
HAL Id: hal-01170059
https://hal.science/hal-01170059v1

Preprint submitted on 30 Jun 2015 (v1), last revised 29 Apr 2016 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Multi Preconditioned Conjugate Gradient:
Algorithm, Theory and an Application to Domain

Decomposition
Nicole Spillane

To cite this version:
Nicole Spillane. Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and an
Application to Domain Decomposition. 2015. �hal-01170059v1�

https://hal.science/hal-01170059v1
https://hal.archives-ouvertes.fr

Adaptive Multi Preconditioned Conjugate Gradient:

Algorithm, Theory and an Application to Domain

Decomposition

Nicole Spillane ∗

June 30, 2015

Abstract

This article introduces and analyzes a new adaptive algorithm for solving symmetric pos-
itive definite linear systems in cases where several preconditioners are available or the usual
preconditioner is a sum of contributions. A new theoretical result allows to select, at each
iteration, whether a classical Preconditioned CG iteration is sufficient (i.e. the error decreases
by a factor of at least some chosen ratio) or whether convergence needs to be accelerated
by performing an iteration of Multi Preconditioned CG. We first present this in an abstract
framework with the one strong assumption being that a bound for the smallest eigenvalue
of the preconditioned operator is available. Then, we apply the algorithm to the Balancing
Domain Decomposition method and illustrate its behaviour numerically. In particular we ob-
serve that it is optimal in terms of local solves, both for well conditioned and ill conditioned
test cases, which makes it a good candidate to be a default parallel linear solver.

Keywords: Krylov methods, Preconditioners, Conjugate Gradient, Domain Decomposition,
Robustness, BDD.

1 Introduction

We consider the problem of solving a symmetric positive definite linear system Ax∗ = b with the
Conjugate Gradient (CG) algorithm [19]. Since we consider possibly ill conditioned systems, a
very standard way to accelerate convergence is to use a preconditioner H. This is to say that we
solve HAx∗ = Hb where the effective condition number λmax/λmin of HA is much smaller than
the one of A (λmax and λmin denote respectively the largest and smallest eigenvalue for which a
corresponding eigenvector is a component of the initial error). The reason why this improves the
convergence of the iterative solver is that the relative error at a given iteration can be bounded
with respect to the effective condition number [31, 21, 39].

One particular type of preconditioning is projection preconditioning [9]. It is also known as
deflation [33, 40], augmentation [5] and balancing [20]. A review of these methods with an ap-
plication to substructuring Domain Decomposition can be found in [25]. The idea is to choose
an auxiliary, or deflation space, and precompute the exact solution in this subspace. Then the
iterative solver only needs to be applied on the remainder of the error. If the deflation space is well
chosen the effective condition number, and hence the convergence, are greatly improved. In prac-
tice the deflation space is often computed as an approximation of the eigenvectors corresponding

∗Center for Mathematical Modeling, Facultad de Ciencias F́ısicas y Matemáticas, Universidad de Chile, Beauchef
851, Santiago, Chile. (nspillane@dim.uchile.cl). Financial support by CONICYT through project Fondecyt
3150090.

1

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 2

to isolated eigenvalues of the preconditioned operator, for example by recycling information from
a previous linear solve [14, 46, 2] (see also section 2.2).

The method that we propose is based on the Multi Preconditioned CG algorithm [4] (MPCG).
MPCG is itself related to the block CG algorithm [35, 34] and the multi parameter descent method
[3]. It applies to linear systems for which there are N different preconditioners Hs (s = 1, . . . , N)

or for which the usual preconditioner is a sum
∑N
s=1 Hs. One case where this occurs is domain

decomposition. Indeed the idea behind domain decomposition is to approximate the inverse of
a global matrix by a sum of inverses of smaller local problems. This property has already been
exploited since it has been proposed to compute the deflation space by solving local generalized
eigenvalue problems: see [30] followed by [41, 44, 23, 24] for the substructuring methods FETI and
BDD [12, 26, 28]; [32, 8, 43, 13, 11] for the overlapping Additive Schwarz method [45]; and [27, 17]
for the Optimized Schwarz method. In this article we will use the Balancing Domain Decomposition
Method as an illustration for our new algorithms. We refer to section 4.3 for a brief summary of
the deflation space proposed in [44] (called GenEO for Generalized Eigenvalues in the Overlaps)
and the corresponding convergence result. Fast convergence is guaranteed theoretically, even in
hard heterogeneous cases such as the ones exhibited in [36].

The original motivation for the algorithms in this article was to compute the same deflation
space without needing to solve generalized eigenvalue problems. As already mentioned, the frame-
work for our new algorithms is MPCG [4]. MPCG has already been applied to Additive Schwarz
[16] and FETI (Simultaneous FETI algorithm in [37, 15]). In both cases good convergence was
observed. The drawback of these methods is that they generate very many search directions and
the cost of minimizing over these search directions and orthogonalizing future contributions against
them may become prohibitive specially if very many processors are used.

Instead, our algorithms consider each contribution arising from the application of one Hs as a
candidate [2] to augment the space in which we look for the solution (called the minimization space).
A theoretical estimate (5) predicts whether this candidate should augment the minimization space

or whether it should only contribute to it through the global preconditioner
∑N
s=1 Hs. The estimate

is only practical if a lower bound for the eigenvalues of the preconditioned operator is known (e.g.
for the substructuring Domain Decomposition methods λmin ≥ 1 [28, 26, 45]). The idea for the
new algorithms was first briefly introduced in [42](section 7.3) in the FETI framework. We prove
that, given a targeted contraction factor 0 < ρ < 1, and at a given iteration, either the error is
reduced by a factor ρ, or the coarse space is augmented with contributions coming from several
components Hs (with the purpose of accelerating convergence). This guarantees that the iterations
at which the algorithm performs some extra work are exactly those at which it is necessary.

The outline of the article is as follows. In section 2 we introduce some classical results for the
Projected Preconditioned CG algorithm (PPCG) and prove the new estimate (5). In section 3 we
introduce our two new algorithms in a general framework and prove the corresponding theoretical
results. In section 4 we apply the algorithms to BDD. Finally, in section 5, we illustrate their
behaviour and compare them to existing methods.

2 Projected Preconditioned Conjugate Gradient (PPCG)

Let n, n0 ∈ N with n0 < n. The three assumptions in this section are:

(A1) A ∈ Rn×n is a symmetric positive definite matrix,

(A2) H ∈ Rn×n is a symmetric positive definite matrix,

(A3) U ∈ Rn×n0 is a full rank matrix.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 3

Throughout the article, we consider the following problem:

Find x∗ ∈ Rn such that Ax∗ = b

for a given right hand side b ∈ Rn. The natural iterative solver is the conjugate gradient (CG)
algorithm. We choose to accelerate it by a (left) preconditioner that we denote by H, as well
as a (right) projection preconditioner Π induced by the choice of U as follows. Let Π be the
A-orthogonal projection satisfying Ker(Π) = range(U), or explicitly,

Π := I−U(U>AU)−1U>A. (1)

2.1 Description and well known results

Algorithm 1 describes the Projected Preconditioned Conjugate Gradient (PPCG) algorithm and
introduces most of the notation.

Algorithm 1: PPCG algorithm for Ax∗ = b preconditioned by H and Π = I −
U(U>AU)−1U>A for initial guess x00

x0 = Πx00 + U(U>AU)−1U>b; // Improved initial guess

r0 = b−Ax0 ;
z0 = Hr0;
p0 =Πz0; // Projected initial search direction

for i = 0, 1, . . . , convergence do
qi = Api;

αi =
〈ri, zi〉
〈qi,pi〉

;

xi+1 = xi + αipi ;
ri+1 = ri − αiqi;
zi+1 = Hri+1;

βi =
〈zi+1,Api〉
〈pi, Api〉

;

pi+1 = Πzi+1 − βipi; // Projected search direction

end
Return xi+1;

If U is the empty matrix then Π = I and we recover the usual Preconditioned Conjugate
Gradient (PCG) algorithm. Algorithmically there are two differences between PCG and PPCG.
The first is that the initial guess x00 given by the user is improved by computing the exact solution
in the space range(U) (which rewrites as a projection):

x0 = Πx00 + U(U>AU)−1U>b = x00 + (I−Π)(x∗ − x00). (2)

The second difference is a consequence of this. Indeed, the iterative solver must only compute the
remaining part of the solution (Πx∗) so all search directions are projected into range(Π). Other
names for this process are deflation, balancing and augmentation [9, 33, 40, 5, 20]. In the particular
field of domain decomposition the deflation space range(U) is referred to as the coarse space (see
section 3).

Next we state a list of well known results for PPCG [25, 39]:

1. The exact solution is achieved after at most n− n0 iterations.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 4

2. ‖x∗ − xi‖A = min {‖x∗ − x‖A; x ∈ x00 + range(U) + span{p0, . . . ,pi−1}}.

3. Search directions are pairwise A-orthogonal: 〈pi,Apj〉 = 0 (i 6= j).

4. Residuals are `2-orthogonal to previous search directions: 〈ri,pj〉 = 0 (i > j).

5. Residuals are pairwise H-orthogonal: 〈ri,Hrj〉 = 0 for all (i 6= j).

2.2 The choice of deflation space can significantly accelerate convergence

Since the approximation given by iteration i of PPCG minimizes the error over all vectors xi ∈
x00 + range(U) + span{p0, . . . ,pi−1} it is natural that augmenting the space range(U) leads to
better convergence. On the other hand, if the number n0 of columns in U is too large, then the
factorization of U>AU in the definition of Π becomes excessively costly. In other words it is
necessary to identify carefully which are the vectors that will help accelerate convergence.

One way to estimate the relative error of PCG is to use the following convergence result [31, 21]
(see also [39](Theorem 6.29)):

‖x∗ − xi‖A
‖x∗ − x0‖A

≤ 2

[√
λmax/λmin − 1√
λmax/λmin + 1

]i
, (3)

where λmax and λmin are bounds for the spectrum of the preconditioned operator HA. For
PPCG the same estimate holds but where λmax and λmin are replaced by bounds for the non
zero eigenvalues of the projected preconditioned operator HAΠ. Consequently, the ideal strat-
egy for choosing U is to first compute all isolated eigenvalues of HA and use the corresponding
eigenvectors as a basis for the deflation space range(U). This way, the spectrum of HAΠ is
clustered and (3) guarantees good convergence. Of course it is unrealistic to compute the spec-
trum of HA. Instead it has been proposed to approximate a priori the isolated eigenvalues. An
option, popular in domain decomposition, is to solve auxiliary (less costly) eigenvalue problems
[30, 41, 44, 23, 24, 32, 8, 43, 13, 11, 27, 17] (see also section 4.3).

The algorithms that we propose in this article are very closely related to deflation except that
we perform the augmentation of U on the fly and not a priori. First we derive an estimate that
allows us to do that.

2.3 Monitoring the relative error in PPCG

With the notation from Algorithm 1, and denoting by di the error at iteration i: di = x∗ −
xi, for all i = 1, . . . , n− n0, the authors in [1] prove that

‖di‖2A = ‖di−1‖2A − α2
i−1‖pi−1‖2A. (4)

The proof holds in three steps: first, by the finite termination property (item 1 in section 2.1),

the exact solution can be written as x∗ = x0 +
∑n−1
j=0 αjpj = xi +

∑n−1
j=i αjpj . Then, the A-

conjugacy between search directions (item 3 in section 2.1) implies that ‖di‖2A = ‖x∗ − xi‖2A =∑n−1
j=i α

2
j‖pj‖2A. Finally (4) follows easily by subtraction.

The authors use this to derive some a posteriori error estimates and stopping criteria. Here, we
build on the same starting point to derive two adaptive algorithms with the objective of accelerating
convergence when necessary. Let’s assume that at iteration i we have not yet found the exact
solution (i.e. di 6= 0) then (4) can be rewritten as

‖di−1‖2A
‖di‖2A

= 1 +
‖αi−1pi−1‖2A
‖di‖2A

= 1 +
‖αi−1pi−1‖2A
‖ri‖2H

‖ri‖2H
‖di‖2A

= 1 +
‖αi−1pi−1‖2A
‖ri‖2H

‖di‖2AHA

‖di‖2A
.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 5

The second term in the product can be bounded from below by the smallest eigenvalue λmin of the
preconditioned operator HA (‖di‖2AHA ≥ λmin‖di‖2A, see for instance [45](Lemma C.1)) so:

‖di‖2A
‖di−1‖2A

≤
(

1 + λmin
‖αi−1pi−1‖2A
‖ri‖2H

)−1

. (5)

From estimate (5) we deduce that, if there exists τ > 0 such that τ‖ri‖2H ≤ ‖αi−1pi−1‖2A at
every iteration i = 1, . . . , j, then ‖dj‖A/‖d0‖A ≤ (1 + λminτ)−j/2. Conversely, to guarantee that
the error decreases at least linearly with a given contraction factor ρ (i.e. ‖di‖/‖di−1‖ ≤ ρ) it is
sufficient to check that:

‖αi−1pi−1‖2A
‖ri‖2H

≥ τ with τ :=
1− ρ2

λminρ2
. (6)

In the next section we introduce two new algorithms that aim at guarantying a targeted convergence
bound. They are based on evaluating at each iteration whether (6) holds or not. In the case where
it doesn’t we propose to accelerate convergence.

Remark 1. After division by ‖di−1‖2A, (4) can also be rewritten as

‖di‖2A
‖di−1‖2A

= 1− 〈ri−1, zi−1〉2
〈Api−1,pi−1〉2

· 〈Api−1,pi−1〉
〈Adi−1,di−1〉

≤ 1− λmin
〈ri−1, zi−1〉
〈Api−1,pi−1〉

.

We mention this estimate because it arises more naturally and we have not seen it before. However
we did not use it in our adaptive algorithms.

3 Main Result: New Adaptive Algorithm

We make two extra assumptions on the preconditioned system HAx∗ = Hb:

(A4) a lower bound λmin for the spectrum of HA is known,

(A5) the preconditioner H is a sum of N contributions : H =
N∑
s=1

Hs, with each Hs symmetric

and positive semi definite.

The motivation for these two assumptions is directly connected to the two main ingredients in
the adaption step of our adaptive algorithm. Indeed Assumption (A4) guarantees that the terms
in the relative error estimate (5) can be evaluated and consequently that this estimate can be used
as an indicator of whether we need to adapt the algorithm or not (i.e. accelerate convergence).
Assumption (A5) is just as vital since, when a lack of robustness is detected, convergence will be
improved by searching for the next approximate solution in a space spanned by contributions from
each of the Hs instead of just one contribution corresponding to H.

3.1 Presentation of the New Algorithm

Algorithm 2 presents the new algorithm and introduces some new notation. The new algorithm
is designed to adapt automatically if convergence is too slow. More precisely, given a threshold
τ ∈ R+ chosen by the user, the adaptation step is between lines 7 and 12. We will refer to the test
in line 8 as the τ–test. If the τ–test returns ti ≥ τ then the algorithm predicts that there is no
need to adapt and performs a step of PPCG. If the τ–test returns ti < τ then the PPCG algorithm
is not reducing the error sufficiently and the algorithm performs one step of the (projected) Multi
Preconditioned CG (MPCG) algorithm [4] for the N preconditioners Hs. There are two extreme

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 6

Algorithm 2: New algorithm for Ax∗ = b preconditioned by

(
N∑
s=1

Hs

)
and Π for initial

guess x00. τ ∈ R+: chosen by user.

1 x0 = Πx00 + U(U>AU)−1U>b; r0 = b−Ax0; Z0 = Hr0; P0 = ΠZ0;
2 for i = 0, 1, . . . , convergence do
3 Qi = APi;

4 ∆i = Q>i Pi; γi = Pi
>ri; αi = ∆†iγi;

5 xi+1 = xi + Piαi ;
6 ri+1 = ri −Qiαi ;

7 ti =
γ>i αi

r>i+1Hri+1
;

8 if ti < τ then // τ-test
9 Zi+1 =

[
H1ri+1 | . . . |HNri+1

]
; // Concatenate the N vectors

10 else
11 Zi+1 = Hri+1;
12 end

13 Φi,j = Q>j Zi+1; βi,j = ∆†jΦi,j for each j = 0, . . . , i;

14 Pi+1 = ΠZi+1 −
i∑

j=0

Pjβi,j ;

15 end
16 Return xi+1;

choices for τ : if τ = 0 then we recover the usual PPCG iterations and if τ > λmax then we recover
the projected MPCG algorithm.

Each time ti < τ , an N ×N matrix ∆i = PT
i APi must be inverted. Since Pi is the concatena-

tion of contributions from the components Hs in the preconditioner, it is reasonable to expect that
∆i be full-ranked. If it is not then ∆i is only positive semi definite and pseudo-inversion (denoted

by ∆†i) is necessary. In any case, both γi and the columns in Φj,i are in range(PT
i) = range(∆i)

so that the iteration is always well defined. The exact same occurs in the Simultaneous FETI and
Block FETI algorithms [15]. There, it is proposed to operate a rank-revealing Cholesky factoriza-
tion (symmetric pivoting) on each ∆i to replace Pi by an A-orthonormal basis Pi of range(Pi)
and simplify future orthogonalization steps.

We have presented the algorithm with full reorthogonalization (lines 13 and 14). It is known
that for MPCG this is necessary but for PPCG it is not (βi,j = 0 as soon as j 6= i) so some
reorthogonalization steps may be skipped. Here we do not comment further on this for several
reasons: (i) we plan for our algorithm to solve the problem in few iterations so the cost of reorthog-
onalization will be low, (ii) for substructuring methods, which is the application that we propose
in the next section, it has been observed that full reorthogonalization is in fact crucial because of
numerical errors.

Remark 2. For clarity we give the size of the different variables (recall that n is the size of the
global problem and the preconditioner has N components):

• A,Π,H,H0, . . . ,HN ∈ Rn×n,

• x∗,xi, ri,b ∈ Rn,

• Zi+1,Pi+1,Qi+1 ∈ Rn×N or Rn depending on the iteration,

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 7

• ∆i ∈ RN×N or R depending on the iteration,

• γi,αi ∈ RN or R depending on the iteration number i,

• Φi,j ,βi,j ∈ RN×N or RN or R1×N or R depending on the iteration numbers i and j,

Note that the quantities Piαi and APiαi are always vectors in Rn. Note also that we only use
the notation 〈·, ·〉 for computing the inner product between two vectors.

3.2 The usual PPCG properties hold for Algorithm 2

In Theorem 1 we prove results similar to the ones stated in section 2.1 for PPCG.

Theorem 1. Algorithm 2 satisfies the five following properties:

1. The exact solution is achieved after at most n− n0 iterations.

2. ‖x∗ − xi‖A = min
{
‖x∗ − x‖A; x ∈ x00 + range(U) +

∑i−1
j=0 range(Pj)

}
.

3. Blocs of search directions are pairwise A-orthogonal: P>j APi = 0 (i 6= j).

4. Residuals are `2-orthogonal to previous search directions: P>j ri = 0 (i > j).

5. Residuals are pairwise H-orthogonal: 〈Hrj , ri〉 = 0 (i 6= j).

Proof. In the following, many simplifications occur thanks to the A-orthogonality of projection Π.
In particular note that Π>A = AΠ; ΠPi = Pi; Π>ri = ri.
Proof by induction of Properties 3 and 4:

The case i = 1 is simple: P>0 AP1 = P>0 AΠZ1 −P>0 AP0β0,0 = Φ0,0 −∆0∆
†
0Φ0,0 = 0,

and P>0 r1 = P>0 r0 −P>0 Q0α0 = γ0 −∆0∆
†
0γ0 = 0.

Next we assume that both properties hold for a given i ≥ 1 and deduce them for i + 1. Let
j ≤ i, then

P>j APi+1 = P>j AΠZi+1 −
i∑

k=0

P>j APkβi,k = Φi,j −∆j∆
†
jΦi,j = 0,

P>j ri+1 = P>j ri −P>j Qiαi =

{
0 if j 6= i since P>j ri = 0 and P>j Qi = 0,

P>i ri −P>i Qiαi = γi −∆i∆
†
iγi = 0 if j = i.

Proof of Property 5:
By symmetry of H it suffices to prove that 〈Hrj , ri〉 = 0 for all i > j. This follows directly from

〈Hrj , ri〉 = 〈ΠHrj , ri〉 and Property 4 since ΠHrj ∈
j∑

k=0

range (Pk).

Proof of Property 2:
The minimization result is equivalent to the fact that xi − x00 is the A-orthogonal projection of
x∗−x00 onto range(U)+

∑i−1
j=0 range(Pj). With this, the proof comes down to the A-orthogonality

between this space and x∗ − xi = (x∗ − x00)− (xi − x00). We begin with the space range(U) :

U>A(x∗ − xi) = U>ri = U>Π>ri = (ΠU)>ri = 0 since Ker(Π) = range(U).

For any of the spaces range(Pj) (j = 0, . . . , i − 1) the argument is Property 4: P>j A(x∗ − xi) =

P>j ri = 0.
Proof of Property 1:
The fact that xn−n0

= x∗ follows from the observation that rank (Pi) ≥ 1 at every iteration until

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 8

convergence is achieved. This is another way of saying that the algorithm does not break down. In-
deed, assume that rank (Pi) = 0 then ΠHri ∈ span{P0, . . . ,Pi−1} = span{ΠHr0, . . . ,ΠHri−1}.
Equivalently we may write

Hri ∈ span{Hr0, . . . ,Hri−1}+ Ker(Π)
⇔ H1/2ri ∈ span{H1/2r0, . . . ,H

1/2ri−1}+ H−1/2Ker(Π).

By Property 5 it holds that 〈ri,Hrj〉 = 0 for j = 0, . . . , i− 1 and ri ∈ Im(Π>) so ri ⊥ Ker(Π). It
follows that, if rank (Pi) = 0, then the exact solution has been found before iteration n − n0. If
this hasn’t occurred then, by a dimensional argument, at iteration n− n0 the minimization space
is the whole of Rn and xn−n0 = x∗.

3.3 Convergence Results

The following theorems hold.

Theorem 2. If the exact solution has not yet been achieved at iteration i− 1 of Algorithm 2 and
ti−1 ≥ τ then the relative error is bounded by

‖x∗ − xi‖A
‖x∗ − xi−1‖A

≤
(

1

1 + λmin τ

)1/2

.

(Recall that τ ∈ R+ is the threshold chosen by the user and λmin is a lower bound for the smallest
eigenvalue of the preconditioned operator HA.)

Proof. The proof follows the same lines as for the results in section 2. Once more we use the
notation di = x∗−xi for the error at iteration i. By the finite termination property in Theorem 1
(Property 1) , there exists an iteration number I ≤ n − n0 such that xI = x∗ so x∗ = x0 +∑I−1
i=0 Piαi = xi+

∑I−1
j=i Pjαj , or equivalently di =

∑I−1
j=i Pjαj . The blocs of search directions are

pairwise A-orthogonal (Property 3 in Theorem 1) so by subtraction we obtain ‖di‖2A = ‖di−1‖2A−
‖Pi−1αi−1‖2A. Then, recalling that ‖ri‖2H = ‖di‖2AHA ≥ λmin‖di‖2A (by definition of λmin) it holds
that :

‖di−1‖2A
‖di‖2A

= 1 +
‖Pi−1αi−1‖2A
‖ri‖2H

‖ri‖2H
‖di‖2A

≥ 1 + λmin
‖Pi−1αi−1‖2A
‖ri‖2H

.

The fraction corresponds to the quantity that is measured by the τ–test. Indeed

‖Pi−1αi−1‖2A = 〈γi−1,∆
†
i−1∆i−1∆

†
i−1γi−1〉 = γ>i−1αi−1, (7)

so the assumption that ti−1 ≥ τ can be rewritten as ‖Pi−1αi−1‖2A ≥ τ‖ri‖2H and the result
follows.

The next theorem states that, if the problem is well conditioned, then no adaption will be
performed and the additional cost compared to PPCG is just the cost of performing the τ–test
(two inner products and one scalar division) which is negligible.

Theorem 3. If all eigenvalues of the preconditioned operator HA are smaller than 1/τ then the
result of the τ–test is ti ≥ τ at each iteration and Algorithm 2 performs the usual PPCG iterations.

Proof. We begin with ri = ri−1 −Qi−1αi−1 and take the inner product by Hri:

〈Hri, ri〉 = −〈Hri,APi−1αi−1〉 (by Property 5 in Theorem 1).

An application of the Cauchy-Schwarz inequality in the A-norm gives

〈Hri, ri〉 ≤ 〈Hri,AHri〉1/2〈Pi−1αi−1,APi−1αi−1〉1/2,

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 9

or equivalently
〈Hri, ri〉
〈Hri,AHri〉

≤ 〈Pi−1αi−1,APi−1αi−1〉
〈Hri, ri〉

. (8)

By assumption all eigenvalues of HA are smaller than 1/τ so 〈Hri,ri〉
〈Hri,AHri〉 ≥ τ and by this, (8)

and (7) the τ–test returns ti ≥ τ .

Corollary 1. If the τ–test returns ti−1 < τ then ‖Hri‖2H−1 < τ‖Hri‖2A. This implies that there
is at least one eigenvalue of HA that is larger than 1/τ . Moreover, it holds that 〈Hri,Av〉 6= 0
where v is an eigenvector corresponding to that eigenvalue. This explains why it makes sense to
augment the minimization space with the components of Hri.

Proof. The existence of an eigenvalue larger that 1/τ follows easily from (8) and (7).

3.4 Alternate Algorithm

We make one more assumption:

(A6) the operator A is a sum of N contributions : A =
N∑
s=1

As, with each As symmetric and

positive semi definite.

In cases where the number N of components in the preconditioner is very large it may occur
that the cost of factorizing ∆i become excessive. In this case we propose to swap the global τ–test
in Algorithm 2 (line 8) for N tests that are local and deflate only the local components that are
problematic. This is presented in Algorithm 3 and the adaptation step is between lines 8 and 13.

The remarks from section 3.1 about the choice of τ , factorization of ∆i and full reorthogonal-
ization also apply here. Additionally, if at a given iteration Hsri+1 = 0, then tsi is not defined.
This is not a problem since in this case Hsri+1 does not contribute to the preconditioned resid-
ual and can be discarded right away. It cannot occur that Hsri+1 = 0 for all values of s unless
convergence is achieved (ri+1 = 0).

If the local τ–tests return tsi < τ for every s = 1, . . . , N at a given iteration, then Zi+1 =[
Hri+1|H1ri+1| . . . |HNri+1

]
and the first column is obviously linearly redundant so any efficient

implementation of the algorithm would delete it immediately.
As is the case for the global τ–test, the evaluation of the local τ–tests relies on quantities that

are available with little extra computational work. Indeed Qi =
∑N
s=1 AsPi, so AsPi is available

and all we need to perform is a linear combination of its columns with the coefficients given by
αi and the inner product by Piαi. It makes sense to look for additional search directions locally
if the preconditioner is constructed as a sum of approximate inverses Hs of the components As

in the operator. We illustrate this with the example of substructuring (domain decomposition)
solvers in the next section.

The theoretical properties of Algorithm 3 are stated in the following theorem. As expected
they are similar to the ones of Algorithm 2.

Theorem 4. • The five properties proved in Theorem 1 hold.

• The convergence bound in Theorem 2 holds if the local τ–tests return tsi ≥ τ for every s =
1, . . . , N at a given iteration i.

Proof. • The proof of the first result is the same as the proof of Theorem 1.

• For the second result the only additional argument is that tsi ≥ τ can be rewritten as
〈Piαi,A

sPiαi〉 ≥ τ 〈ri+1,H
sri+1〉 and summing these estimates over s = 1, . . . , N gives

〈Piαi,APiαi〉 ≥ τ 〈Hri+1, ri+1〉.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 10

Algorithm 3: New algorithm for

(
N∑
s=1

As

)
x∗ = b preconditioned by

(
N∑
s=1

Hs

)
and Π for

initial guess x00. τ ∈ R+: chosen by user.

1 x0 = Πx00 + U(U>AU)−1U>b; r0 = b−Ax0; Z0 = Hr0; P0 = ΠZ0;
2 for i = 0, 1, . . . , convergence do
3 Qi = APi;

4 ∆i = Q>i Pi; γi = Pi
>ri; αi = ∆†iγi;

5 xi+1 = xi + Piαi ;
6 ri+1 = ri −Qiαi ;
7 Zi+1 = Hri+1; // initialize Zi+1

8 for s = 1, . . . , N do

9 tsi =
〈Piαi,A

sPiαi〉
r>i+1H

sri+1
;

10 if tsi < τ then // local τ-test
11 Zi+1 = [Zi+1 |Hsri+1]; // concatenate Zi+1 and Hsri+1

12 end

13 end

14 Φi,j = Q>j Zi+1; βi,j = ∆†jΦi,j for each j = 0, . . . , i;

15 Pi+1 = ΠZi+1 −
i∑

j=0

Pjβi,j ;

16 end
17 Return xi+1;

4 Application: Balancing Domain Decomposition (BDD)

Domain Decomposition methods are linear solvers for parallel computers. They are hybrid solvers
in the sense that they mix direct and iterative solves with the objective of achieving both robustness
and parallel efficiency. The trick is that the domain is split into (sufficiently small) subdomains and
all direct solves are performed inside these subdomains (where it is affordable) and not in the global
domain. An iterative solver (e.g. PPCG) connects the local components together. In this article
we will focus on one of the so called substructuring methods: Balancing Domain Decomposition,
or BDD [28].

4.1 Notation and Introduction of the BDD formulation

Let’s assume that we are given a linear system Ku = f for a symmetric positive definite matrix
K ∈ Rm×m which corresponds to the finite element discretization of a Partial Differential Equation
(PDE) posed in an open subset Ω of R2 or R3. Let’s also assume that Ω has been partitioned
into N non overlapping and mesh conforming subdomains Ωs and that Γ is the set of boundaries
between subdomains:

Ω =
⋃

s=1,...,N

Ωs; Ωs ∩ Ωt = ∅ for all s 6= t; Γ =
⋃

s=1,...,N

∂Ωs \ ∂Ω.

Now, the original linear system admits the following block formulation(
KΓΓ KΓI

KIΓ KII

)(
uΓ

uI

)
=

(
fΓ
fI

)
⇔
{

KΓΓuΓ + KΓIuI = fΓ
KIΓuΓ + KIIuI = fI

,

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 11

where the subscript ∗Γ denotes the restriction to the set of degrees of freedom on Γ and ∗I to the
remainder. From the second line we deduce that uI = K−1

II (fI −KIΓuΓ) and by injecting this into
the first line we reduce the problem to one on the interfaces between subdomains: Find uΓ ∈ Rn
(n := #(Γ)) such that

AuΓ = b, where A := KΓΓ −KΓIK
−1
II KIΓ and b := fΓ −KΓIK

−1
II fI . (9)

This is the linear system that is solved for BDD. The result is an approximation uΓ of the solution
on Γ and the remaining part of the solution is computed as uI = K−1

II (fI−KIΓuΓ). To understand
why BDD is ideal in terms of parallel computing and fits the framework for our new algorithms we
need to rewrite (9) in a form that makes the local contributions apparent. First, let Ks be the local
matrices corresponding to the discretization of the same PDE but restricted to each subdomain
Ωs and write it in block formulation as

Ks =

(
Ks

ΓsΓs Ks
ΓsIs

Ks
IsΓs Ks

IsIs

)
where

{
∗Γs : degrees of freedom on Γ ∩ ∂Ωs,
∗Is : remaining degrees of freedom in Ωs.

Then, define the local Schur complements Ss := Ks
ΓsΓs−Ks

ΓsIs(Ks
IsIs)−1Ks

IsΓs . Finally, these can
be assembled into the BDD operator already defined in (9). Indeed it holds that

A =

N∑
s=1

As, where for all s = 1, . . . , N : As := Rs>SsRs (10)

and Rs ∈ R#(Γs)×n is the boolean matrix that, given a vector in Rn, selects the entries in Γs. The
fact that A is a sum of local contributions has now been made apparent and the preconditioner
exploits this since it is

H :=

N∑
s=1

Hs, where for all s = 1, . . . , N : Hs := Rs>DsSs†DsRs, (11)

and {Ds}s=1,...,N is a family of positive definite diagonal matrices that form a partition of unity

(i.e. they satisfy
∑N
s=1 Rs>DsRs = I). Once more, † denotes a pseudo inverse. This last piece

of notation reveals a difficulty inherent to BDD: if the local problems Ks are not positive definite
then neither are the Schur complements Ss. This difficulty has been overcome since [28] by adding
a deflation step to the Neumann Neumann algorithm [6]. The deflation, or coarse space, is chosen
as:

range(U) =

N∑
s=1

Rs>DsKer(Ss). (12)

This offers the double advantage of making all applications of ΠH and HΠ> uniquely defined
regardless of the choice of the pseudo inverse and of improving convergence significantly. An
alternative approach is the Balancing Domain Decomposition by Constraints (or BDDC) solver
[7].

4.2 New Adaptive BDD

There were five assumptions in sections 2 and 3. With the notation introduced in (10), (11) and
(12) all five of these assumptions hold: U is a full rank matrix, A and H are symmetric positive
definite matrices [28] assembled as the sum of N symmetric positive semi definite matrices and all
eigenvalues of the preconditioned operator HA are larger than λmin = 1 [28, 45]. Thanks to this,
we can straightforwardly apply our two new algorithms (namely Algorithm 2 with the global τ–test

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 12

and Algorithm 3 with the local τ–test) to the BDD linear system (9). Moreover, the theoretical
results in Theorems 1, 2, 3, 4 and Corollary 1 hold.

It is well known that the most time and resource consuming operations in a BDD algorithm are
the local solves required by any application of A (Dirichlet solves in Ss) and H (Neumann solves
in Ss†). We observe that the cost of preconditioning is the same in one iteration of our new algo-
rithms as in an iteration of PPCG for BDD. However in iterations where we select multiple search
directions, additional applications of A are needed if the original formulation of the algorithms
is implemented (Pi is dense after orthogonalization and projection). Since we are interested in
high performance computing we propose Algorithms 4 and 5 which are optimized versions of the
algorithms for BDD. In exact arithmetic the modifications make no difference to the sequence of
approximate solutions but they save a lot of computational time.

Following the trick in [15] (equation (10)) we have ensured that all additional applications of
A are performed on vectors that are supported in one subdomain, meaning that they only require
a local solve in that particular subdomain and its neighbours. In the numerical section we will
compare several methods in terms of numbers of local solves and observe that from that point of
view our new solvers are extremely competitive.

In line 3 of Algorithm 4 we propose to compute Q̃i = AZi−
i−1∑
j=0

Q̃jβi−1,j instead of Qi = APi.

The connection is that Qi = ΠQ̃i. The values of ∆i and all the Φi,j remain the same. One more

application of the projection Π> to a vector is performed in line 6. We are confident that this is
negligible compared to the significant gain incurred by the localization of the applications of A.

In Algorithm 5, the formulation is slightly more complex since we also compute explicitly the
local components Qs

i = AsPi in line 4 in order to perform the local τ–test:

Qs
i = As

ΠZi −
i−1∑
j=0

Pjβi−1,j

= AsZi −AsU(U>AU)−1(AU)>Zi −

i−1∑
j=0

Qs
jβi−1,j .

(13)

Once more, this allows to reduce significantly the number of Dirichlet solves incurred by applying
A each time some local contributions are selected (when the τ–test returns tsi < τ). The second
term in the sum is not very costly since it consists in some low rank corrections. An additional
modification is that in line 13 we make the first column in Zi more sparse by subtracting local
contributions from the global vector when they contribute independently to the minimization space.
This also saves Dirichlet solves. Finally, in order to save some projection steps we compute P̃i

instead of Pi = ΠP̃i with the consequence that in line 6 the projection Π is applied to a vector.

4.3 Why this is expected to give good results – connection with previous
work

As already mentioned in section 2.2 it makes sense to generate the deflation space range(U) with
the eigenvectors corresponding to isolated eigenvalues of the preconditioned operator HA. Since
it is too costly to compute these eigenvectors, the authors in [30, 41, 44, 42, 23] propose instead to
approximate this space with local contributions. More precisely in [44] (Theorem 2.11 and Remark
2.9), and given a threshold τ ∈ R+, the coarse space is chosen so that

range(U) = span{Rs>psk; s = 1, . . . , N and λsk ≤ τ} (14)

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 13

Algorithm 4: Algorithm 2 applied to BDD: Adaptive Algorithm with global τ–test

1 x0 = Πx00 + U(U>AU)−1U>b; r0 = b−Ax0; Z0 = Hr0; P0 = ΠZ0;
2 for i = 0, 1, . . . , convergence do

3 Q̃i = AZi −
i−1∑
j=0

Q̃jβi−1,j ;

4 ∆i = Q̃>i Pi; γi = Pi
>ri; αi = ∆†iγi;

5 xi+1 = xi + Piαi ;

6 ri+1 = Π>(ri − (Q̃iαi)) ;

7 ti =
γ>i αi

r>i+1Hri+1
;

8 if ti < τ then // global τ-test
9 Zi+1 =

[
H1ri+1 | . . . |HNri+1

]
;

10 else
11 Zi+1 = Hri+1;
12 end

13 Φi,j = Q̃>j ΠZi+1; βi,j = ∆†jΦi,j for each j = 0, . . . , i;

14 Pi+1 = Π Zi+1 −
i∑

j=0

Pjβi,j ;

15 end
16 Return xi+1;

where in each subdomain (psk, λ
s
k) ∈ (R#(Γs),R+) are the eigenpairs of the following generalized

eigenvalue problem
(Ds−1SsDs−1) psk = λsk (RsARs>) psk.

Algorithm 1 is then applied. It is proved that with this choice of U the largest eigenvalue of
the projected preconditioned operator HAΠ is bounded by N/τ where N is the maximal number
of neighbours of a subdomain (including itself). Since λmin is still 1, the classical estimate (3)

yields ‖x∗−xi‖A
‖x∗−x0‖A ≤ 2

[√
N/τ−1√
N/τ+1

]i
. This result tells us that with local contributions it is possible to

guarantee any targeted convergence rate by adjusting τ . Although this can be done in parallel and
only a few eigenvectors are needed, the fact that the setup requires solving generalized eigenvalues
problems is a drawback. The original motivation for the present work was to achieve as good
a convergence with a coarse space that is enriched on the fly. Even though the τ–test in our
algorithms does not measure exactly the same quantities as the generalized eigenvalue problem we
expect to capture the relevant quantities within the iterations of our two algorithms and ensure
fast convergence. We will compare both approaches in the next section.

Remark 3. The theoretical result for our new algorithms is that at iterations where the τ–test
returns ti ≥ τ (respectively tsi ≥ τ for all s in the case of the local test) we guarantee that the
error will decrease linearly. What we do not prove however is how often this will happen. This
is somewhat similar to the GenEO result since in that case no result is given for the size of the
coarse space. In future work we plan to study these questions but this can only be done for some
particular choices of partial differential equations, geometries and discretizations.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 14

Algorithm 5: Algorithm 3 applied to BDD: Adaptive Algorithm with local τ–test

1 x0 = Πx00 + U(U>AU)−1U>b; r0 = b−Ax0; Z0 = Hr0;

2 P̃0 = Z0;
3 for i = 0, 1, . . . , convergence do

4 Qi =
∑N
s=1 Qs

i where Qs
i = AsZi −AsU(U>AU)−1(AU)>Zi −

i−1∑
j=0

Qs
jβi−1,j ;

5 ∆i = Q>i P̃i; γi = P̃>i ri; αi = ∆†iγi;

6 xi+1 = xi + ΠP̃iαi ;
7 ri+1 = ri −Qiαi ;
8 Zi+1 = Hri+1;
9 for s = 1, . . . , N do

10 tsi =
〈ΠP̃iαi,Q

s
iαi〉

r>i+1H
sri+1

;

11 if tsi < τ then // local τ-test
12 Zi+1 = [Zi+1 |Hsri+1];
13 Subtract Hsri+1 from the first column in Zi+1;

14 end

15 end

16 Φi,j = Qj
>Zi+1; βi,j = ∆†jΦi,j for each j = 0, . . . , i;

17 P̃i+1 = Zi+1 −
i∑

j=0

P̃jβi,j ;

18 end
19 Return Πxi+1;

5 Numerical Results with FreeFem++ [18] and GNU Oc-
tave [10]

In this section we consider the linear system arising from applying BDD to a two dimensional
linear elasticity problem discretized by standard P1 finite elements. The computational domain Ω
is the unit square and we apply zero Dirichlet boundary conditions on the left hand side and zero
Neumann elsewhere. The right hand side corresponds to a (0, 10)> gravity vector and the initial
guess is 0. For each test case we will specify the partition into N subdomains. This partition will
be either regular (into squares of size 1/

√
N × 1/

√
N) or generated automatically by the graph

partitioner Metis [22]. The mesh is a regular triangular mesh with 200×N elements. We consider
two choices for the partition of unity matrices Ds in the preconditioner. Either Ds is proportional
to the diagonal values of the local matrix Ks (k-scaling) [29, 38, 26, 36] or it is equal to the
inverse of the multiplicity of the degree of freedom (multiplicity scaling). There are two physical
parameters: Young’s modulus E and Poisson’s ratio ν. We set ν = 0.4 in all of Ω for all test cases.
For Young’s modulus we choose a checkerboard distribution (see Figure 1 – left) where the two
values are E1 = 107 and, unless specified otherwise, E2 = 1012.

We compare five algorithms for solving the linear system: Algorithm 4 (New algorithm with
Global τ–test), Algorithm 5 (New algorithm with Local τ–test), Algorithm 4 with τ =∞ (Simul-
taneous), Algorithm 1 where U is full rank and satisfies (12) (PPCG) and Algorithm 1 where U
is full rank and satisfies (14) (GenEO). The stopping criterion is always that the error ‖xi−x∗‖A
be smaller than 10−6‖x∗‖A. This allows us to compare all algorithms fairly. Finally, for all three
adaptive methods (both new methods and GenEO) we choose τ = 0.1.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 15

IsoValue
-5.26211e+10
2.63255e+10
7.89566e+10
1.31588e+11
1.84219e+11
2.3685e+11
2.89481e+11
3.42112e+11
3.94743e+11
4.47374e+11
5.00005e+11
5.52636e+11
6.05267e+11
6.57898e+11
7.10529e+11
7.6316e+11
8.15791e+11
8.68422e+11
9.21053e+11
1.05263e+12

E

Figure 1: Left: Young’s modulus; Center: Regular subdomains; Right: Metis subdomains.

5.1 Regular partition: Homogeneous Subdomains

The geometry for this test case is presented in Figure 1. The partition is into N = 81 subdomains
(see Figure 1 – left) in such a way that the material parameters are constant in each subdomain.
The results are presented in Figure 2. We examine three quantities with respect to the iteration
count: the error ‖xi − x∗‖A/‖x∗‖A, the dimension of the minimization space (see Property 2 in
Theorem 1) and the number of local solves (number of applications of Ss or Ss†). In the case of
GenEO we never include results on the number of local solves since this would require counting
the number of iterations needed for the eigensolver to converge.

We observe that when k-scaling is used, convergence of PPCG is very good and the adaptive
algorithms do not need to do any extra work (or very little in the case of the new algorithm with
the local τ–test which selects just 4 extra search directions). This is what was expected since
theoretical results [28, 26, 45] guarantee that PPCG converges fast. The simultaneous algorithm
converges even faster but at the cost of about twice as many local solves.

When multiplicity scaling is used, convergence of PPCG is not as good. Both of the new
algorithms adapt by selecting significantly larger minimization spaces (626 and 783 versus 268).
This allows to reduce the number of iterations from over 50 to under 10 and the number of local
solves decreases by about a factor 2 from 8586 to 4302 and 4176. The algorithm with the global
τ–test augments the minimization space at each iteration so in this case it is the same as the
Simultaneous algorithm. The coarse space computed by GenEO was prohibitively large so we did
not include it.

5.2 Metis partition: Heterogeneous Subdomains

Figure 3 shows the results when solving the same test case as previously with k-scaling and a
Metis partition into N = 81 subdomains (see Figure 1 – right). The partition into subdomains
is no longer aligned with the heterogeneities and domains are non regular. These are two known
difficulties for BDD. On the left hand side we have plotted the results for all test cases and on the
right hand side without PPCG so as to make the differences more clear between the competitive
methods. The convergence of PPCG (top left plot in Figure 1) is a typical behaviour for an ill
conditioned CG method [46]: first there is a long stagnation and then, once the isolated eigenvalues
have been well approximated by the Ritz values, convergence is very fast. For all the other methods
this stagnation has been completely eliminated (GenEO) or significantly decreased so this confirms
that the problematic eigenvectors are being well handled by augmenting the minimization space
with local quantities. The new methods select larger minimization spaces but only perform this
augmentation during the first few iterations, then they behave as PPCG methods and the result
is that they require roughly 4 times fewer local solves. On this hard test case the Simultaneous
algorithm also convergences faster and with fewer local solves than PPCG.

In Table 1 we first give details on the number of iterations and local solves needed for conver-

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 16

k-scaling multiplicity scaling

0 2 4 6 8 10 12

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

E
rr
or

(l
og

sc
al
e)

Global
Local

Simultaneous
PPCG
GenEO

0 10 20 30 40 50

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

E
rr
or

(l
o
g
sc
al
e)

Global
Local

Simultaneous
PPCG

0 2 4 6 8 10 12

200

400

600

800

Iterations

D
im

en
si
on

of
th
e
m
in
im

iz
at
io
n
sp
ac
e

Global
Local

Simultaneous
PPCG
GenEO

0 10 20 30 40 50

200

400

600

800

Iterations

D
im

en
si
on

of
th
e
m
in
im

iz
at
io
n
sp
ac
e

Global
Local

Simultaneous
PPCG

0 2 4 6 8 10 12

0

1,000

2,000

3,000

4,000

Iterations

N
u
m
b
er

of
lo
ca
l
so
lv
es

Global
Local

Simultaneous
PPCG

0 10 20 30 40 50

0

2,000

4,000

6,000

8,000

Iterations

N
u
m
b
er

of
lo
ca
l
so
lv
es

Global
Local

Simultaneous
PPCG

Figure 2: Regular partition. Left: k-scaling. Right: multiplicity scaling.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 17

Variable heterogeneity for N = 81 (k-scaling) :
Global τ–test Local τ–test Simultaneous PCG GenEO

E2/E1 it solves it solves it solves it solves it
1 26 4624 25 4602 14 7212 36 5832 23
10 26 5036 28 5213 14 7212 44 7128 23
102 30 6096 25 5164 15 7786 76 12312 21
103 23 5374 25 5133 16 8360 126 20412 22
104 22 5212 25 5176 16 8360 139 22518 22
105 22 5212 24 5041 16 8360 141 22842 23

dim < 554 dim < 423 dim < 1428 dim < 353 dim < 372
Variable heterogeneity for N = 81 (multiplicity scaling) :
Global τ–test Local τ–test Simultaneous PCG GenEO

E2/E1 it solves it solves it solves it solves it
1 30 5272 30 5626 20 10656 35 5670 23
10 32 6832 30 5941 21 11230 51 8262 23
102 39 9202 34 8276 24 12952 100 16200 23
103 34 11688 34 8890 24 12952 204 33048 22
104 31 11202 34 8872 25 13526 299 48438 23
105 33 11114 35 9089 25 13526 336 54432 23

dim < 1365 dim < 808 dim < 2157 dim < 548 dim < 662
Variable number of subdomains for E2/E1 = 105 (k scaling) :

Global τ–test Local τ–test Simultaneous PCG GenEO
N it solves it solves it solves it solves it
25 20 1784 22 1447 17 2530 69 3450 20
36 24 2392 23 2150 16 3476 87 6264 20
49 20 3364 24 3146 16 4844 110 10780 20
64 21 5264 24 4137 17 7006 152 19456 20

dim < 693 dim < 379 dim < 1193 dim < 320 dim < 327

Table 1: Comparison of the five methods for variable heterogeneity and number of Metis subdo-
mains. it: number of iterations. solves: number of local solves.

gence when the heterogeneity E2/E1 varies (both for k-scaling and multiplicity scaling). Then we
set E2/E1 = 105 and we make the number N of Metis subdomains vary. The number of squares in
the checkerboard is also N . The last line of each table gives the maximal size of the coarse space
for that column.

As a general rule, only PPCG suffers in terms of number of iterations when the problems
become harder. This is important because each iteration requires a global communication step
which is not good in terms of parallelism.

For all methods the number of local solves also becomes larger as the problems become harder
but the impact is a lot less important for the two new methods so we are satisfied with the way
that they adapt to the difficulty. One final argument in favour of the new methods is that block
operations are often proportionally much less expensive than single vector operations because the
computation time is driven by the memory access. Note that this point was previously made in
[15] for the Simultaneous algorithm.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 18

0 20 40 60 80 100 120 140
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

E
rr
o
r
(l
o
g
sc
al
e)

Global
Local

Simultaneous
PPCG
GenEO

0 5 10 15 20 25
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

E
rr
or

(l
og

sc
al
e)

Global
Local

Simultaneous
GenEO

0 20 40 60 80 100 120 140

500

1,000

1,500

Iterations

D
im

en
si
on

of
th
e
m
in
im

iz
at
io
n
sp
ac
e

Global
Local

Simultaneous
PPCG
GenEO

0 5 10 15 20 25

500

1,000

1,500

Iterations

D
im

en
si
on

of
th
e
m
in
im

iz
at
io
n
sp
ac
e

Global
Local

Simultaneous
GenEO

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

2.5
·104

Iterations

N
u
m
b
er

of
lo
ca
l
so
lv
es

Global
Local

Simultaneous
PPCG

0 5 10 15 20 25

0

2,000

4,000

6,000

8,000

Iterations

N
u
m
b
er

o
f
lo
ca
l
so
lv
es

Global
Local

Simultaneous

Figure 3: Metis Partition. Left: all methods. Right: zoom on competitive methods.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 19

6 Conclusion and Perspectives

We have proposed a new adaptive solver (and a variant) for linear systems with multiple precon-
ditioners. The theoretical analysis guarantees that there are two kinds of iterations: either the
convergence is satisfying and an iteration of PPCG is performed or convergence is too slow and
the minimization space is enriched with components coming from several preconditioners. We
observed good convergence when applying the solver to the system arising from Balancing Domain
Decomposition. This algorithm should now be implemented in parallel and CPU times should be
measured to confirm efficiency. We believe that the new algorithms are good parallel solvers for
industrial applications.

Future work includes applying the algorithm to other linear systems such as ones with several
preconditioners each one arising from the physics of the problem. Another objective would be
to consider the case where a bound for the largest eigenvalue is known instead of the smallest
(or neither is available). In this case the algorithm would apply also to the Additive Schwarz
and Optimized Schwarz domain decomposition methods. Finally generalization to non symmetric
problems should be considered.

Acknowledgements

The author would like to thank Pierre Gosselet, Frédéric Nataf, Daniel J. Rixen and François-
Xavier Roux for some enlightening discussions on this topic.

References

[1] O. Axelsson and I. Kaporin. Error norm estimation and stopping criteria in preconditioned
conjugate gradient iterations. Numer. Linear Algebra Appl., 8(4):265–286, 2001.

[2] A. Brandt, J. Brannick, K. Kahl, and I. Livshits. Bootstrap AMG. SIAM J. Sci. Comput.,
33(2):612–632, 2011.

[3] C. Brezinski. Multiparameter descent methods. Linear Algebra Appl., 296(1-3):113–141, 1999.

[4] R. Bridson and C. Greif. A multipreconditioned conjugate gradient algorithm. SIAM J.
Matrix Anal. Appl., 27(4):1056–1068 (electronic), 2006.

[5] A. Chapman and Y. Saad. Deflated and augmented Krylov subspace techniques. Numer.
Linear Algebra Appl., 4(1):43–66, 1997.

[6] Y.-H. De Roeck and P. Le Tallec. Analysis and test of a local domain-decomposition precon-
ditioner. In Fourth International Symposium on Domain Decomposition Methods for Partial
Differential Equations (Moscow, 1990), pages 112–128, Philadelphia, PA, 1991. SIAM.

[7] C. R. Dohrmann. A preconditioner for substructuring based on constrained energy minimiza-
tion. SIAM J. Sci. Comput., 25(1):246–258 (electronic), 2003.

[8] V. Dolean, F. Nataf, R. Scheichl, and N. Spillane. Analysis of a two-level Schwarz method
with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math.,
12(4):391–414, 2012.

[9] Z. Dostál. Conjugate gradient method with preconditioning by projector. International Jour-
nal of Computer Mathematics, 23(3-4):315–323, 1988.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 20

[10] J. W. Eaton, D. Bateman, and S. Hauberg. GNU Octave version 3.0.1 manual: a high-
level interactive language for numerical computations. CreateSpace Independent Publishing
Platform, 2009. ISBN 1441413006.

[11] Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems. Robust domain decomposition precondi-
tioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer.
Anal., 46(5):1175–1199, 2012.

[12] C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and its
parallel solution algorithm. Int. J. Numer. Meth. Engng., 32(6):1205, 1991.

[13] J. Galvis and Y. Efendiev. Domain decomposition preconditioners for multiscale flows in high
contrast media: reduced dimension coarse spaces. Multiscale Model. Simul., 8(5):1621–1644,
2010.

[14] P. Gosselet, C. Rey, and J. Pebrel. Total and selective reuse of Krylov subspaces for the
resolution of sequences of nonlinear structural problems. Internat. J. Numer. Methods Engrg.,
94(1):60–83, 2013.

[15] P. Gosselet, D. Rixen, F.-X. Roux, and N. Spillane. Simultaneous FETI and block FETI:
Robust domain decomposition with multiple search directions. International Journal for Nu-
merical Methods in Engineering, pages n/a–n/a, 2015.

[16] C. Greif, T. Rees, and D. Szyld. Additive Schwarz with variable weights. In J. Erhel, M. J.
Gander, L. Halpern, G. Pichot, T. Sassi, and O. Widlund, editors, Domain Decomposition
Methods in Science and Engineering XXI, volume 98 of Lecture Notes in Computational Sci-
ence and Engineering, pages 779–787. Springer International Publishing, 2014.

[17] R. Haferssas, P. Jolivet, and F. Nataf. A robust coarse space for Optimized Schwarz methods
SORAS-GenEO-2. Technical report, Submitted, hal-01100926, 2015.

[18] F. Hecht. FreeFem++. Numerical Mathematics and Scientific Computation. Laboratoire J.L.
Lions, Université Pierre et Marie Curie, http://www.freefem.org/ff++/, 3.23 edition, 2013.

[19] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.
Research Nat. Bur. Standards, 49:409–436 (1953), 1952.

[20] W. D. Joubert and T. A. Manteuffel. Iterative methods for nonsymmetric linear systems.
Academic Press, New York, page 149171, 1990.

[21] S. Kaniel. Estimates for some computational techniques in linear algebra. Mathematics of
Computation, 20(95):369–378, 1966.

[22] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392 (electronic), 1998.

[23] A. Klawonn, P. Radtke, and O. Rheinbach. Adaptive coarse spaces for BDDC with a trans-
formation of basis. In Twenty Second International Conference on Domain Decomposition
Methods, 2014.

[24] A. Klawonn, P. Radtke, and O. Rheinbach. FETI-DP methods with an adaptive coarse space.
SIAM J. Numer. Anal., 53(1):297–320, 2015.

[25] A. Klawonn and O. Rheinbach. Deflation, projector preconditioning, and balancing in iterative
substructuring methods: connections and new results. SIAM J. Sci. Comput., 34(1):A459–
A484, 2012.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 21

[26] A. Klawonn and O. Widlund. FETI and Neumann-Neumann iterative substructuring methods:
Connections and new results. Communications on Pure and Applied Mathematics, 54(1):57–
90, 2001.

[27] S. Loisel, H. Nguyen, and R. Scheichl. Optimized schwarz and 2-lagrange multiplier methods
for multiscale pdes. Technical report, submitted, 2015.

[28] J. Mandel. Balancing domain decomposition. Comm. Numer. Methods Engrg., 9(3):233–241,
1993.

[29] J. Mandel and M. Brezina. Balancing domain decomposition for problems with large jumps
in coefficients. Math. Comp., 65(216):1387–1401, 1996.

[30] J. Mandel and B. Soused́ık. Adaptive selection of face coarse degrees of freedom in the BDDC
and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Engrg.,
196(8):1389–1399, 2007.

[31] G. Meinardus. Approximation of functions: Theory and numerical methods. Expanded trans-
lation of the German edition. Translated by Larry L. Schumaker. Springer Tracts in Natural
Philosophy, Vol. 13. Springer-Verlag New York, Inc., New York, 1967.

[32] F. Nataf, H. Xiang, V. Dolean, and N. Spillane. A coarse space construction based on local
Dirichlet-to-Neumann maps. SIAM J. Sci. Comput., 33(4):1623–1642, 2011.

[33] R. A. Nicolaides. Deflation of conjugate gradients with applications to boundary value prob-
lems. SIAM J. Numer. Anal., 24(2):355–365, 1987.

[34] A. A. Nikishin and A. Y. Yeremin. Variable block CG algorithms for solving large sparse
symmetric positive definite linear systems on parallel computers. I. General iterative scheme.
SIAM J. Matrix Anal. Appl., 16(4):1135–1153, 1995.

[35] D. P. O’Leary. The block conjugate gradient algorithm and related methods. Linear Algebra
Appl., 29:293–322, 1980.

[36] C. Pechstein and R. Scheichl. Analysis of FETI methods for multiscale PDEs. Part II: interface
variation. Numer. Math., 118(3):485–529, 2011.

[37] D. Rixen. Substructuring and Dual Methods in Structural Analysis. PhD thesis, Université
de Liège, Belgium, Collection des Publications de la Faculté des Sciences appliquées, n.175,
1997.

[38] D. J. Rixen and C. Farhat. A simple and efficient extension of a class of substructure based
preconditioners to heterogeneous structural mechanics problems. Int. J. Numer. Meth. Engng.,
44(4):489–516, 1999.

[39] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, second edition, 2003.

[40] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h. A deflated version of the conjugate gradient
algorithm. SIAM J. Sci. Comput., 21(5):1909–1926, 2000. Iterative methods for solving
systems of algebraic equations (Copper Mountain, CO, 1998).

[41] B. Soused́ık, J. Š́ıstek, and J. Mandel. Adaptive-Multilevel BDDC and its parallel implemen-
tation. Computing, 95(12):1087–1119, 2013.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and Application 22

[42] N. Spillane. Robust domain decomposition methods for symmetric positive definite problems.
PhD thesis, Thèse de l’Ecole doctorale de Mathmatiques de Paris centre, Laboratoire Jacques
Louis Lions, Université Pierre et Marie Curie, Paris, 2014.

[43] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. Abstract robust
coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer.
Math., 126(4):741–770, 2014.

[44] N. Spillane and D. J. Rixen. Automatic spectral coarse spaces for robust FETI and BDD
algorithms. Int. J. Numer. Meth. Engng., 95(11):953–990, 2013.

[45] A. Toselli and O. Widlund. Domain decomposition methods—algorithms and theory, volume 34
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.

[46] A. van der Sluis and H. A. van der Vorst. The rate of convergence of conjugate gradients.
Numer. Math., 48(5):543–560, 1986.

	1 Introduction
	2 Projected Preconditioned Conjugate Gradient (PPCG)
	2.1 Description and well known results
	2.2 The choice of deflation space can significantly accelerate convergence
	2.3 Monitoring the relative error in PPCG

	3 Main Result: New Adaptive Algorithm
	3.1 Presentation of the New Algorithm
	3.2 The usual PPCG properties hold for Algorithm 2
	3.3 Convergence Results
	3.4 Alternate Algorithm

	4 Application: Balancing Domain Decomposition (BDD)
	4.1 Notation and Introduction of the BDD formulation
	4.2 New Adaptive BDD
	4.3 Why this is expected to give good results – connection with previous work

	5 Numerical Results with FreeFem++ FreeFem and GNU Octave octave
	5.1 Regular partition: Homogeneous Subdomains
	5.2 Metis partition: Heterogeneous Subdomains

	6 Conclusion and Perspectives

