖2A
‖di‖2A

= 1 +
‖Pi−1αi−1‖2A
‖ri‖2H

‖ri‖2H
‖di‖2A

≥ 1 + λmin
‖Pi−1αi−1‖2A
‖ri‖2H

.

The fraction corresponds to the quantity that is measured by the τ–test. Indeed

‖Pi−1αi−1‖2A = 〈γi−1,∆
†
i−1∆i−1∆

†
i−1γi−1〉 = γ>i−1αi−1, (6)

so the assumption that ti−1 ≥ τ can be rewritten as ‖Pi−1αi−1‖2A ≥ τ‖ri‖2H and the result
follows.

The following corollary provides some insight into how to choose the parameter τ by, instead,
choosing a targeted contraction factor ρ. This is related to the discussion that yielded (5) in
Section 2.

Corollary 1. Let 0 < ρ < 1 and τ be chosen as τ = 1−ρ2
λminρ2

. Under the assumptions of Theorem 2

it holds that
‖x∗ − xi‖A
‖x∗ − xi−1‖A

≤ ρ.
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The next theorem states that, if the problem is well conditioned, then no adaption will be
performed and the additional cost compared to PPCG is just the cost of performing the τ–test
(two inner products and one scalar division) which is negligible.

Theorem 3. If all eigenvalues of the preconditioned operator HA are smaller than 1/τ then the
result of the τ–test is ti ≥ τ at each iteration and Algorithm 2 performs the usual PPCG iterations.

Proof. We begin with ri = ri−1 −Qi−1αi−1 and take the inner product by Hri:

〈Hri, ri〉 = −〈Hri,APi−1αi−1〉 (by Property 5 in Theorem 1).

An application of the Cauchy-Schwarz inequality in the A-norm gives

〈Hri, ri〉 ≤ 〈Hri,AHri〉1/2〈Pi−1αi−1,APi−1αi−1〉1/2,

or equivalently
〈Hri, ri〉
〈Hri,AHri〉

≤ 〈Pi−1αi−1,APi−1αi−1〉
〈Hri, ri〉

. (7)

By assumption all eigenvalues of HA are smaller than 1/τ so 〈Hri,ri〉
〈Hri,AHri〉 ≥ τ and by this, (7)

and (6) the τ–test returns ti ≥ τ .

Corollary 2. If the τ–test returns ti−1 < τ then ‖Hri‖2H−1 < τ‖Hri‖2A. This implies that there
is at least one eigenvalue of HA that is larger than 1/τ . Moreover, it holds that 〈Hri,Av〉 6= 0
where v is an eigenvector corresponding to that eigenvalue. This explains why it makes sense to
augment the minimization space with the components of Hri.

Proof. The existence of an eigenvalue larger that 1/τ follows easily from (7) and (6).

3.4 Alternate Algorithm

We make one more assumption:

(A6) the operator A is a sum of N contributions : A =
N∑
s=1

As, with each As symmetric and

positive semi definite.

In cases where the number N of components in the preconditioner is very large, it may occur
that the cost of factorizing ∆i becomes excessive. In this case we propose to swap the global τ–test
in Algorithm 2 (line 8) for N tests that are local and deflate only the local components that are
problematic. This is presented in Algorithm 3 and the adaptation step is between lines 8 and 13.

The remarks from section 3.1 about the choice of τ , factorization of ∆i and full reorthogonal-
ization also apply here. Additionally, if at a given iteration Hsri+1 = 0, then tsi is not defined.
This is not a problem since in this case Hsri+1 does not contribute to the preconditioned resid-
ual and can be discarded right away. It cannot occur that Hsri+1 = 0 for all values of s unless
convergence is achieved (ri+1 = 0).

If the local τ–tests return tsi < τ for every s = 1, . . . , N at a given iteration, then Zi+1 =[
Hri+1|H1ri+1| . . . |HNri+1

]
and the first column is obviously linearly redundant so any efficient

implementation of the algorithm would delete it immediately.
As is the case for the global τ–test, the evaluation of the local τ–tests relies on quantities that

are available with little extra computational work. Indeed Qi =
∑N
s=1 AsPi, so AsPi is available

and all we need to perform is a linear combination of its columns with the coefficients given by
αi, followed by the inner product by Piαi. It makes sense to look for additional search directions
locally if the preconditioner is constructed as a sum of approximate inverses Hs of the components
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As in the operator. We illustrate this with the example of substructuring (domain decomposition)
solvers in the next section.

The theoretical properties of Algorithm 3 are stated in the following theorem. As expected
they are similar to the ones of Algorithm 2.

Theorem 4. The five properties proved in Theorem 1 hold. The convergence bound in Theorem 2
holds if the local τ–tests return tsi ≥ τ for every s = 1, . . . , N at a given iteration i.

Proof. The proof of the first result is the same as the proof of Theorem 1. For the second result,
the only additional argument is that tsi ≥ τ can be rewritten as 〈Piαi,A

sPiαi〉 ≥ τ 〈ri+1,H
sri+1〉

and summing these estimates over s = 1, . . . , N gives 〈Piαi,APiαi〉 ≥ τ 〈Hri+1, ri+1〉.

Algorithm 3: New algorithm for

(
N∑
s=1

As

)
x∗ = b preconditioned by

(
N∑
s=1

Hs

)
and Π for

initial guess x00. τ ∈ R+: chosen by user.

1 x0 = Πx00 + U(U>AU)−1U>b; r0 = b−Ax0; Z0 = Hr0; P0 = ΠZ0;
2 for i = 0, 1, . . . , convergence do
3 Qi = APi;

4 ∆i = Q>i Pi; γi = Pi
>ri; αi = ∆†iγi;

5 xi+1 = xi + Piαi ;
6 ri+1 = ri −Qiαi ;
7 Zi+1 = Hri+1; // initialize Zi+1

8 for s = 1, . . . , N do

9 tsi =
〈Piαi,A

sPiαi〉
r>i+1H

sri+1
;

10 if tsi < τ then // local τ-test
11 Zi+1 = [Zi+1 |Hsri+1]; // concatenate Zi+1 and Hsri+1

12 end

13 end

14 Φi,j = Q>j Zi+1; βi,j = ∆†jΦi,j for each j = 0, . . . , i;

15 Pi+1 = ΠZi+1 −
i∑

j=0

Pjβi,j ;

16 end
17

(Locally) Adaptive Multi Preconditioning

Return xi+1;

4 Application: Balancing Domain Decomposition (BDD)

Domain Decomposition methods are linear solvers for parallel computers. They are hybrid solvers
in the sense that they mix direct and iterative solves with the objective of achieving both robustness
and parallel efficiency. The trick is that the domain is split into (sufficiently small) subdomains and
all direct solves are performed inside these subdomains (where it is affordable) and not in the global
domain. An iterative solver (e.g. PPCG) connects the local components together. In this article
we will focus on one of the so called substructuring methods: Balancing Domain Decomposition,
or BDD [31].
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4.1 Notation and Introduction of the BDD formulation

Let’s assume that we are given a linear system Ku = f for a symmetric positive definite matrix
K ∈ Rm×m which corresponds to the finite element discretization of a Partial Differential Equation
(PDE) posed in an open subset Ω of R2 or R3. Let’s also assume that Ω has been partitioned
into N non overlapping and mesh conforming subdomains Ωs and that Γ is the set of boundaries
between subdomains:

Ω =
⋃

s=1,...,N

Ωs; Ωs ∩ Ωt = ∅ for all s 6= t; Γ =
⋃

s=1,...,N

∂Ωs \ ∂Ω.

Now, the original linear system admits the following block formulation(
KΓΓ KΓI

KIΓ KII

)(
uΓ

uI

)
=

(
fΓ
fI

)
⇔
{

KΓΓuΓ + KΓIuI = fΓ
KIΓuΓ + KIIuI = fI

,

where the subscript ∗Γ denotes the restriction to the set of degrees of freedom on Γ and ∗I to the
remainder. From the second line we deduce that uI = K−1

II (fI −KIΓuΓ) and by injecting this into
the first line we reduce the problem to one on the interfaces between subdomains: Find uΓ ∈ Rn
(n := #(Γ)) such that

AuΓ = b, where A := KΓΓ −KΓIK
−1
II KIΓ and b := fΓ −KΓIK

−1
II fI . (8)

This is the linear system that is solved for BDD. The result is an approximation uΓ of the solution
on Γ and the remaining part of the solution is computed as uI = K−1

II (fI−KIΓuΓ). To understand
why BDD is ideal in terms of parallel computing and fits the framework for our new algorithms we
need to rewrite (8) in a form that makes the local contributions apparent. First, let Ks be the local
matrices corresponding to the discretization of the same PDE but restricted to each subdomain
Ωs and write them in block formulation as

Ks =

(
Ks

ΓsΓs Ks
ΓsIs

Ks
IsΓs Ks

IsIs

)
where

{
∗Γs : degrees of freedom on Γ ∩ ∂Ωs,
∗Is : remaining degrees of freedom in Ωs.

Then, define the local Schur complements Ss := Ks
ΓsΓs−Ks

ΓsIs(Ks
IsIs)−1Ks

IsΓs . Finally, these can
be assembled into the BDD operator already defined in (8). Indeed it holds that

A =

N∑
s=1

As, where for all s = 1, . . . , N : As := Rs>SsRs (9)

and Rs ∈ R#(Γs)×n is the boolean matrix that, given a vector in Rn, selects the entries in Γs. The
fact that A is a sum of local contributions has now been made apparent and the preconditioner
exploits this since it is

H :=

N∑
s=1

Hs, where for all s = 1, . . . , N : Hs := Rs>DsSs†DsRs, (10)

and {Ds}s=1,...,N is a family of positive definite diagonal matrices that form a partition of unity

(i.e. they satisfy
∑N
s=1 Rs>DsRs = I). Once more, † denotes a pseudo inverse. This last piece

of notation reveals a difficulty inherent to BDD: if the local problems Ks are not positive definite
then neither are the Schur complements Ss. This difficulty has been overcome since [31] by adding
a deflation step to the Neumann Neumann algorithm [6]. The deflation, or coarse, space is chosen
as:

range(U) =

N∑
s=1

Rs>DsKer(Ss). (11)
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This offers the double advantage of making all applications of ΠH and HΠ> uniquely defined
(regardless of the choice of the pseudo inverse) and of improving convergence significantly. An
alternative approach is the Balancing Domain Decomposition by Constraints (or BDDC) solver
[7].

Remark 5 (Singularity of Ss: an example). If the PDE underlying the linear system is: find
u satisfying some boundary conditions such that −∆u = f (for a right hand side f) then Ks is
the matrix associated with the discretization of the variational form (u, v) 7→

∫
Ωs ∇u · ∇v. It is

obvious that all constant functions are in its kernel. This in turn induces the singularity of the
local matrices Ks and of their Schur complements Ss.

4.2 New Adaptive BDD

There were six assumptions in sections 2 and 3. With the notation introduced in (9), (10) and
(11) all six of these assumptions hold: U is a full rank matrix, A and H are symmetric positive
definite matrices [31] assembled as the sum of N symmetric positive semi definite matrices and all
eigenvalues of the preconditioned operator HA are larger than λmin = 1 [31, 49]. Thanks to this,
we can straightforwardly apply our two new algorithms (namely Algorithm 2 with the global τ–test
and Algorithm 3 with the local τ–test) to the BDD linear system (8). Moreover, the theoretical
results in Theorems 1, 2, 3, 4 and Corollary 2 hold.

It is well known that the most time and resource consuming operations in a BDD algorithm
are the local solves required by any application of the operator A and the preconditioner H
(specifically the Dirichlet solves Ks

IsIs
−1 in Ss and the Neumann solves Ks† used to compute an

application of Ss†). We observe that the cost of preconditioning is the same in one iteration of
our new algorithms as in an iteration of PPCG for BDD. However in iterations where we select
multiple search directions, additional applications of A are needed if the original formulation of
the algorithms is implemented (Pi is dense after orthogonalization and projection). Since we are
interested in high performance computing we propose Algorithms 4 and 5 which are optimized
versions of the algorithms for BDD. In exact arithmetic the modifications make no difference to
the sequence of approximate solutions but they save a lot of computational time.

Following the trick in [16] (equation (10)) we have ensured that all additional applications of
A are performed on vectors that are supported in one subdomain, meaning that they only require
a local solve in that particular subdomain and its neighbours. In the numerical section we will
compare several methods in terms of numbers of local solves and observe that from that point of
view our new solvers are extremely competitive.

In line 3 of Algorithm 4 we propose to compute Q̃i = AZi−
i−1∑
j=0

Q̃jβi−1,j instead of Qi = APi.

The connection is that Qi = ΠQ̃i. The values of ∆i and all the Φi,j remain the same. One more

application of the projection Π> to a vector is performed in line 6. We are confident that this is
negligible compared to the significant gain incurred by the localization of the applications of A.

In Algorithm 5, the formulation is slightly more complex since we also compute explicitly the
local components Qs

i = AsPi in line 4 to perform the local τ–test:

Qs
i = As

ΠZi −
i−1∑
j=0

Pjβi−1,j

 = AsZi −AsU(U>AU)−1(AU)>Zi −
i−1∑
j=0

Qs
jβi−1,j . (12)

Once more, this allows to reduce significantly the number of local solves incurred by applying A
each time some local contributions are selected (when the τ–test returns tsi < τ). The second
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term in the sum is not very costly since it consists in some low rank corrections. An additional
modification is that in line 13 we make the first column in Zi more sparse by subtracting local
contributions from the global vector when they contribute independently to the minimization space.
This also saves local solves. Finally, in order to save some projection steps we compute P̃i instead
of Pi = ΠP̃i with the consequence that in line 6 the projection Π is applied to a vector.

Algorithm 4: Algorithm 2 for BDD: Adaptive Algorithm with global τ–test

1 x0 = Πx00 + U(U>AU)−1U>b; r0 = b−Ax0; Z0 = Hr0; P0 = ΠZ0;
2 for i = 0, 1, . . . , convergence do

3 Q̃i = AZi −
i−1∑
j=0

Q̃jβi−1,j ;

4 ∆i = Q̃>i Pi; γi = Pi
>ri; αi = ∆†iγi;

5 xi+1 = xi + Piαi ;

6 ri+1 = Π>(ri − (Q̃iαi)) ;

7 ti =
γ>i αi

r>i+1Hri+1
;

8 if ti < τ then // global τ-test
9 Zi+1 =

[
H1ri+1 | . . . |HNri+1

]
;

10 else
11 Zi+1 = Hri+1;
12 end

13 Φi,j = Q̃>j ΠZi+1; βi,j = ∆†jΦi,j for each j = 0, . . . , i;

14 Pi+1 = Π Zi+1 −
i∑

j=0

Pjβi,j ;

15 end
16

Adaptive Multi Preconditioning

Return xi+1;

4.3 Connection with previous work

As already mentioned in section 2.2 it makes sense to generate the deflation space range(U) with
the eigenvectors corresponding to isolated eigenvalues of the preconditioned operator HA. Since
it is too costly to compute these eigenvectors, the authors in [33, 44, 47, 45, 26] propose instead to
approximate this space with local contributions. More precisely in [47] (Theorem 2.11 and Remark
2.9), and given a threshold τ ∈ R+, the coarse space is chosen so that

range(U) = span{Rs>psk; s = 1, . . . , N and λsk ≤ τ} (13)

where in each subdomain (psk, λ
s
k) ∈ (R#(Γs),R+) are the eigenpairs of the following generalized

eigenvalue problem
(Ds−1SsDs−1) psk = λsk (RsARs>) psk.

Algorithm 1 is then applied. It is proved that with this choice of U the largest eigenvalue of
the projected preconditioned operator HAΠ is bounded by N/τ where N is the maximal number
of neighbours of a subdomain (including itself). Since λmin is still 1, the classical estimate (2)

yields ‖x∗−xi‖A
‖x∗−x0‖A ≤ 2

[√
N/τ−1√
N/τ+1

]i
. This result tells us that with local contributions it is possible to

guarantee any targeted convergence rate by adjusting τ . Although this can be done in parallel, and
only a few eigenvectors are needed, the fact that the setup requires solving generalized eigenvalues
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Algorithm 5: Algorithm 3 for BDD: Adaptive Algorithm with local τ–test

1 x0 = Πx00 + U(U>AU)−1U>b; r0 = b−Ax0; Z0 = Hr0;

2 P̃0 = Z0;
3 for i = 0, 1, . . . , convergence do

4 Qi =
∑N
s=1 Qs

i where Qs
i = AsZi −AsU(U>AU)−1(AU)>Zi −

i−1∑
j=0

Qs
jβi−1,j ;

5 ∆i = Q>i P̃i; γi = P̃>i ri; αi = ∆†iγi;

6 xi+1 = xi + ΠP̃iαi ;
7 ri+1 = ri −Qiαi ;
8 Zi+1 = Hri+1;
9 for s = 1, . . . , N do

10 tsi =
〈ΠP̃iαi,Q

s
iαi〉

r>i+1H
sri+1

;

11 if tsi < τ then // local τ-test
12 Zi+1 = [Zi+1 |Hsri+1];
13 Subtract Hsri+1 from the first column in Zi+1;

14 end

15 end

16 Φi,j = Qj
>Zi+1; βi,j = ∆†jΦi,j for each j = 0, . . . , i;

17 P̃i+1 = Zi+1 −
i∑

j=0

P̃jβi,j ;

18 end
19

(Locally) Adaptive Multi Preconditioning

Return xi+1;

problems is a drawback. The original motivation for the present work was to achieve as good
a convergence with a coarse space that is enriched on the fly. Even though the τ–test in our
algorithms does not measure exactly the same quantities as the generalized eigenvalue problem we
expect to capture the relevant quantities within the iterations of our two algorithms and ensure
fast convergence. We will compare both approaches in the next section.

Remark 6. The theoretical result for our new algorithms is that at iterations where the τ–test
returns ti ≥ τ (respectively tsi ≥ τ for all s in the case of the local test) we guarantee that the
error will decrease linearly. What we do not prove however is how often this will happen. This
is somewhat similar to the GenEO result since in that case no result is given for the size of the
coarse space. In future work we plan to study these questions but this can only be done for some
particular choices of partial differential equations, geometries and discretizations.

5 Numerical Results with FreeFem++ [21] and GNU Oc-
tave [10]

In this section, we consider the linear elasticity equations posed in Ω = [0, 1]2 with mixed boundary
conditions. We search for u = (u1, u2)> ∈ H1(Ω)2 such that −div(σ(u)) = (0, 10)>, in Ω,

u = (0, 0)>, on {(x, y) ∈ ∂Ω : x = 0},
σ(u) · n = 0, on the rest of ∂Ω (with n denoting the outward normal).
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The stress tensor σ(u) is defined by σij(u) = 2µεij(u) + λδijdiv(u) for i, j = 1, 2 where εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, δij is the Kronecker symbol and the Lamé coefficients are functions of Young’s

modulus E and Poisson’s ratio ν : µ = E
2(1+ν) , λ = Eν

(1+ν)(1−2ν) . Heterogeneous media is one

known challenge for domain decomposition methods [39] so, after setting ν = 0.4 in all of the
domain for all test cases, we choose a checkerboard distribution for E (see Figure 1c) where the
two values are E1 = 107 and, unless specified otherwise, E2 = 1012.

The system is discretized by standard piecewise linear (P1) Lagrange finite elements on a
uniform mesh and the resulting linear system is then rewritten in BDD formulation. To this end
the computational domain is partitioned into N subdomains (N is given). The partition is either
regular (into squares of size 1/

√
N × 1/

√
N) or generated automatically by the graph partitioner

Metis [25] (see Figures 1a and 1b). The discretization step is inversely proportional to the number
of subdomains: h = 1/(10N). The material in each subdomain is either homogeneous (if the
partition is regular as in Section 5.1) or heterogeneous (if the partition is computed by Metis as
in Section 5.2).

We compare five algorithms for solving the linear system: Algorithm 4 (New algorithm with
Global τ–test), Algorithm 5 (New algorithm with Local τ–test), Algorithm 4 with τ =∞ (Simul-
taneous), Algorithm 1 where U is full rank and satisfies (11) (PPCG) and Algorithm 1 where U
is full rank and satisfies (13) (GenEO). The stopping criterion is always that the error ‖xi−x∗‖A
be smaller than 10−6‖x∗‖A. This allows us to compare all algorithms fairly. Finally, for all three
adaptive methods (both new methods and GenEO) we choose τ = 0.1 except in one test where
we make τ vary (and explicitly state so). According to Corollary 1 (with λmin = 1 for BDD) this
guarantees that, at iterations where only one search direction is used, the error has decreased by
at least a factor ρ = 0.95.

We examine three quantities with respect to the iteration count: the error ‖xi − x∗‖A/‖x∗‖A,
the dimension of the minimization space (see Property 2 in Theorem 1) and the number of local
solves (number of applications of Ss or Ss†). In the case of GenEO we never include results on
the number of local solves since this would also require counting the number of iterations needed
for the eigensolver to converge and optimizing this is not the purpose of this article. We leave
the study in terms of CPU time for future work as the scope of this article is to check that the
behaviour of the algorithms is as predicted by the theory.

5.1 Regular partition: Homogeneous Subdomains

The partition is into N = 81 subdomains (see Figure 1a) in such a way that the material parameters
are constant in each subdomain. The size of the linear system is n = 3056. We consider two
choices for the partition of unity matrices Ds in the preconditioner. Either Ds is proportional to
the diagonal values of the local matrix Ks (k-scaling) [32, 41, 29, 39] or it is equal to the inverse
of the multiplicity of the degree of freedom (multiplicity scaling).

Figure 2a shows the results when k-scaling is used. Theoretical results [31, 29, 49] guarantee
that PPCG converges fast. We observe that this is indeed the case and that the adaptive algorithms
detect that they do not need to do any extra work (or very little in the case of the new algorithm
with the local τ–test which selects just 4 extra search directions). The simultaneous algorithm
converges even faster but at the cost of about twice as many local solves.

When multiplicity scaling is used (see Figure 2b for the results), convergence of PPCG is not
as good. Both of the new algorithms adapt by selecting significantly larger minimization spaces
(626 and 783 versus 268). This allows to reduce the number of iterations from over 50 to under
10 and the number of local solves decreases by about a factor 2 from 8586 to 4302 and 4176.
The algorithm with the global τ–test augments the minimization space at each iteration so in this
case it is the same as the Simultaneous algorithm. The coarse space computed by GenEO was
prohibitively large so we did not include GenEO.
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(a) Regular subdomains (b) Metis subdomains

IsoValue
-5.26211e+10
2.63255e+10
7.89566e+10
1.31588e+11
1.84219e+11
2.3685e+11
2.89481e+11
3.42112e+11
3.94743e+11
4.47374e+11
5.00005e+11
5.52636e+11
6.05267e+11
6.57898e+11
7.10529e+11
7.6316e+11
8.15791e+11
8.68422e+11
9.21053e+11
1.05263e+12

E

(c) Young’s modulus E

Figure 1: Geometry of the test problem. There are 19800 degrees of freedom in the original problem
and 3056 (respectively 3458) in its BDD formulation on the regular (respectively Metis) partition
into 81 subdomains.

As predicted, in each case the new algorithms adapt correctly to the difficulty of the problem:
for the harder problem, convergence is (almost) as good as with the Simultaneous algorithm, and
for the easier problem (almost) no extra work is performed compared to PPCG. Next we consider
a more complex geometry for which neither the Simultaneous Algorithm or PPCG are expected
to be optimal.

5.2 Metis partition: Heterogeneous Subdomains

We partition the domain into N = 81 subdomains with Metis (see Figure 1b). This way, the
partition into subdomains is no longer aligned with the heterogeneities and domains are non regular.
These are two known difficulties for BDD even with k-scaling (which we use here). The size of the
linear system is n = 3458.

We first plot the results for all test cases in Figure 3a, and then without PPCG in Figure 3b in
order to make the differences more clear between the competitive methods. The convergence history
of PPCG (first plot in Figure 3a) illustrates the typical behaviour of conjugate gradient algorithms
for ill conditioned systems (more detail is given in the next paragraph). For all the other methods
the stagnation has been completely eliminated (GenEO) or significantly decreased. This confirms
that the problematic eigenvectors are being well handled by augmenting the minimization space
with local quantities. We observe that with the new methods, the augmentation is only performed
during the first few iterations. Then they behave as fast converging PPCG methods and in the end
they require roughly 4 times fewer local solves than PPCG. On this hard test case the Simultaneous
algorithm also convergences faster and with fewer local solves than PPCG.

Influence of τ The threshold τ plays a very important role in the new algorithms. Indeed the
τ -test: ti < τ (global) or tsi < τ (local), is what determines whether to perform an iteration with
one or several search directions. In Corollary 1 we showed that τ can be related to a targeted
contraction factor ρ that has a more natural interpretation. We have performed the simulation
with both new algorithms for the same test problem as previously but with values of τ ranging
between 10−4 and 10. In Figure 4 we have plotted the contraction factor ρ given by Corollary 1
as well as the iteration count, dimension of the minimization space and number of local solves
required by each algorithm (all as functions of τ). For the method with the global τ -test, there is
a whole range of values (0.06 ≤ τ ≤ 0.4 or equivalently 0.846 ≤ ρ ≤ 0.997) which is optimal in the
sense of minimizing the number of local solves. This is excellent news since it suggests that the
method is less sensitive than could be expected to the choice of τ . In fact, for all values of τ that we
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Figure 2: Regular partition: the subdomains are homogeneous.
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considered, the new algorithms outperformed both non adaptive algorithms: PPCG (22842 local
solves) and the Simultaneous algorithm (8360 local solves). One (heuristic) explanation as to why
there are several good choices for τ is that there are two regimes in the convergence history of PPCG
(first plot in Figure 3a): a long stagnation during the first 100 or so iterations of PPCG followed
by a fast convergence once the large isolated eigenvalues of the preconditioned BDD operator have
been well approximated by the Ritz values [50]. The transition between both regimes is quite
brutal and that is why the best choice of τ is not unique.

For the local version of the algorithm, the minimal number of local solves is 4743 instead of 5212
with the global τ -test. As expected, the minimization space is smaller than with the global version
of the algorithm but sometimes this leads to a larger iteration count and more local solves overall.
In the end the local version of the algorithm appears to be better for the best choice of τ but
also more sensitive to the choice of τ . More investigation, both theoretical and numerical, should
be performed in future work and we note that CPU time is indispensable for a more complete
comparison.

Influence of E2/E1 and N In Table 1 we study the influence of other problem parameters on
all methods for the same test case with τ = 0.1. First we give details on the number of iterations
and local solves needed for convergence when the heterogeneity E2/E1 varies (both for k-scaling
and multiplicity scaling). Then we set the ratio back to E2/E1 = 105 and we make the number
N of Metis subdomains vary. Note that the number of squares in the checkerboard is also N and
the mesh step is h = 1/(10N). The last line of each table gives the maximal size of the coarse
space for that column. As a general rule, only PPCG suffers in terms of number of iterations
when the problems become harder. This is important because each iteration requires a global
communication step which is a bottleneck in terms of parallelism. For all methods, the number of
local solves becomes larger as the problems become harder but the impact is a lot less important
for the two new methods so we are satisfied with the way that they adapt to the difficulty. One
final argument in favour of the new methods is that block operations are often proportionally much
less expensive than single vector operations because the computation time is driven by the memory
access. Note that this point was previously made in [16] for the Simultaneous algorithm.

6 Conclusion and Perspectives

We have proposed a new adaptive solver (and a variant) for linear systems with multiple pre-
conditioners. The theoretical analysis guarantees that there are two kinds of iterations: either
convergence is satisfying and an iteration of PPCG is performed, or convergence is too slow and
the minimization space is enriched with components coming from several preconditioners. We
observed good convergence when applying the solver to the system arising from Balancing Domain
Decomposition. In the future we plan to test the algorithms on realistic test cases with optimized
parallel implementations. This way we can compare CPU times. We believe that the new algo-
rithms constitute good parallel solvers for industrial applications. Future work should also include
applying the algorithm to other linear systems such as ones with multiple preconditioners that
arise from the physics of the problem. Another objective would be to consider the case where
a bound for the largest eigenvalue is known instead of the smallest (or neither is available). In
this case the algorithm would apply also to the Additive Schwarz and Optimized Schwarz domain
decomposition methods. Finally generalization to non symmetric problems should be considered,
this will require generalizing the ideas from this paper to other Krylov methods.
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Figure 3: Metis Partition : the subdomains are heterogeneous.
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Variable heterogeneity for N = 81 (k-scaling) :
Global τ–test Local τ–test Simultaneous PPCG GenEO

E2/E1 it solves it solves it solves it solves it
1 26 4624 25 4602 14 7212 36 5832 23
10 26 5036 28 5213 14 7212 44 7128 23
102 30 6096 25 5164 15 7786 76 12312 21
103 23 5374 25 5133 16 8360 126 20412 22
104 22 5212 25 5176 16 8360 139 22518 22
105 22 5212 24 5041 16 8360 141 22842 23

dim < 554 dim < 423 dim < 1428 dim < 353 dim < 372
Variable heterogeneity for N = 81 (multiplicity scaling) :
Global τ–test Local τ–test Simultaneous PPCG GenEO

E2/E1 it solves it solves it solves it solves it
1 30 5272 30 5626 20 10656 35 5670 23
10 32 6832 30 5941 21 11230 51 8262 23
102 39 9202 34 8276 24 12952 100 16200 23
103 34 11688 34 8890 24 12952 204 33048 22
104 31 11202 34 8872 25 13526 299 48438 23
105 33 11114 35 9089 25 13526 336 54432 23

dim < 1365 dim < 808 dim < 2157 dim < 548 dim < 662
Variable number of subdomains for E2/E1 = 105 (k-scaling) :

Global τ–test Local τ–test Simultaneous PPCG GenEO
N it solves it solves it solves it solves it
25 20 1784 22 1447 17 2530 69 3450 20
36 24 2392 23 2150 16 3476 87 6264 20
49 20 3364 24 3146 16 4844 110 10780 20
64 21 5264 24 4137 17 7006 152 19456 20

dim < 693 dim < 379 dim < 1193 dim < 320 dim < 327

Table 1: Comparison of the five methods for variable heterogeneity and number of Metis subdo-
mains. it: number of iterations. solves: number of local solves.



An Adaptive Multi Preconditioned Conjugate Gradient Algorithm 22

Acknowledgements

The author would like to thank P. Gosselet, F. Nataf, D.J. Rixen and F.-X. Roux for some en-
lightening discussions on this topic as well as an anonymous referee who stressed the importance
of discussing the choice of τ .

References

[1] O. Axelsson and I. Kaporin. Error norm estimation and stopping criteria in preconditioned
conjugate gradient iterations. Numer. Linear Algebra Appl., 8(4):265–286, 2001.

[2] A. Brandt, J. Brannick, K. Kahl, and I. Livshits. Bootstrap AMG. SIAM J. Sci. Comput.,
33(2):612–632, 2011.

[3] C. Brezinski. Multiparameter descent methods. Linear Algebra Appl., 296(1-3):113–141, 1999.

[4] R. Bridson and C. Greif. A multipreconditioned conjugate gradient algorithm. SIAM J.
Matrix Anal. Appl., 27(4):1056–1068 (electronic), 2006.

[5] A. Chapman and Y. Saad. Deflated and augmented Krylov subspace techniques. Numer.
Linear Algebra Appl., 4(1):43–66, 1997.

[6] Y.-H. De Roeck and P. Le Tallec. Analysis and test of a local domain-decomposition precon-
ditioner. In Fourth International Symposium on Domain Decomposition Methods for Partial
Differential Equations (Moscow, 1990), pages 112–128, Philadelphia, PA, 1991. SIAM.

[7] C. R. Dohrmann. A preconditioner for substructuring based on constrained energy minimiza-
tion. SIAM J. Sci. Comput., 25(1):246–258 (electronic), 2003.

[8] V. Dolean, F. Nataf, R. Scheichl, and N. Spillane. Analysis of a two-level Schwarz method
with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math.,
12(4):391–414, 2012.

[9] Z. Dostál. Conjugate gradient method with preconditioning by projector. International Jour-
nal of Computer Mathematics, 23(3-4):315–323, 1988.

[10] J. W. Eaton, D. Bateman, and S. Hauberg. GNU Octave version 3.0.1 manual: a high-
level interactive language for numerical computations. CreateSpace Independent Publishing
Platform, 2009. ISBN 1441413006.

[11] Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems. Robust domain decomposition precondi-
tioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer.
Anal., 46(5):1175–1199, 2012.

[12] C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and its
parallel solution algorithm. Int. J. Numer. Meth. Engng., 32(6):1205, 1991.

[13] J. Galvis and Y. Efendiev. Domain decomposition preconditioners for multiscale flows in high
contrast media: reduced dimension coarse spaces. Multiscale Model. Simul., 8(5):1621–1644,
2010.

[14] A. Gaul, M. H. Gutknecht, J. Liesen, and R. Nabben. A framework for deflated and augmented
Krylov subspace methods. SIAM J. Matrix Anal. Appl., 34(2):495–518, 2013.



An Adaptive Multi Preconditioned Conjugate Gradient Algorithm 23

[15] P. Gosselet, C. Rey, and J. Pebrel. Total and selective reuse of Krylov subspaces for the
resolution of sequences of nonlinear structural problems. Internat. J. Numer. Methods Engrg.,
94(1):60–83, 2013.

[16] P. Gosselet, D. Rixen, F.-X. Roux, and N. Spillane. Simultaneous FETI and block FETI:
Robust domain decomposition with multiple search directions. Internat. J. Numer. Methods
Engrg., 104(10):905–927, 2015.

[17] C. Greif, T. Rees, and D. Szyld. Additive Schwarz with variable weights. In Domain Decom-
position Methods in Science and Engineering XXI. Springer, 2014.

[18] C. Greif, T. Rees, and D. B. Szyld. MPGMRES: a generalized minimum residual method
with multiple preconditioners. Technical Report 11-12-23, Temple University, 2014.

[19] R. Haferssas, P. Jolivet, and F. Nataf. A robust coarse space for Optimized Schwarz methods
SORAS-GenEO-2. Technical report, Submitted, hal-01100926, 2015.

[20] P. Havé, R. Masson, F. Nataf, M. Szydlarski, H. Xiang, and T. Zhao. Algebraic domain de-
composition methods for highly heterogeneous problems. SIAM J. Sci. Comput., 35(3):C284–
C302, 2013.

[21] F. Hecht. FreeFem++. Numerical Mathematics and Scientific Computation. Laboratoire J.L.
Lions, Université Pierre et Marie Curie, http://www.freefem.org/ff++/, 3.23 edition, 2013.

[22] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.
Research Nat. Bur. Standards, 49:409–436 (1953), 1952.

[23] W. D. Joubert and T. A. Manteuffel. Iterative methods for nonsymmetric linear systems.
Academic Press, New York, page 149171, 1990.

[24] S. Kaniel. Estimates for some computational techniques in linear algebra. Mathematics of
Computation, 20(95):369–378, 1966.

[25] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392 (electronic), 1998.

[26] A. Klawonn, P. Radtke, and O. Rheinbach. Adaptive coarse spaces for BDDC with a trans-
formation of basis. In Twenty Second International Conference on Domain Decomposition
Methods, 2014.

[27] A. Klawonn, P. Radtke, and O. Rheinbach. FETI-DP methods with an adaptive coarse space.
SIAM J. Numer. Anal., 53(1):297–320, 2015.

[28] A. Klawonn and O. Rheinbach. Deflation, projector preconditioning, and balancing in iterative
substructuring methods: connections and new results. SIAM J. Sci. Comput., 34(1):A459–
A484, 2012.

[29] A. Klawonn and O. Widlund. FETI and Neumann-Neumann iterative substructuring methods:
Connections and new results. Communications on Pure and Applied Mathematics, 54(1):57–
90, 2001.

[30] S. Loisel, H. Nguyen, and R. Scheichl. Optimized Schwarz and 2-Lagrange multiplier methods
for multiscale PDEs. Technical report, submitted, 2015.

[31] J. Mandel. Balancing domain decomposition. Comm. Numer. Methods Engrg., 9(3):233–241,
1993.



An Adaptive Multi Preconditioned Conjugate Gradient Algorithm 24

[32] J. Mandel and M. Brezina. Balancing domain decomposition for problems with large jumps
in coefficients. Math. Comp., 65(216):1387–1401, 1996.

[33] J. Mandel and B. Soused́ık. Adaptive selection of face coarse degrees of freedom in the BDDC
and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Engrg.,
196(8):1389–1399, 2007.

[34] G. Meinardus. Approximation of functions: Theory and numerical methods. Expanded trans-
lation of the German edition. Translated by Larry L. Schumaker. Springer Tracts in Natural
Philosophy, Vol. 13. Springer-Verlag New York, Inc., New York, 1967.

[35] F. Nataf, H. Xiang, V. Dolean, and N. Spillane. A coarse space construction based on local
Dirichlet-to-Neumann maps. SIAM J. Sci. Comput., 33(4):1623–1642, 2011.

[36] R. A. Nicolaides. Deflation of conjugate gradients with applications to boundary value prob-
lems. SIAM J. Numer. Anal., 24(2):355–365, 1987.

[37] A. A. Nikishin and A. Y. Yeremin. Variable block CG algorithms for solving large sparse
symmetric positive definite linear systems on parallel computers. I. General iterative scheme.
SIAM J. Matrix Anal. Appl., 16(4):1135–1153, 1995.

[38] D. P. O’Leary. The block conjugate gradient algorithm and related methods. Linear Algebra
Appl., 29:293–322, 1980.

[39] C. Pechstein and R. Scheichl. Analysis of FETI methods for multiscale PDEs. Part II: interface
variation. Numer. Math., 118(3):485–529, 2011.

[40] D. Rixen. Substructuring and Dual Methods in Structural Analysis. PhD thesis, Université de
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[41] D. J. Rixen and C. Farhat. A simple and efficient extension of a class of substructure based
preconditioners to heterogeneous structural mechanics problems. Int. J. Numer. Meth. Engng.,
44(4):489–516, 1999.

[42] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, second edition, 2003.

[43] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h. A deflated version of the conjugate gradient
algorithm. SIAM J. Sci. Comput., 21(5):1909–1926, 2000.

[44] B. Soused́ık, J. Š́ıstek, and J. Mandel. Adaptive-Multilevel BDDC and its parallel implemen-
tation. Computing, 95(12):1087–1119, 2013.

[45] N. Spillane. Robust domain decomposition methods for symmetric positive definite problems.
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