
HAL Id: hal-01170029
https://hal.science/hal-01170029

Submitted on 30 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gluing together Proof Environments: Canonical
extensions of LF Type Theories featuring Locks
Furio Honsell, Luigi Liquori, Petar Maksimovic, Ivan Scagnetto

To cite this version:
Furio Honsell, Luigi Liquori, Petar Maksimovic, Ivan Scagnetto. Gluing together Proof Environ-
ments: Canonical extensions of LF Type Theories featuring Locks. LFMTP’15. 9th International
Workshop on Logical Frameworks and Meta-languages, Berlin, Germany, Aug 2015, Berlin, Germany.
�10.4204/EPTCS.185.1�. �hal-01170029�

https://hal.science/hal-01170029
https://hal.archives-ouvertes.fr

Submitted to:
LFMTP 2015

c© F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto
This work is licensed under the
Creative Commons Attribution License.

Gluing together Proof Environments:
Canonical extensions of

LF Type Theories featuring Locks∗

Furio Honsell
Department of Mathematics and Computer Science

University of Udine, Italy
furio.honsell@uniud.it

Luigi Liquori
Inria Sophia Antipolis Méditerranée, France

luigi.liquori@inria.fr

Petar Maksimović
Inria Rennes Bretagne Atlantique, France

Mathematical Institute of the Serbian Academy
of Sciences and Arts, Serbia

petar.maksimovic@inria.fr

Ivan Scagnetto
Department of Mathematics and Computer Science

University of Udine, Italy
ivan.scagnetto@uniud.it

We present two extensions of the LF Constructive Type Theory featuring monadic locks. A lock is
a monadic type construct that captures the effect of an external call to an oracle. Such calls are
the basic tool for gluing together diverse Type Theories and proof development environments. The
oracle can either be invoked in order to check that a constraint holds or to provide a suitable witness.
The systems are presented in the canonical style developed by the CMU School. The first system,
CLLFP , is the canonical version of the system LLFP , presented earlier by the authors. The second
system, CLLFP?, features the possibility of invoking the oracle to obtain a witness satisfying a given
constraint. We discuss encodings of Fitch-Prawitz Set theory, call-by-value λ -calculi, and systems
of Light Linear Logic. Finally, we show how to use Fitch-Prawitz Set Theory to define a type system
that types precisely the strongly normalizing terms.

1 Introduction

In recent years, the authors have introduced in a series of papers [17, 15, 20, 19] various extensions of
the Constructive Type Theory LF, with the goal of defining a simple Universal Meta-language that can
support the effect of gluing together, i.e. interconnecting, different type systems and proof development
environments.

The basic idea underpinning these logical frameworks is to allow for the user to express explicitly,
in an LF type-theoretic framework the invocation, and uniform recording of the effect, of external tools
by means of a new monadic type-constructor L P

M,σ [·], called a lock. More specifically, locks permit to
express the fact that, in order to obtain a term of a given type, it is necessary to verify, first, a constraint
P(Γ `Σ M : σ), i.e. to produce suitable evidence. No restrictions are enforced on producing such ev-
idence. It can be supplied by calling an external proof search tool or an external oracle, or exploiting
some other epistemic source, such as diagrams, physical analogies, or explicit computations according to
the Poincaré Principle [3]. Thus, by using lock constructors, one can factor-out the goal, produce pieces
of evidence using different proof environments and glue them back together, using the unlock operator,
which releases the locked term in the calling framework.
∗The work presented in this paper was partially supported by the Serbian Ministry of Education, Science, and Technological

Development, projects ON174026 and III44006.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Gluing together Proof Environments: CLLFP & CLLFP?

One of the original contributions of this paper is that we show how locks can delegate to external
tools not only the task of producing suitable evidence but also that of exhibiting suitable witnesses, to be
further used in the calling environment.

Locks subsume different proof attitudes, such as proof-irrelevant approaches, where one is only in-
terested in knowing that a proof witness exists, or approaches relying on powerful terminating metalan-
guages. Indeed, they allow for a straightforward accommodation of many different proof cultures within
a single Logical Framework; which otherwise can be embedded only very deeply [5, 14] or axiomatically
[21].

Differently from our earlier work, we focus in this paper only on systems presented in the canonical
format introduced by the CMU school [32, 13]. This format is syntax-directed and produces a unique
derivation for each derivable judgement. Terms are all in normal form and equality rules are replaced by
hereditary substitution. Canonical systems are very handy in establishing adequacy of encodings.

First, we present the very expressive system CLLFP and discuss the relationship to its non-canonical
counterpart LLFP in [19], where we introduced lock-types following the paradigm of Constructive Type
Theory (à la Martin-Löf), via introduction, elimination, and equality rules. This paradigm needs to
be rephrased for the canonical format used here. Introduction rules correspond to type checking rules
of canonical objects, whereas elimination rules correspond to type synthesis rules of atomic objects.
Equality rules are rendered via the rules of hereditary substitution. In particular, we introduce a lock
constructor for building canonical objects L P

N,σ [M] of type L P
N,σ [ρ], via the type checking rule (O·Lock).

Correspondingly, we introduce an unlock destructor, U P
N,σ [M], and an atomic rule (O·Unlock), allowing

elimination, in the hereditary substitution rules, of the lock-type constructor, under the condition that a
specific predicate P is verified, possibly externally, on a judgement:

Γ `Σ M⇐ ρ Γ `Σ N⇐ σ

Γ `Σ L P
N,σ [M]⇐L P

N,σ [ρ]
(O·Lock)

Γ `Σ A⇒L P
N,σ [ρ] Γ `Σ N⇐ σ P(Γ `Σ N⇐ σ)

Γ `Σ U P
N,σ [A]⇒ ρ

(O·Unlock)

Capitalizing on the monadic nature of the lock constructor, as we did for the systems in [20, 19], one
can replace locked terms without necessarily establishing the predicate. This increases the expressivity
of the system, and allows for reasoning under the assumption that the verification is successful, as well
as for postponing verifications. The crucial rules are:

Γ,x:τ `Σ L P
S,σ [ρ] type Γ `Σ A⇒L P

S,σ [τ] ρ[U P
S,σ [A]/x]F(τ)− = ρ ′

Γ `Σ L P
S,σ [ρ

′] type
(F ·Nested·Unlock)

Γ,x:τ `Σ L P
S,σ [M]⇐L P

S,σ [ρ] Γ `Σ A⇒L P
S,σ [τ]

ρ[U P
S,σ [A]/x]F(τ)− = ρ ′ M[U P

S,σ [A]/x]O(τ)− = M′

Γ `Σ L P
S,σ [M

′]⇐L P
S,σ [ρ

′]
(O·Nested·Unlock)

The (O·Nested·Unlock)-rule is the counterpart of the elimination rule for monads, once we realize that
letTP(Γ`S:σ)

x = A in N can be replaced by N[U P
S,σ [A]/x]. And this holds since the L P

S,σ [·]-monad satisfies
the property letTP x = M in N→ N if x /∈ Fv(N), provided x occurs guarded in N, i.e. within subterms
of the appropriate lock-type. The rule (F·Nested·Unlock) takes care of elimination at the level of types.

We proceed then to introduce CLLFP?. Syntactically, it might appear as a minor variation of CLLFP ,
but the lock constructor is used here to express the request for a witness satisfying a given property, which
is then replaced by the unlock operation. In CLLFP?, the lock acts as a binding operator and the unlock
as an application.

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 3

K ∈ K K ::= type |Πx:σ .K Kinds
α ∈ Fa α ::= a | α N Atomic Families

σ ,τ,ρ ∈ F σ ::= α |Πx:σ .τ |L P
N,σ [ρ] Canonical Families

A ∈ Oa A ::= c | x | AM |U P
N,σ [A] Atomic Objects

M,N ∈ O M ::= A | λx:σ .M |L P
N,σ [M] Canonical Objects

Σ ∈ S Σ ::= /0 | Σ,a:K | Σ,c:σ Signatures
Γ ∈ C Γ ::= /0 | Γ,x:σ Contexts

Figure 1: Syntax of CLLFP

To illustrate the expressive power of CLLFP and CLLFP? we discuss various challenging encodings
of subtle logical systems, as well as some novel applications. First, we encode in LLFP Fitch-Prawitz
consistent Set-Theory (FPST), as presented in [29], and to illustrate its expressive power, we show, by
way of example, how it can type all strongly normalizing terms. Next, we give signatures in LLFP of
a strongly normalizing λ -calculus and a system of Light Linear Logic [2]. Finally, in Section 4.5, we
show how to encode functions in CLLFP?.

The paper is organized as follows: in Section 2 we present the syntax, the type system and the
metatheory of CLLFP , whereas CLLFP? is introduced in Section 3. Section 4 is devoted to the presen-
tation and discussion of case studies. Finally, connections with related work in the literature appear in
Section 5.

2 The Canonical System CLLFP

In this section, we discuss the canonical counterpart of LLFP [19], i.e. CLLFP , in the style of [32, 13].
This approach amounts to restricting the language only to terms in long βη-normal form. These are the
normal forms of the original system which are normal also w.r.t. typed η-like expansion rules, namely
M→ λx:σ .Mx and M→L P

N,σ [U
P

N,σ [M]]. The syntax of CLLFP defines the normal forms of LLFP , and
the typing system captures all the judgements in long βη-normal form which are derivable in LLFP .
The added value of canonical systems such as CLLFP is that one can streamline results of adequacy
for encoded systems. Indeed, reductions in the meta-language of non-canonical terms reflect only the
history of how the proof was developed using lemmata.

2.1 Syntax and Type System for CLLFP

The syntax of CLLFP is presented in Figure 1. The type system for CLLFP is shown in Figure 2. The
judgements of CLLFP are the following:

Σ sig Σ is a valid signature
`Σ Γ Γ is a valid context in Σ

Γ `Σ K K is a kind in Γ and Σ

Γ `Σ σ type σ is a canonical family in Γ and Σ

Γ `Σ α ⇒ K K is the kind of the atomic family α in Γ and Σ

Γ `Σ M⇐ σ M is a canonical term of type σ in Γ and Σ

Γ `Σ A⇒ σ σ is the type of the atomic term A in Γ and Σ

The judgements Σ sig, and `Σ Γ, and Γ `Σ K are as in Section 2.1 of [18], whereas the remaining ones
are peculiar to the canonical style. Informally, the judgment Γ `Σ M ⇐ σ uses σ to check the type
of the canonical term M, while the judgment Γ `Σ A⇒ σ uses the type information contained in the
atomic term A and Γ to synthesize σ . Predicates P in CLLFP are defined on judgements of the shape

4 Gluing together Proof Environments: CLLFP & CLLFP?

Valid signatures

/0 sig
(S·Empty)

Σ sig `Σ K a 6∈ Dom(Σ)

Σ,a:K sig
(S·Kind)

Σ sig `Σ σ type c 6∈ Dom(Σ)

Σ,c:σ sig
(S·Type)

Kind rules

`Σ Γ

Γ `Σ type
(K·Type)

Γ,x:σ `Σ K
Γ `Σ Πx:σ .K

(K·Pi)

Atomic Family rules

`Σ Γ a:K ∈ Σ

Γ `Σ a⇒ K
(A·Const)

Γ `Σ α ⇒Πx:σ .K1
Γ `Σ M⇐ σ

K1[M/x]K(σ)− = K

Γ `Σ α M⇒ K
(A·App)

Canonical Family rules

Γ `Σ α ⇒ type

Γ `Σ α type
(F ·Atom)

Γ,x:σ `Σ τ type

Γ `Σ Πx:σ .τ type
(F ·Pi)

Γ `Σ ρ type Γ `Σ N⇐ σ

Γ `Σ L P
N,σ [ρ] type

(F ·Lock)

Γ,x : τ `Σ L P
S,σ [ρ] type

Γ `Σ A⇒L P
S,σ [τ]

ρ[U P
S,σ [A]/x]F(τ)− = ρ ′

Γ `Σ L P
S,σ [ρ

′] type
(F ·Nested·Unlock)

Context rules

Σ sig

`Σ /0
(C·Empty)

`Σ Γ Γ `Σ σ type x 6∈ Dom(Γ)

`Σ Γ,x:σ
(C·Type)

Atomic Object rules

`Σ Γ c:σ ∈ Σ

Γ `Σ c⇒ σ
(O·Const)

`Σ Γ x:σ ∈ Γ

Γ `Σ x⇒ σ
(O·Var)

Γ `Σ A⇒Πx:σ .τ1
Γ `Σ M⇐ σ τ1[M/x]F(σ)− = τ

Γ `Σ AM⇒ τ
(O·App)

Γ `Σ A⇒L P
N,σ [ρ]

Γ `Σ N⇐ σ P(Γ `Σ N⇐ σ)

Γ `Σ U P
N,σ [A]⇒ ρ

(O·Unlock)

Canonical Object rules

Γ `Σ A⇒ α

Γ `Σ A⇐ α
(O·Atom)

Γ,x:σ `Σ M⇐ τ

Γ `Σ λx:σ .M⇐Πx:σ .τ
(O·Abs)

Γ `Σ M⇐ ρ Γ `Σ N⇐ σ

Γ `Σ L P
N,σ [M]⇐L P

N,σ [ρ]
(O·Lock)

Γ,x:τ `Σ L P
S,σ [M]⇐L P

S,σ [ρ] Γ `Σ A⇒L P
S,σ [τ]

ρ[U P
S,σ [A]/x]F(τ)− = ρ ′ M[U P

S,σ [A]/x]O
(τ)− = M′

Γ `Σ L P
S,σ [M

′]⇐L P
S,σ [ρ

′]
(O·Nested·Unlock)

Figure 2: The CLLFP Type System

Γ `Σ M⇐ σ . The type system makes use, in the rules (A·App) and (F ·App), of the notion of Hereditary
Substitution, which computes the normal form resulting from the substitution of one normal form into
another. The general form of the hereditary substitution judgement is T [M/x]tρ = T ′, where M is the
term being substituted, x is the variable being substituted for, T is the term being substituted into, T ′ is
the result of the substitution, ρ is the simple-type of M, and t denotes the syntactic class (e.g. atomic
families/object, canonical families/objects, etc.) under consideration.

The simple-type ρ of M is obtained via the erasure function of [13] (Figure 3), mapping depen-
dent into simple-types. The rules for Hereditary Substitution are presented in Figures 4 and 5, using
Barendregt’s hygiene condition.

Notice that, in the rule (O·Atom) of the type system (Figure 2), the syntactic restriction of the classi-
fier to α atomic ensures that canonical forms are long βη-normal forms for the suitable notion of long

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 5

(a)− = a
(α)− = ρ

(α M)− = ρ

(σ)− = ρ1 (τ)− = ρ2

(Πx:σ .τ)− = ρ1→ ρ2

(τ)− = ρ

(L P
N,σ [τ])

− = L P
N,σ [ρ]

Figure 3: Erasure to simple-types

Substitution in Kinds

type[M0/x0]
K
ρ0

= type
(S ·K·Type)

σ [M0/x0]
F
ρ0

= σ ′ K[M0/x0]
K
ρ0

= K′

(Πx:σ .K)[M0/x0]
K
ρ0

= Πx:σ .′K′
(S ·K·Pi)

Substitution in Atomic Families

a[M0/x0]
f
ρ0 = a

(S ·F ·Const)
α[M0/x0]

f
ρ0 = α ′ M[M0/x0]

O
ρ0

= M′

(αM)[M0/x0]
f
ρ0 = α ′M′

(S ·F ·App)

Substitution in Canonical Families

α[M0/x0]
f
ρ0 = α ′

α[M0/x0]
F
ρ0

= α ′
(S ·F ·Atom)

σ1[M0/x0]
F
ρ0

= σ ′1 σ2[M0/x0]
F
ρ0

= σ ′2

(Πx:σ1.σ2)[M0/x0]
F
ρ0

= Πx:σ ′1.σ
′
2

(S ·F ·Pi)

σ1[M0/x0]
F
ρ0

= σ ′1 M1[M0/x0]
O
ρ0

= M′1 σ2[M0/x0]
F
ρ0

= σ ′2

L P
M1,σ1

[σ2][M0/x0]
F
ρ0

= L P
M′1,σ

′
1
[σ ′2]

(S ·F ·Lock)

Figure 4: Hereditary substitution, kinds and families of CLLFP

βη-normal form, which extends the standard one for lock-types. For one, the judgement x:Πz:a.a`Σ x⇐
Πz:a.a is not derivable, as Πz:a.a is not atomic, hence `Σ λx:(Πz:a.a).x⇐ Πx:(Πz:a.a).Πz:a.a is not
derivable. On the other hand, `Σ λx:(Πz:a.a).λy:a.xy⇐ Πx:(Πz:a.a).Πz:a.a, where a is a family con-
stant of kind Type, is derivable. Analogously, for lock-types, the judgement x:L P

N,σ [ρ] `Σ x⇐L P
N,σ [ρ]

is not derivable, since L P
N,σ [ρ] is not atomic. As a consequence, we have that `Σ λx:L P

N,σ [ρ].x ⇐
Πx:L P

N,σ [ρ].L
P

N,σ [ρ] is not derivable. However, x:L P
N,σ [ρ] `Σ L P

N,σ [U
P

N,σ [x]]⇐L P
N,σ [ρ] is derivable, if

ρ is atomic. Hence, the judgment `Σ λx:L P
N,σ [ρ].L

P
N,σ [U

P
N,σ [x]]⇐ Πx:L P

N,σ [ρ].L
P

N,σ [ρ] is derivable.
Note that the unlock constructor takes an atomic term as its main argument, thus avoiding the creation
of possible L -redexes under substitution. Moreover, since unlocks can only receive locked terms in
their body, no abstractions can ever arise. In Definition 2.3, we formalize the notion of η-expansion of a
judgement, together with correspondence theorems between LLFP and CLLFP .

We present CLLFP in a fully-typed style, i.e. à la Church, but we could also follow [13] and present
a version à la Curry, where the canonical forms λx.M and L P

M [N] do not carry type information. The
type rules would then be, e.g.:

Γ,x:σ `Σ M⇐ τ

Γ `Σ λx.M⇐Πx:σ .τ
(O·Abs)

Γ `Σ M⇐ σ Γ `Σ N⇐ τ

Γ `Σ L P
M [N]⇐L P

M,σ [τ]
(O·Lock)

This latter syntax is more suitable in implementations because it optimises the notation. Following [17],
we stick to the typeful syntax because it allows for a more direct comparison with non-canonical sys-
tems. This, however, is technically immaterial. Since judgements in canonical systems have unique
derivations, one can show by induction on derivations that any provable judgement in the system where
object terms are à la Curry has a unique type decoration of its object subterms, which turns it into a
provable judgement in the version à la Church. Vice versa, any provable judgement in the version à
la Church can forget the types in its object subterms, yielding a provable judgement in the version à la
Curry.

6 Gluing together Proof Environments: CLLFP & CLLFP?

Substitution in Atomic Objects

c[M0/x0]
o
ρ0

= c
(S ·O·Const)

x0[M0/x0]
o
ρ0

= M0 : ρ0
(S ·O·Var·H)

x 6= x0

x[M0/x0]
o
ρ0

= x
(S ·O·Var)

A1[M0/x0]
o
ρ0

= λx:ρ2.M′1 : ρ2→ ρ M2[M0/x0]
O
ρ0

= M′2 M′1[M
′
2/x]Oρ2

= M′

(A1M2)[M0/x0]
o
ρ0

= M′ : ρ
(S ·O·App·H)

A1[M0/x0]
o
ρ0

= A′1 M2[M0/x0]
O
ρ0

= M′2
(A1M2)[M0/x0]

o
ρ0

= A′1M′2
(S ·O·App)

σ [M0/x0]
F
ρ0

= σ ′ M[M0/x0]
O
ρ0

= M′ A[M0/x0]
o
ρ0

= L P
M′,σ ′ [M1] : L P

M′,σ ′ [ρ]

U P
M,σ [A][M0/x0]

o
ρ0

= M1 : ρ
(S ·O·Unlock·H)

σ [M0/x0]
F
ρ0

= σ ′ M[M0/x0]
O
ρ0

= M′ A[M0/x0]
o
ρ0

= A′

U P
M,σ [A][M0/x0]

o
ρ0

= U P
M′,σ ′ [A

′]
(S ·O·Unlock)

Substitution in Canonical Objects

A[M0/x0]
o
ρ0

= A′

A[M0/x0]
O
ρ0

= A′
(S ·O·R)

A[M0/x0]
o
ρ0

= M′ : ρ

A[M0/x0]
O
ρ0

= M′
(S ·O·R·H)

M[M0/x0]
O
ρ0

= M′

λx:σ .M[M0/x0]
O
ρ0

= λx:σ .M′
(S ·O·Abs)

σ1[M0/x0]
F
ρ0

= σ ′1 M1[M0/x0]
O
ρ0

= M′1 M2[M0/x0]
O
ρ0

= M′2
L P

M1,σ1
[M2][M0/x0]

O
ρ0

= L P
M′1,σ

′
1
[M′2]

(S ·O·Lock)

Substitution in Contexts

[M0/x0]
C
ρ0

=
(S ·Ctxt·Empty)

x0 6= x x 6∈ Fv(M0) Γ[M0/x0]
C
ρ0

= Γ′ σ [M0/x0]
F
ρ0

= σ ′

(Γ,x:σ)[M0/x0]
C
ρ0

= Γ′,x:σ ′
(S ·Ctxt·Term)

Figure 5: Hereditary substitution, objects and contexts of CLLFP

2.2 The Metatheory of CLLFP

We start by studying the basic properties of hereditary substitution and the type system. First of all, we
need to assume that the predicates are well-behaved in the sense of [18]. In the context of canonical
systems, this notion needs to be rephrased as follows:
Definition 2.1 (Well-behaved predicates for canonical systems). A finite set of predicates {Pi}i∈I is
well-behaved if each P in the set satisfies the following conditions:

1. Closure under signature and context weakening and permutation:
(a) If Σ and Ω are valid signatures such that Σ⊆Ω and P(Γ `Σ N⇐ σ), then P(Γ `Ω N⇐ σ).
(b) If Γ and ∆ are valid contexts such that Γ⊆ ∆ and P(Γ `Σ N⇐ σ), then P(∆ `Σ N⇐ σ).

2. Closure under hereditary substitution: If P(Γ,x:σ ′,Γ′ `Σ N⇐ σ) and Γ `Σ N′ : σ ′, then
P(Γ,Γ′[N′/x]C(σ ′)− `Σ N[N′/x]O(σ ′)−⇐ σ [N′/x]F(σ ′)−).

As canonical systems do not feature reduction, the “classical” third constraint for well-behaved pred-
icates (closure under reduction) is not needed here. Moreover, the second condition (closure under
substitution) becomes “closure under hereditary substitution”.
Lemma 2.1 (Decidability of hereditary substitution).

1. For any T in {K ,A ,F ,O,C }, and any M, x, and ρ , it is decidable whether there exists a T ′

such that T [M/x]mρ = T ′ or there is no such T ′.
2. For any M, x, ρ , and A, it is decidable whether there exists an A′, such that A[M/x]oρ = A′, or there

exist M′ and ρ ′, such that A[M/x]oρ = M′ : ρ ′, or there are no such A′ and M′.

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 7

Lemma 2.2 (Head substitution size). If A[M0/x0]
o
ρ0
= M:ρ , then ρ is a subexpression of ρ0.

Proof. By induction on the derivation of A[M0/x0]ρ0 = M : ρ .

Lemma 2.3 (Uniqueness of substitution and synthesis).
1. It is not possible that A[M0/x0]

o
ρ0
= A′ and A[M0/x0]

o
ρ0
= M:ρ .

2. For any T , if T [M0/x0]
m
ρ0
= T ′, and T [M0/x0]

m
ρ0
= T ′′, then T ′ = T ′′.

3. If Γ `Σ α ⇒ K, and Γ `Σ α ⇒ K′, then K = K′.
4. If Γ `Σ A⇒ σ , and Γ `Σ A⇒ σ ′, then σ = σ ′.

Proof. From the definition of hereditary substitution and the CLLFP type system.

Lemma 2.4 (Composition of hereditary substitution). Let x 6= x0 and x 6∈ Fv(M0). Then:

1. For all T ′1 in {K ,Fa,F ,Oa,O}, if M2[M0/x0]
O
ρ0

= M′2, T1[M2/x]mρ2
= T ′1 , and T1[M0/x0]

m
ρ0

= T ′′1 ,
then there exists a T : T ′1[M0/x0]

m
ρ0
= T , and T ′′1 [M

′
2/x]mρ2

= T .
2. If M2[M0/x0]

O
ρ0
=M′2, A1[M2/x]oρ2

=M : ρ , and A1[M0/x0]
o
ρ0
=A, then there exists an M′: M[M0/x0]

O
ρ0
=

M′, and A[M′2/x]oρ2
= M′ : ρ .

3. If M2[M0/x0]
O
ρ0
=M′2, A1[M2/x]oρ2

=A, and A1[M0/x0]
o
ρ0
=M : ρ , then there exists an M′: A[M0/x0]

o
ρ0
=

M′ : ρ , and M[M′2/x]Oρ2
= M′.

By induction on derivations, similar to one in [13] p.14–15, we can prove:

Theorem 2.5 (Transitivity). Let Σ sig, `Σ Γ,x0:ρ0,Γ
′ and Γ `Σ M0⇐ ρ0, and assume that all predicates

are well-behaved. Then,

1. There exists a Γ′′: [M0/x0]
C
ρ0
= Γ′′ and `Σ Γ,Γ′′.

2. If Γ,x0:ρ0,Γ
′ `Σ K then there exists a K′: [M0/x0]

K
ρ0

K = K′ and Γ,Γ′′ `Σ K′.
3. If Γ,x0:ρ0,Γ

′ `Σ σ type, then there exists a σ ′: [M0/x0]
F
ρ0

σ = σ ′ and Γ,Γ′′ `Σ σ ′ type.
4. If Γ,x0:ρ0,Γ

′ `Σ σ type and Γ,x0:ρ0,Γ
′ `Σ M⇐ σ , then there exist σ ′ and M′: [M0/x0]

F
ρ0

σ = σ ′

and [M0/x0]
O
ρ0

M = M′ and Γ,Γ′′ `Σ M′⇐ σ ′.

Theorem 2.6 (Decidability of typing). If predicates in CLLFP are decidable, then all of the judgements
of the system are decidable.

Proof. By induction on the complexity of judgements.

We can now precisely state the relationship between CLLFP and the LLFP system of [19]:

Theorem 2.7 (Soundness). For any predicate P of CLLFP , we define a corresponding predicate in
LLFP as follows: P(Γ `Σ M : σ) holds if and only if Γ `Σ M : σ is derivable in LLFP and P(Γ `Σ

M⇐ σ) holds in CLLFP . Then, we have:

1. If Σ sig is derivable in CLLFP , then Σ sig is derivable in LLFP .
2. If `Σ Γ is derivable in CLLFP , then `Σ Γ is derivable in LLFP .
3. If Γ `Σ K is derivable in CLLFP , then Γ `Σ K is derivable in LLFP .
4. If Γ `Σ α ⇒ K is derivable in CLLFP , then Γ `Σ α : K is derivable in LLFP .
5. If Γ `Σ σ type is derivable in CLLFP , then Γ `Σ σ : type is derivable in LLFP .
6. If Γ `Σ A⇒ σ is derivable in CLLFP , then Γ `Σ A : σ is derivable in LLFP .
7. If Γ `Σ M⇐ σ is derivable in CLLFP , then Γ `Σ M : σ is derivable in LLFP .

8 Gluing together Proof Environments: CLLFP & CLLFP?

Vice versa, all LLFP judgements in long βη-normal form (βη-lnf) are derivable in CLLFP . The
definition of a judgement in βη-lnf is based on the following extension of the standard η-rule to the lock
constructor λx:σ .Mx→η M and L P

N,σ [U
P

N,σ [M]]→η M.

Definition 2.2. An occurrence ξ of a constant or a variable in a term of an LLFP judgement is fully
applied and unlocked w.r.t. its type or kind Π

#»x 1: #»
σ 1.

»

L 1[. . .Π
#»x n: #»

σ n.
»

L n[α] . . .], where
»

L 1, . . . ,
»

L n are
vectors of locks, if ξ appears only in contexts that are of the form

»

U n[(. . .(
»

U 1[ξ
#»
M1]) . . .)

#»
Mn], where

#»
M1, . . . ,

#»
Mn,

»

U 1, . . . ,
»

U n have the same arities of the corresponding vectors of Π’s and locks.

Definition 2.3 (Judgements in long βη-normal form).
1. A term T in a judgement is in βη-lnf if T is in normal form and every constant and variable

occurrence in T is fully applied and unlocked w.r.t. its classifier in the judgement.
2. A judgement is in βη-lnf if all terms appearing in it are in βη-lnf.

Theorem 2.8 (Correspondence). Assume that all predicates in LLFP are well-behaved, according to
Definition 2.1 [18]. For any predicate P in LLFP , we define a corresponding predicate in CLLFP

with: P(Γ `Σ M⇐ σ) holds if Γ `Σ M⇐ σ is derivable in CLLFP and P(Γ `Σ M : σ) holds in LLFP .
Then, we have:

1. If Σ sig is in βη-lnf and is LLFP -derivable, then Σ sig is CLLFP -derivable.
2. If `Σ Γ is in βη-lnf and is LLFP -derivable, then `Σ Γ is CLLFP -derivable.
3. If Γ `Σ K is in βη-lnf, and is LLFP -derivable, then Γ `Σ K is CLLFP -derivable.
4. If Γ `Σ α : K is in βη-lnf and is LLFP -derivable, then Γ `Σ α ⇒ K is CLLFP -derivable.
5. If Γ `Σ σ :type is in βη-lnf and is LLFP -derivable, then Γ `Σ σ type is CLLFP -derivable.
6. If Γ `Σ A : α is in βη-lnf and is LLFP -derivable, then Γ `Σ A⇒ α is CLLFP -derivable.
7. If Γ `Σ M : σ is in βη-lnf and is LLFP -derivable, then Γ `Σ M⇐ σ is CLLFP -derivable.

Proof. Follows closely the proof of the corresponding Correspondence Theorem 7 [17].

Notice that, by the Correspondence Theorem above, any well-behaved predicate P in LLFP in the
sense of Definition 2.1 [18] induces a well-behaved predicate in CLLFP . Finally, notice that not all
LLFP judgements have a corresponding βη-lnf. Namely, the judgement x:L P

N,σ [ρ] `Σ x : L P
N,σ [ρ] does

not admit an η-expanded normal form when the predicate P does not hold on N, as the rule (O·Unlock)
can be applied only when the predicate holds.

3 The Type System CLLFP?

The main idea behind CLLFP? (see Figures 6, 7, and 8)1 is to “empower” the framework of CLLFP

by adding to the lock/unlock mechanism the possibility to receive from the external oracle a witness
satisfying suitable constraints. Thus, we can pave way for the gluing together of different proof develop-
ment environments beyond proof irrelevance scenarios. In this context, the lock constructor behaves as
a binder. The new (O·Lock) rule is the following:

Γ,x:σ `Σ M⇐ ρ

Γ `Σ L P
x,σ [M]⇐L P

x,σ [ρ]

1For lack of space, we present in these figures only the categories and rules of CLLFP? that differ from their CLLFP

counterparts.

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 9

σ ,τ,ρ ∈ F σ ::= α |Πx:σ .τ |L P
x,σ [ρ] Canonical Families

M,N ∈ O M ::= A | λx:σ .M |L P
x,σ [M] Canonical Objects

Figure 6: CLLFP? Syntax — changes w.r.t. CLLFP

Canonical Family rules

Γ,x:σ `Σ ρ type

Γ `Σ L P
x,σ [ρ] type

(F ·Lock)

Γ,y : τ `Σ L P
x,σ [ρ] type

Γ `Σ A⇒L P
x,σ [τ]

ρ[U P
x,σ [A]/y]F(τ)− = ρ ′

Γ `Σ L P
x,σ [ρ

′]type
(F ·Nested·Unlock)

Atomic Object rules

Γ `Σ A⇒L P
x,σ [ρ] Γ `Σ N⇐ σ

P(Γ `Σ N⇐ σ) ρ[N/x]F(σ)− = ρ ′

Γ `Σ U P
N,σ [A]⇒ ρ ′

(O·Unlock)

Canonical Object rules

Γx:σ `Σ M⇐ ρ

Γ `Σ L P
x,σ [M]⇐L P

x,σ [ρ]
(O·Lock)

Γ,y:τ `Σ L P
x,σ [M]⇐L P

x,σ [ρ] Γ `Σ A⇒L P
x,σ [τ]

ρ[U P
x,σ [A]/y]F(τ)− = ρ ′ M[U P

x,σ [A]/y]O
(τ)− = M′

Γ `Σ L P
x,σ [M

′]⇐L P
x,σ [ρ

′]
(O·Nested·Unlock)

Figure 7: The CLLFP? Type System — changes w.r.t. CLLFP

where the variable x is a placeholder bound in M and ρ , which will be replaced by the concrete term that
will be returned by the external oracle call. The intuitive meaning behind the (O·Lock) rule is, therefore,
that of recording the need to delegate to the external oracle the inference of a suitable witness of a given
type. Indeed, M can be thought of as an “incomplete” term which needs to be completed by an inhabitant
of a given type σ satisfying the constraint P . The actual term, possibly synthesized by the external tool,
will be “released” in CLLFP?, by the unlock constructor in the (O·Unlock) rule as follows:

Γ `Σ A⇒L P
x,σ [ρ] ρ[N/x]F(σ)− = ρ ′ Γ `Σ N⇐ σ P(Γ `Σ N⇐ σ)

Γ `Σ U P
N,σ [A]⇒ ρ ′

The term U P
N,σ [M] intuitively means that N is precisely the synthesized term satisfying the constraint

P(Γ `Σ N ⇐ σ) that will replace in CLLFP? all the free occurrences of x in ρ . This replacement is
executed in the (S·O·Unlock·H) hereditary substitution rule (Figure 8).

Similarly to CLLFP , in CLLFP? it is also possible to “postpone” or delay the verification of an
external predicate. Whence, the synthesis of the actual inhabitant N can be delayed, thanks to the
(O·Nested·Unlock) rule:

Γ,y:τ `Σ L P
x,σ [M]⇐L P

x,σ [ρ] Γ `Σ A⇒L P
x,σ [τ] ρ[U P

x,σ [A]/y]F(τ)− = ρ ′ M[U P
x,σ [A]/y]O(τ)− = M′

Γ `Σ L P
x,σ [M

′]⇐L P
x,σ [ρ

′]

The Metatheory of CLLFP? follows closely that of CLLFP as far as decidability. We have no correspon-
dence theorem since we did not introduce a non-canonical variant CLLFP?. This could have been done
similarly to LLFP .

4 Case studies

In this section, we discuss the encodings of a collection of logical systems which illustrate the expressive
power and the flexibility of CLLFP and CLLFP?. We discuss Fitch-Prawitz Consistent Set theory, FPST

10 Gluing together Proof Environments: CLLFP & CLLFP?

Substitution in Canonical Families

σ1[M0/x0]
F
ρ0

= σ ′1 σ2[M0/x0]
F
ρ0

= σ ′2

L P
x,σ1

[σ2][M0/x0]
F
ρ0

= L P
x,σ ′1

[σ ′2]
(S ·F ·Lock)

Substitution in Atomic Objects

σ [M0/x0]
F
ρ0

= σ ′ M[M0/x0]
o
ρ0

= M′ M1[M′/x]o(σ ′)− = M2 A[M0/x0]
o
ρ0

= L P
x,σ ′ [M1] : L P

x,σ ′ [ρ]

U P
M,σ [A][M0/x0]

o
ρ0

= M2 : ρ
(S ·O·Unlock·H)

Substitution in Canonical Objects

σ1[M0/x0]
F
ρ0

= σ ′1 M1[M0/x0]
O
ρ0

= M′1
L P

x,σ1
[M1][M0/x0]

O
ρ0

= L P
x,σ ′1

[M′1]
(S ·O·Lock)

Figure 8: CLLFP? Hereditary Substitution — changes w.r.t. CLLFP

[29], some applications of FPST to normalizing λ -calculus, a system of Light Linear Logic in CLLFP ,
and an the encoding of a partial function in CLLFP?.

The crucial step in encoding a logical system in CLLFP or CLLFP? is to define the predicates
involved in locks. Predicates defined on closed terms are usually unproblematic. Difficulties arise in
enforcing the properties of closure under hereditary substitution and closure under signature and context
extension, when predicates are defined on open terms. To be able to streamline the definition of well-
behaved predicates we introduce the following:

Definition 4.1. Given a signature Σ let ΛΣ (respectively Λo
Σ
) be the set of LLFP terms (respectively

closed LLFP terms) definable using constants from Σ. A term M has a skeleton in ΛΣ if there exists a
term N[x1, . . . ,xn] ∈ ΛΣ, whose free variables (called holes of the skeleton) are in {x1, . . . ,xn}, and there
exist terms M1, . . . ,Mn such that M ≡ N[M1/x1, . . . ,Mn/xn].

4.1 Fitch Set Theory à la Prawitz - FPST

In this section, we present the encoding of a formal system of remarkable logical as well as historical
significance, namely the system of consistent Naı̈ve Set Theory, FPST, introduced by Fitch [10]. This
system was first presented in Natural Deduction style by Prawitz [29]. As Naı̈ve Set Theory is inconsis-
tent, to prevent the derivation of inconsistencies from the unrestricted abstraction rule, only normalizable
deductions are allowed in FPST. Of course, this side-condition is extremely difficult to capture using
traditional tools.

In the present context, instead, we can put to use the machinery of CLLFP to provide an appropriate
encoding of FPST where the global normalization constraint is enforced locally by checking the proof-
object. This system is a beautiful illustrative example of the bag of tricks that CLLFP supports. Checking
that a proof term is normalizable would be the obvious predicate to use in the corresponding lock-type,
but this would not be a well-behaved predicate if free variables, i.e. assumptions, are not sterilized. To
this end, we introduce a distinction between generic judgements, which cannot be directly utilized in
arguments, but which can be assumed, and apodictic judgements, which are directly involved in proof
rules. In order to make use of generic judgements, one has to downgrade them to an apodictic one. This
is achieved by a suitable coercion function.

Definition 4.2 (Fitch Prawitz Set Theory, FPST). The full system of Fitch (see [29]), as presented by
Prawitz is defined into Appendix A, here we only give the crucial rules for implication and for set-

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 11

abstraction and the corresponding elimination rules:

Γ,A `FPST B
Γ `FPST A⊃ B

(⊃ I)
Γ `FPST A Γ `FPST A⊃ B

Γ `FPST B
(⊃ E)

Γ `FPST A[T/x]
Γ `FPST T ∈ λx.A

(λ I)
Γ `FPST T ∈ λx.A

Γ `FPST A[T/x]
(λE)

In Fitch’s system, FPST, conjunction and universal quantification are defined as usual, while negation
is defined constructively, but it still allows for the usual definitions of disjunction and existential quan-
tification. What makes FPST consistent is that not all standard deductions in FPST are legal. Standard
deductions are called quasi-deductions in FPST. A legal deduction in FPST is defined instead, as a
quasi-deduction which is normalizable in the standard sense of Natural Deduction, namely it can be
transformed in a derivation where all elimination rules occur before introductions.

Definition 4.3 (LLFP signature ΣFPST for Fitch Prawitz Set Theory). The following constants are intro-
duced:

o : Type ι : Type

T : o -> Type δ : ΠA:o. (V(A) -> T(A))

V : o -> Type λ intro : ΠA:ι ->o.Πx:ι.T(A x) -> T(ε x (lam A))

lam : (ι -> o)-> ι λ elim : ΠA:ι ->o.Πx:ι.T(ε x (lam A))->T(A x)

ε : ι -> ι -> o ⊃ intro: ΠA,B:o.(V(A) -> T(B)) -> (T(A ⊃B))
⊃ : o -> o -> o ⊃ elim : ΠA,B:o.Πx:T(A).Πy:T(A⊃B) -> L Fitch

〈x,y〉,T(A)×T(A⊃B)[T(B)]

where o is the type of propositions, ⊃ and the “membership” predicate ε are the syntactic constructors
for propositions, lam is the “abstraction” operator for building “sets”, T is the apodictic judgement, V is
the generic judgement, δ is the coercion function, and 〈x,y〉 denotes the encoding of pairs, whose type
is denoted by σ×τ , e.g. λu:σ → τ → ρ. u x y : (σ → τ → ρ)→ ρ . The predicate in the lock is defined
as follows:

Fitch(Γ `ΣFPST
〈x,y〉 ⇐ T(A)×T(A⊃ B))

it holds iff x and y have skeletons in ΛΣFPST
, all the holes of which have either type o or are guarded by

a δ , and hence have type V(A), and, moreover, the proof derived by combining the skeletons of x and y

is normalizable in the natural sense.

For lack of space, we do not spell out the rules concerning the other logical operators, because
they are all straightforward provided we use only the apodictic judgement T(·), but a few remarks are
mandatory. The notion of normalizable proof is the standard notion used in natural deduction. The
predicate Fitch is well-behaved because it considers terms only up-to holes in the skeleton, which can
have type o or are generic judgements. Adequacy for this signature can be achieved in the format of [18]:

Theorem 4.1 (Adequacy for Fitch-Prawitz Naive Set Theory). If A1, . . . ,An are the atomic formulas oc-
curring in B1, . . . ,Bm,A, then B1 . . .Bm `FPST A iff there exists a normalizable M such that A1:o, . . . ,An:o,
x1:V(B1), . . . ,xm:V(Bm) `ΣFPST

M⇐ T(A) (where A, and Bi represent the encodings of, respectively, A and
Bi in CLLFP , for 1≤ i≤ m).

4.2 A Type System for strongly normalizing λ -terms

Fitch-Prawitz Set Theory, FPST, is a rather intriguing, albeit unexplored, set theoretic system. The
normalizability criterion for accepting a quasi-deduction prevents the derivation of contradictions, and

12 Gluing together Proof Environments: CLLFP & CLLFP?

hence makes the system consistent. Of course, some intuitive rules are not derivable. For instance modus
ponens does not hold and if t ∈ λx.A then we do not have necessarily that A[t/x] holds. Similarly,
the transitivity property does not hold. However, it is interesting to point out that FPST is also a very
expressive type system which encompasses all kinds of quantification.

In this subsection, we sketch how to use FPST to define a type system which can type precisely all
the strongly normalizing λ -terms. First we need to adapt to FPST, Proposition 4, Appendix A.1 of [12],
originally given by J-Y. Girard for Light Linear Logic, as follows:

Theorem 4.2 (Fixpoint). Let A[P,x1 . . . ,xn] be a formula of FPST with an n-ary predicate variable P.
Then, there exists a formula B of FPST, such that there exists a normalizable deduction in FPST between
A[λx1 . . . ,xn.B[x1, . . . ,xn],x1 . . . ,xn] and B, and viceversa.

Proof. Let equality be defined as Leibniz equality, then, assuming n = 1, define Λ ≡ λ z.∃x.∃y.z =
〈x,y〉&A[(λw.〈w,y〉 ∈ y),x]. Then 〈x,Λ〉 ∈ Λ is equivalent, in the sense of FPST, to A[(λw.〈w,Λ〉 ∈
Λ),x].

The above Fixpoint Theorem can be used to define recursive functions and inductive definitions.
Hence, let us consider a concrete representation, possibly over natural numbers, of the terms of λ -
calculus in FPST, and call it Λ0. It exists, because even if the theory is non-standard, it allows the
definition of some putative notion of a natural number. Using again the Fixed Point Theorem, we can
define a fixpoint Λ such that x∈Λ is equivalent, in the sense of Fitch, to x∈Λ0&∀y.y∈Λ0 ⊂ app(x,y)∈
Λ. Here, app(x,y) denotes the concrete representation of “applying” x to y. It is now straightforward to
check that only normalizing terms can “be typed in FPST by Λ”, i.e. belong to Λ. Since one can derive
in FPST that a representation of a λ -term, say M, belongs to Λ, only if there is a normalizable derivation
of M ∈ Λ, then there is a natural reflection of the normalizability of the FPST derivation of the typing
judgement M ∈ Λ, and the fact that the term represented by M is indeed normalizable.

4.3 A Normalizing call-by-value λ -calculus

In this section we sketch how to express in CLLFP a call-by-value λ -calculus where β -reductions fire
only if the result is normalizing.

Definition 4.4 (Normalizing call-by-value λ -calculus, ΣλN).
o : Type Eq : o -> o -> Type app : o -> o -> o

v : Type var : v -> o lam : (v -> o) -> o

c beta : ΠM:o->o,N:o.L PN

〈M,N〉,(o->o)×o[Eq (app (lam λx:v.M(var x)) N) (MN)]

where the predicate PN holds on Γ `ΣλN 〈M,N〉 ⇐ (o->o)×o if both M and N have skeletons in ΛΣλN

whose holes are guarded by a var and, moreover, MN “normalizes”, in the intuitive sense, outside terms
guarded by a var.

4.4 Elementary Affine Logic

In this section we give a shallow encoding of Elementary Affine Logic as presented in [2]. This example
will exemplify how locks can be used to deal with global syntactic constraints as in the promotion rule
of Elementary Affine Logic.

Definition 4.5 (Elementary Affine Logic [2]). Elementary Affine Logic can be specified by the following
rules:

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 13

A `EAL A
(Var)

Γ `EAL B
Γ,A `EAL B

(Weak)
Γ,A `EAL B

Γ `EAL A (B
(Abst)

Γ `EAL A ∆ `EAL A (B
Γ,∆ `EAL B

(Appl)
Γ `EAL!A ∆, !A, . . . , !A `EAL B

Γ,∆ `EAL B
(Contr)

A1, . . . ,An `EAL A Γ1 `EAL!A1 . . . Γn `EAL!An

Γ1 . . .Γn `EAL!A
(Prom)

Definition 4.6 (LLFP signature ΣEAL for Elementary Affine Logic).
o : Type T : o -> Type V : o -> Type (: o -> o -> o ! : o -> o

c appl : ΠA,B :o. T(A) -> T(A (B)-> T(B) c val : ΠA:o. V(A) -> T(!A)

c abstr : ΠA,B :o. Πx:(T(A) -> T(B)) -> L Light
x,T(A)->T(B)[T(A (B)]

c promV 1 : ΠA,B :o. Πx:(T(A (B)) -> L Closed
x,T(A(B)[T(!A) -> V(B)]

c promV 2 : ΠA,B :o. Πx:(V(A (B)) -> L Closed
x,V(A(B)[T(!A) -> V(B)]

where o is the type of propositions, (and ! are the obvious syntactic constructors, T is the basic judge-
ment, and V(·) is an auxiliary judgement. The predicates involved in the locks are defined as follows:

• Light (Γ `ΣEAL x⇐ T(A)→ T(B)) holds iff if A is not of the shape !A then the bound variable of x
occurs at most once in the normal form of x.
• Closed (Γ `ΣEAL x⇐ T(A)) holds iff the skeleton of x contains only free variables of type o, i.e.no

variables of type T(B), for any B : o.

A few remarks are mandatory. The promotion rule in [2] is in effect a family of natural deduction
rules with a growing number of assumptions. Our encoding achieves this via the auxiliary judgement
V(·), the effect of which is self-explanatory. Adequacy for this signature can be achieved only in the
format of [18], namely:
Theorem 4.3 (Adequacy for Elementary Affine Logic). if A1, . . . ,An are the atomic formulas occurring
in B1, . . . ,Bm,A, then B1 . . .Bm `EAL A iff there exists M and A1:o, . . . ,An:o,x1: T(B1), . . . ,xm:T(Bm) `ΣEAL

M⇐ T(A) (where A, and Bi represent the encodings of, respectively, A and Bi in CLLFP , for 1≤ i≤ m)
and all variables x1 . . .xm occurring more than once in M have type of the shape T(Bi)≡ T(!Ci) for some
suitable formula Ci.
The check on the context of the Adequacy Theorem is external to the system LLFP , but this is in the
nature of results which relate internal and external concepts. For example, the very concept of LLFP

context, which appears in any adequacy result, is external to LLFP . Of course, this check is internalized
if the term is closed.

4.5 Square roots of natural numbers in CLLFP?

It is well-known that logical frameworks based on Constructive Type Theory do not permit definitions
of non-terminating functions (i.e., all the functions one can encode in such frameworks are total). One
interesting example of CLLFP? system is the possibility of reasoning about partial functions by dele-
gating their computation to external oracles, and getting back their possible outputs, via the lock-unlock
mechanism of CLLFP?.

For instance, we can encode natural numbers and compute their square roots by means of the follow-
ing signature (〈x,y〉 denotes the encoding of pairs, whose type is denoted by σ × τ , and fst and snd are
the first and second projections, respectively):
nat: type O: nat S: nat->nat plus : nat->nat->nat minus : nat->nat->nat

mult : nat->nat->nat sqroot: nat->nat eval : nat->nat->type
sqrt : Πx:nat.L SQRT

y,nat×σ [(eval (sqroot x) (fst y))]

14 Gluing together Proof Environments: CLLFP & CLLFP?

where eval represents the usual evaluation predicate, the variable y is a pair and

σ ≡ (eval (plus (minus x (mult z z)) (minus (mult z z) x) O))

and SQRT(Γ `Σ y⇐ nat×σ) holds if and only if the first projection of y is the minimum number N such
that (x _−N∗N)+(N∗N _−x) = 0, where + and * are represented by plus and mult, while _− (represented
by minus in our signature) is defined as follows:

x _−y
∆
=

{
x−y if x≥ y

0 otherwise

Thus, the specification of sqroot is not explicit in CLLFP?, since it is implicit in the definition of SQRT.

5 Related work

Building a universal framework with the aim of “gluing” different tools and formalisms together is a long
standing goal that has been extensively explored in the inspiring work on Logical Frameworks by [4, 26,
32, 6, 25, 27, 28, 16]. Moreover, the appealing monadic structure and properties of the lock/unlock
mechanism go back to Moggi’s notion of computational monads [24]. Indeed, our system can be seen
as a generalization to a family of dependent lax operators of Moggi’s partial λ -calculus [23] and of
the work carried out in [7, 22] (which is also the original source of the term “lax”). A correspondence
between lax modalities and monads in functional programming was pointed out in [1, 11]. On the other
hand, although the connection between constraints and monads in logic programming was considered
in the past, e.g., in [25, 9, 8], to our knowledge, our systems are the first attempt to establish a clear
correspondence between side conditions and monads in a higher-order dependent-type theory and in
logical frameworks. Of course, there are a lot of interesting points of contact with other systems in the
literature which should be explored. For instance, in [25], the authors introduce a contextual modal logic,
where the notion of context is rendered by means of monadic constructs. We only point out that, as we did
in our system, they could have also simplified their system by doing away with the let construct in favor
of a deeper substitution. Schröder-Heister has discussed in a number of papers, see e.g. [31, 30], various
restrictions and side conditions on rules and on the nature of assumptions that one can add to logical
systems to prevent the arising of paradoxes. There are some potential connections between his work
and ours. It would be interesting to compare his requirements on side conditions being “closed under
substitution” to our notion of well-behaved predicate. Similarly, there are commonalities between his
distinction between specific and unspecific variables, and our treatment of free variables in well-behaved
predicates.

References

[1] N. Alechina, M. Mendler, V. De Paiva, E. Ritter. Categorical and Kripke semantics for constructive s4 modal
logic. In Computer Science Logic, pp. 292–307. Springer, 2001.

[2] P. Baillot, P. Coppola, U. Dal Lago. Light logics and optimal reduction: Completeness and complexity. In
LICS, pp. 421–430. IEEE Computer Society, 2007.

[3] H.P. Barendregt, E. Barendsen. Autarkic computations in formal proofs. Journal of Automated Reasoning,
28:321–336, 2002.

[4] G. Barthe, H. Cirstea, C. Kirchner, L. Liquori. Pure Pattern Type Systems. In POPL’03, pp. 250–261, ACM.

[5] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, J. Van Tassel. Experience with embedding
hardware description languages in HOL. In TPCD, pp. 129–156. North-Holland, 1992.

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 15

[6] D. Cousineau, G. Dowek. Embedding pure type systems in the lambda-pi-calculus modulo. In Proc. TLCA,
vol. 4583 of LNCS, pp. 102–117. Springer-Verlag, 2007.

[7] M. Fairtlough, M. Mendler. Propositional lax logic. Information and Computation, 137(1):1–33, 1997.

[8] M. Fairtlough, M. Mendler, X. Cheng. Abstraction and refinement in higher order logic. In Theorem Proving
in Higher Order Logics, pp. 201–216. Springer, 2001.

[9] M Fairtlough, M. Mendler, M. Walton. First-order lax logic as a framework for constraint logic programming.
Technical report, 1997.

[10] F. B. Fitch. Symbolic logic. New York, 1952.

[11] D. Garg, M. C. Tschantz. From indexed lax logic to intuitionistic logic. Tech. rep. CMU, 2008.

[12] J.-Y. Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998.

[13] R. Harper, D. Licata. Mechanizing metatheory in a logical framework. JFP, 17:613–673, 2007.

[14] D. Hirschkoff. Bisimulation proofs for the π-calculus in the Calculus of Constructions. In Proc. TPHOL’97,
number 1275 in LNCS. Springer-Verlag, 1997.

[15] F. Honsell. 25 years of formal proof cultures: Some problems, some philosophy, bright future. In Proc. of
LFMTP’13, pp. 37–42, New York, NY, USA, 2013. ACM.

[16] F. Honsell, M. Lenisa, L. Liquori. A Framework for Defining Logical Frameworks. Volume in Honor of G.
Plotkin, ENTCS, 172:399–436, 2007.

[17] F. Honsell, M. Lenisa, L. Liquori, P. Maksimovic, I. Scagnetto. LFP : a logical framework with external
predicates. In Proc. of LFMTP, pp. 13–22. ACM, 2012.

[18] F. Honsell, M. Lenisa, L. Liquori, P. Maksimovic, I. Scagnetto. An open logical framework. Accepted for
publication in Journal of Logic and Computation, doi: 10.1093/logcom/ext028.

[19] F. Honsell, L. Liquori, P. Maksimovic, I. Scagnetto. LLFP : A Logical Framework for modeling External
Evidence, Side Conditions, and Proof Irrelevance using Monads. Available at http://www.dimi.uniud.
it/scagnett/LLFP_LMCS.pdf.

[20] F. Honsell, L. Liquori, I. Scagnetto. LaxF: Side Conditions and External Evidence as Monads. In Proc. of
MFCS 2014, Part I, vol. 8634 of LNCS, pp. 327–339, Budapest, Hungary, August 2014. Springer.

[21] F. Honsell, M. Miculan, I. Scagnetto. π-calculus in (Co)Inductive Type Theories. Theoretical Computer
Science, 253(2):239–285, 2001.

[22] M. Mendler. Constrained proofs: A logic for dealing with behavioral constraints in formal hardware verifi-
cation. In Designing Correct Circuits, pp. 1–28. Springer-Verlag, 1991.

[23] E. Moggi. The partial lambda calculus. PhD thesis, University of Edinburgh, 1988.

[24] E. Moggi. Computational lambda-calculus and monads. In Proc. of LICS 1989, pp. 14–23. IEEE Press.

[25] A. Nanevski, F. Pfenning, B. Pientka. Contextual Modal Type Theory. ACM TOCL, 9(3), 2008.

[26] F. Pfenning, C. Schürmann. System description: Twelf – a meta-logical framework for deductive systems. In
Proc. CADE, v. 1632 of LNCS, pp. 202–206. Springer-Verlag, 1999.

[27] B. Pientka, J. Dunfield. Programming with proofs and explicit contexts. In PPDP’08, pp. 163–173, ACM.

[28] B. Pientka, J. Dunfield. Beluga: A framework for programming and reasoning with deductive systems
(system description). In Automated Reasoning, v. 6173 of LNCS, pp. 15–21. Springer-Verlag, 2010.

[29] D. Prawitz. Natural Deduction. A Proof Theoretical Study. Almqvist Wiksell, Stockholm, 1965.

[30] P. Schroeder-Heister. Paradoxes and Structural Rules. Insolubles and consequences : essays in honor of
Stephen Read, pp. 203–211. College Publications, London, 2012.

[31] P. Schroeder-Heister. Proof-theoretic semantics, self-contradiction, and the format of deductive reasoning.
Topoi, 31(1):77–85, 2012.

[32] K. Watkins, I. Cervesato, F. Pfenning, D. Walker. A Concurrent Logical Framework I: Judgments and Prop-
erties. Tech. Rep. CMU-CS-02-101, CMU, 2002.

http://www.dimi.uniud.it/scagnett/LLFP_LMCS.pdf
http://www.dimi.uniud.it/scagnett/LLFP_LMCS.pdf

16 Gluing together Proof Environments: CLLFP & CLLFP?

A Fitch Set Theory

Definition A.1 (Fitch Prawitz Set Theory). The full system of Fitch (see [29]), as presented by Prawitz
is defined as follows:

Γ,A `FPST B
Γ `FPST A⊃ B

(⊃ I)
Γ `FPST A Γ `FPST A⊃ B

Γ `FPST B
(⊃ E)

Γ `FPST A[T/x]
Γ `FPST T ∈ λx.A

(λ I)
Γ `FPST T ∈ λx.A

Γ `FPST A[T/x]
(λE)

Γ `FPST A Γ `FPST B
Γ `FPST A&B

(&I)
Γ `FPST A&B

Γ `FPST A
(&E1)

Γ `FPST A&B
Γ `FPST B

(&E2)

Γ `FPST A
Γ `FPST A∨B

(∨I1)
Γ `FPST B

Γ `FPST A∨B
(∨I2)

Γ,A `FPST C

Γ `FPST A∨B Γ,B `FPST C
Γ `FPST C

(∨E)

Γ `FPST A
Γ `FPST ∀xA[x/a]

(∀I) Γ `FPST ∀xA
Γ `FPST A[T/x]

(∀E)

Γ `FPST A[T/x]
Γ `FPST ∃xA

(∃I)
Γ `FPST ∃xA Γ,A[a/x] `FPST B

Γ `FPST B
(∃E)

Γ `FPST f
Γ `FPST A

(fI)
Γ,¬A `FPST f

Γ `FPST A
(fC)

As noticed in [29], negation in Fitch’s system is usually defined in a constructive way as follows:

Γ `FPST ¬A
Γ `FPST ¬(A&B)

(¬&I1)
Γ `FPST ¬B

Γ `FPST ¬(A&B)
(¬&I2)

Γ,¬A `FPST C

Γ `FPST ¬(A&B) Γ,¬B `FPST C
Γ `FPST C

(¬&E)
Γ `FPST A Γ `FPST ¬B

Γ `FPST ¬(A⊃ B)
(¬ ⊃ I)

Γ `FPST ¬(A⊃ B)
Γ `FPST A

(¬ ⊃ E1)
Γ `FPST ¬(A⊃ B)

Γ `FPST ¬B
(¬ ⊃ E2)

Γ `FPST A
Γ `FPST ¬¬A

(¬¬I)
Γ `FPST ¬¬A

Γ `FPST A
(¬¬E)

Γ `FPST ¬A[T/x]
Γ `FPST ¬∀xA

(¬∀I)
Γ `FPST ¬∀xA Γ,¬A[a/x] `FPST B

Γ `FPST B
(¬∀E)

	Introduction
	The Canonical System CLLFP
	Syntax and Type System for CLLFP
	The Metatheory of CLLFP

	The Type System CLLFP?
	Case studies
	Fitch Set Theory à la Prawitz - FPST
	A Type System for strongly normalizing -terms
	A Normalizing call-by-value -calculus
	Elementary Affine Logic
	Square roots of natural numbers in CLLFP?

	Related work
	Fitch Set Theory

