
HAL Id: hal-01170017
https://hal.science/hal-01170017

Submitted on 30 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Graph Drawing Algorithm Revealing Networks
Cores

Romain Giot, Romain Bourqui

To cite this version:
Romain Giot, Romain Bourqui. Fast Graph Drawing Algorithm Revealing Networks Cores. Pro-
ceedings of the 19th International Conference Information Visualisation, Jul 2015, Barcelone, Spain.
�hal-01170017�

https://hal.science/hal-01170017
https://hal.archives-ouvertes.fr

Fast Graph Drawing Algorithm Revealing Networks Cores

Romain Giot, Romain Bourqui
Labri, Univ. Bordeaux, France

romain.giot@labri.fr, romain.bourqui@labri.fr

Abstract
Graph is a powerful tool to model relationships between

elements and has been widely used in different research
areas. Size and complexity of newly acquired graphs pro-
hibit manual representations and urge a need for automatic
visualization methods. We are interested with the node-links
diagram which represents each node as a glyph and edge as
a line between the corresponding nodes. We present a novel
layout algorithm that emphasizes the cores of very large
networks (up to several hundred thousand of nodes and mil-
lion of edges) in few seconds or minutes. Our method uses
a hierarchical coreness decomposition of the graph and a
combination of existing layout algorithms according to the
clusters topologies. Area-aware drawing algorithms which
produce node overlap-free drawings are used to reduce the
visual clutter. Edges are bundled along the hierarchy of
clusters to highlight the network communities and reduce
edge visual clutter. We validated our approach by compar-
ing our method against one of the fastest method of the
state of the art on a benchmark of 23 large graphs extracted
from various sources. We have statistically proved that our
method performs faster while providing meaningful results.

Keywords— Graph drawing, Hierarchical clustering, Net-
work community visualization

1 Introduction
Graphs play an important role in many research areas,

such as biology, microelectronics, social sciences, data min-
ing and computer science. Improvements in data acquisition
techniques urge a need for automatic visualization methods,
as the size and the complexity of such acquired graphs pro-
hibit manual drawing. Therefore, the graph drawing and
the information visualization communities focus on design-
ing effective visualizations of such large graphs. Among
the different visualization methods, we are interested in
the node-links diagram which represents each node as a
glyph (usually a circle or rectangle) and each edge as a line
(straight or curved) between the corresponding nodes. For
particular classes of graphs, such as trees, planar graphs or
directed acyclic graphs, effective solutions have been found
that give very good results in terms of time/space complex-
ity and in terms of aesthetic criteria. However, real-world

graphs from application domains usually do not belong to
these classes. To find an algorithm that gives good results
(in term of computation time, aesthetic criteria and informa-
tion emphasized) for arbitrary large graphs is a very difficult
problem.

We present a new layout algorithm, called HCBL (for
Hierarchical Coreness Based Layout), that emphasizes the
cores of very large networks (up to several hundred thou-
sand of nodes and million of edges) in few seconds or min-
utes. It is based on a hierarchical coreness decomposition of
the graph and a combination of existing layout algorithms
according to the clusters topologies. It bundles edges along
the hierarchy of clusters to highlight the network commu-
nities and to reduce edge visual clutter. We validated our
approach by comparing HCBL against one of the fastest
method [19] of the state of the art on a benchmark of 23
large graphs extracted from various sources, and have statis-
tically proved that HCBL performs faster while providing
meaningful results.

The strengths of the algorithm are: (i) it can lay out very
large graphs in few seconds or minutes and outperforms
one of the fastest force directed algorithm [19]; (ii) it em-
phasizes the cores of the network, and therefore eases the
visual community detection task; (iii) it provides a layout
minimizing visual clutter as node-node overlap cannot oc-
cur and as edge bundling is used to reduce edge clutter; (iv)
it is easy to implement and could be parallelized in order to
be even faster.

The paper is structured as follows. Section 2 provides
the notations used within the paper. Section 3 reviews
related work on large graph layouts. Section 4 details the
different steps of our graph drawing algorithm and section 5
describes the benchmark protocol we have set up to evaluate
HCBL. Section 6 presents the result and provides discussion.
Finally, section 7 draws a conclusion and gives directions
for future work.

2 Notations and Vocabulary
This section presents the notations and definitions used

in the paper. Let G = (V,E) be a simple graph, with V the
set of vertices, E ⊆ V ×V the set of edges. A free tree
T = (V,E) is a connected graph without cycles, while a

rooted tree is a tree with one vertex which is the root and
directed edges from the root to the leaves. A clustered
graph CG = (G,T) corresponds to a graph G and a rooted
tree T whose leaves are the nodes of G. Each node v of T
represents a cluster of vertices of G that are the leaves of the
subtree of T rooted at v. The height of the clustered graph is
the height of the tree. A Quotient graph [10] QG = (VQ,EQ)
of a partition (C1, . . . ,Ck) of the nodes of G = (V,E) is
defined as follows: VQ = {C1, . . . ,Ck} and (Ci,C j) ∈ EQ if
and only if i 6= j and ∃u∈Ci and v∈C j such that (u,v)∈ E.
For a clustered graph CG = (G,T), to each level l of T
corresponds a quotient graph Ql

G = (V l
G,E

l
G) where V l

G is
the partition represented by the nodes of level l of T . We
call metanode a node of the quotient graph that represents a
cluster Ci in the original graph, and a metaedge links two
metanodes. A subgraph H of G induced by a set C ⊆ V
is the k-core of G if and only if ∀v ∈ C, degreeH(v) ≥ k
and H is the maximum subgraph with this property [30].
Obviously the (k+1)-core of a graph G is a subgraph of the
k-core of that graph. The coreness of a node v of G is equal
to c if it belongs to the c-core but not the (c+1)-core, that is
the maximal core a node belongs to.

3 Previous Work
Large graph drawing has been widely studied during the

last decades and different approaches have been proposed.
These approaches could be classified into two categories:
the multilevel one and the linear algebra one.

The force directed algorithms are the most popular in
the multilevel category. They overcome the time complex-
ity/computation time issue of classical force directed algo-
rithm (e.g. [15, 16]) by computing a multilevel clustering
of the graph and make a trade-off between computation
time and aesthetics of the resulting layout. FM3 [19] is
one of the fastest methods of the literature while providing
meaningful layouts in O(|V |log|V |+ |E|). The graph is
recursively reduced by using rules which use an analogy
with galaxies, until reaching a fixed amount of nodes. Then,
the algorithm uses a force directed model with multipoles
expansion to draw each level of the hierarchical clustering.
Gajer and Kobourov [17] used a different approach with
graph distances between nodes (called Maximal Indepen-
dent Set Filtration) to iteratively elect representatives until
only a very few nodes remain. Classical force directed
algorithms are then used to lay out each level of represen-
tatives. Although the force directed algorithms can handle
very large graphs, the resulting layouts suffer from the so-
called hairball effect [18] (i.e. a large amount of clutter
due to the number of edge crossings). For very complex
networks, other methods based on detection of communi-
ties and/or particular topological structures may be more
suited. In both [31] and [4], the authors used the bicon-
nected components decomposition to extract the underlying

tree structure of the network. In TopoLayout [6], Archam-
bault et al. generalize that method and recursively extract
topological features from the graph and then use drawing
algorithms dedicated to them. In [22] and [13], the authors
proposed similar methods based on the computation of a
hierarchical decomposition and a hybrid space filling–force
directed algorithm to draw in a bottom-up manner the entire
network. The coreness [30] has also been the key point of
some of these community detection methods as it provides
interesting results while offering a good time complexity
in O(|E|). Baur et al. proposed in [9] to display the graph
in 2.5D where the bottom layer contains the 1-core of the
graph and the highest layer contains the highest core of the
network. In that method, the subgraph with the highest core
value is first drawn with a spectral layout algorithm and
the lower cores are progressively inserted in the drawing
using a force directed algorithm. Alvarez-Hamelin et al. [3]
also use the coreness value as an information in order to
draw a graph. The nodes are then lay out on nearly con-
centric circles using polar coordinates where the radius of
the coordinate of a node depends on its coreness and its
neighborhood.

Harel and Koren [20] provide an algorithm, named HDE,
that first extracts m pivots from the graph corresponding to
m different points of view. Then a distance matrix is built by
computing the distances between all the nodes of the graph
and these m pivots. The algorithm finally performs a dimen-
sionality reduction using a classical Principal Component
Analysis to obtain a 2 or a 3 dimensional representation of
the network. In [23], the authors use a different approach,
called ACE, based on the eigenvectors of the Laplacian ma-
trix of the graph. To speed up the computation, the authors
introduce the algebraic multigrid method which computes
an approximation of the eigenvectors using a hierarchy of
matrices. That method computes the eigenvectors of the
highest level matrix and estimates the eigenvectors of lower
and lower levels. To embed the graph in d dimensions, the
authors use the d most representative eigenvectors. Such
algorithms offer very good computation times but aesthetics
of the results are satisfactory only on a “specific subset of
general graph, many of which are grids” according to [6].

4 A Multilevel and Topology-Aware Draw-
ing Algorithm

We propose a bottom-up multilevel layout algorithm.
First, we compute a hierarchical clustering of the graph with
the quotient graph of each level by using the coreness mea-
sure. This iterative process ends when the quotient graph
contains only one cluster or is a tree. Then, the quotient
graphs of the hierarchy are laid out in a bottom-up manner.
It ensures that no node-node overlap can occur as the size
of a metanode is set to the size of the bounding box of the
underlying cluster layout. Finally, final absolute positions

2

of the nodes of the original graph are recursively computed
by traversing the hierarchy tree in a top-down manner. We
also use a variant of the technique of Holten [21] which
bundles the original edges along the hierarchy tree (corre-
sponding to the hierarchical clustering) to ease the visual
identification of the network cores. Detailed explanations
follow:
4.1 Hierarchical Clustering with the Coreness

HCBL computes the coreness [8] of each node of the
graph and uses the connected components of each equiv-
alent class as a partition of the nodes. That step produces
a flat partition of the nodes where each set of the partition
is connected and only contains nodes of equal coreness.
HCBL then computes the quotient graph associated to that
partition. This allows to obtain a first level of abstraction
of the network. These steps are repeated on the resulting
quotient graph until the partitioning step produces a sin-
gle cluster to obtain a hierarchical partition of the network.
Even if the number of iterations and thereby the number of
levels of the hierarchy have not been theoretically bounded,
our experiments (see section 6) show that it barely exceeds
10.
4.2 Area and Topology-Aware Layout of Clusters

HCBL lays out the quotient graphs of the hierarchy in
a bottom-up manner with area-aware drawing algorithms
which ensures that no node-node overlap happens at any
level of the hierarchy. Inspired from the TopoLayout
method [6], HCBL uses dedicated drawing algorithms de-
pending on the clusters topology. It considers three cases
for a cluster C = (VC,EC): (i) if C is a quasi-clique with
density greater than 0.81, it uses a circular drawing algo-
rithm; (ii) if C is a free tree, it uses the area-aware version
of Archambault et al. [5] of Rings [32] which is particu-
larly suited for emphasizing isomorphic sub-trees as well
as symmetries; (iii) otherwise, it uses a combination of
FM3 algorithm [19] followed by the Fast Overlap Removal
(FOR) algorithm [14] (which has been, modified to consider
circular nodes instead of squared ones).These three general
cases are generic enough to be present in most graphs.
4.3 Metanode Expansion

Once the position of nodes and metanodes have been
computed relatively to their parent metanode in the hier-
archy, it is necessary to compute their final absolute co-
ordinates. This is achieved by substituting in a top-down
manner each metanode by its underlying cluster and by cen-
tering this cluster to its metanode coordinate. As (i) we have
set the size of each metanode to the size of the bounding
box of the underlying cluster, and (ii) we have used overlap
free layout methods, such substitution cannot not create
node-node overlap. Note that we consider each (meta)node
is circular.

1i.e. |EC| ≥ 0.8 |VC |∗(|VC |−1)
2

4.4 Edge Bundling
The final step of HCBL consists in reducing edge-edge

clutter due to edges crossings. To do so, the edge bundling
technique [21] is applied to all inter-clusters edges2 which
eases the visual detection of clusters in the overall drawing
of the graph. By laying out the metanodes of the hierarchy,
we have also built a nested representation of the hierarchy
tree representing the hierarchical clustering. In that tree,
leaves are the original nodes of the graph while internal
nodes are the metanodes of the different quotient graphs.
The original edge bundling method uses clusters center as
bends to route the edges. We use a different novel approach
where the bends are set on the border of the clusters. For
each edge e, we first determine in the quotient graphs of
each level of the hierarchy, the meta-edge Me representing
e. We then compute the two middle bends of e as the
intersection points of Me and its extremities. The remaining
bends of e are computed by iteratively adding bends where
the line between the previous bend and the center of the
deeper cluster intersect.

5 Experimental Protocol
5.1 Materials

To perform the evaluation of HCBL, we used a bench-
mark of 23 real world graphs. The number of nodes varies
from 4039 to 8797692 with a median of 60388.0 while the
number of edges varies from 28980 to 68993773 with a
median of 408102. Several graphs were downloaded from
the SNAP database3 [24–29]: ca-AstroPh, ca-CondMat,
ca-GrQc, ca-HepPh, ca-HepTh, cit-HepPh, cit-HepTh, cit-
Patents, email-Enron, email-EuAll, facebook combined,
gplus combined, soc-Epinions1, soc-LiveJournal1, soc-
pokec-profiles, soc-Slashdot0811, twitter combined, wiki-
Vote, wiki-Talk ; pgraph is a protein homology graph pre-
sented in [1]; Cheswick-2005 is the internet tomography
dataset generated in 2005 by Cheswick’s Internet Mapping
Project [11]; hero-social-network and comic-hero-network
which represent relations between Marvel characters [2].
Table 1 summarizes them.
5.2 Baseline Algorithms and Analysis methodol-

ogy
In that evaluation, we propose to compare HCBL to (i)

FM3 , (ii) FM3 followed by our modified FOR (FM3
FOR),

and (iii) a variant of HCBL which only uses FM3
FOR drawing

algorithm (HCBL FM3
FOR).

5.3 Technical Aspect
HCBL is implemented in C++11 with Tulip visualiza-

tion framework 4.6 [7]. FOR and FM3 algorithms were
already available within the Tulip framework. The FM3

implementation integrated in the Tulip framework is pro-
vided by Open Graph Drawing Framework [12] and implies

2i.e. edges having their extremities in different clusters
3http://snap.stanford.edu/data/

3

Table 1: Summary of the dataset and performances of each algorithm. /0 is used to represent the cases impossible to compute.
Graph Tree Total times Individual cumulative times

Graph #nodes #edges height HCBL (s) FM3(s) Gain(%) FM3
FOR (s) Gain(%) HCBL FM3

FOR (s) Gain(%) Lay. Clust. Exp. Bundl.

cheswick-2005 190384 228354 3 16.90 122.28 623 422.01 2397 95.36 464.26 14.21 1.46 0.10 0.41
soc-Epinions1 112298 508837 8 9.93 73.65 642 225.05 2167 82.61 732.34 3.07 4.16 0.17 1.38
soc-Slashdot0811 154676 905468 8 14.99 108.02 620 324.19 2062 95.02 533.89 7.22 4.21 0.14 2.06
email-Enron 73384 367662 6 6.20 34.87 462 112.47 1714 44.67 620.72 3.11 1.68 0.07 0.76
email-EuAll 300069 420045 6 25.65 119.38 365 396.22 1444 1836.00 7057.89 12.04 8.50 0.49 2.12
ca-CondMat 46266 186936 5 6.89 22.80 230 79.92 1059 15.01 117.69 5.78 0.56 0.02 0.27
twitter combined 81306 2420766 7 14.90 56.03 276 156.44 949 31.10 108.72 4.08 4.83 0.09 4.44
cit-HepTh 48239 352807 6 9.12 27.24 198 87.50 859 16.52 81.14 7.12 1.02 0.03 0.53
cit-HepPh 60388 421578 6 12.12 37.15 206 110.22 809 22.33 84.24 9.55 1.33 0.04 0.66
ca-HepTh 19754 51971 4 2.58 8.48 228 23.15 795 5.82 125.27 2.26 0.17 0.01 0.08
pgraph 30727 1206654 5 5.80 17.61 203 49.60 755 12.84 121.42 3.09 1.10 0.01 0.70
ca-AstroPh 37544 396160 6 7.36 21.30 189 61.33 732 12.43 68.82 5.63 0.82 0.02 0.55
hero-social-network 10469 178115 6 1.14 4.68 309 8.80 669 3.29 187.84 0.43 0.29 0.01 0.32
comic-hero-network 19286 96519 5 2.64 7.96 201 19.68 645 5.58 111.37 2.05 0.29 0.01 0.18
ca-HepPh 24016 237010 6 4.50 12.08 168 31.14 592 7.25 61.16 3.69 0.39 0.02 0.21
wiki-Vote 8491 103689 6 1.17 4.66 300 7.43 537 2.99 156.31 0.74 0.20 0.01 0.16
ca-GrQc 10484 28980 4 1.20 3.62 202 5.94 395 2.37 97.91 1.05 0.08 0.00 0.05
gplus combined 107614 30494866 9 152.00 369.01 142 514.54 238 209.10 37.57 7.53 64.92 0.18 52.28
facebook combined 4039 88234 4 0.84 1.56 84 1.77 109 1.30 54.12 0.64 0.08 0.00 0.09

Problematic graph for baseline only
soc-LiveJournal1 8797692 68993773 8 6792.00 /0 ∞ /0 ∞ 1070.00 −84.25 6069.20 404.97 4.05 313.78
cit-Patents 5348328 16518948 5 3819.00 12841 236.23 /0 ∞ 5136.00 34.49 3530.40 210.81 1.46 20.69
wiki-Talk 2516783 5021410 8 1841.00 3939.20 113.95 /0 ∞ 1948.00 5.81 1806.10 16.70 0.68 8.37

Problematic graph for baseline and proposal
soc-pokec-profiles 1632803 30622564 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0

a representation of the graph in both Tulip and OGDF datas-
tructures, which is memory consuming. During the exper-
imentation, we only captured the execution time of each
drawing algorithm (neither graph loading nor rendering time
were measured). The computation has been done on a lap-
top with an Intel R© CoreTM i7-3840QM CPU@2.80GHzx8,
32Gb of RAM, 64Gb of swap, running Ubuntu 14.04 64bits.
All computations have been done only with one core of the
CPU, and no tasks were run in parallel. Images are gen-
erated only with the biggest component of the graph (but
computation is done with all nodes), the colors of each node
depends on its coreness, and the transparency of the edges
is proportional to the inverse of its length. The intercluster
edges are displayed with cubic-b-splines which use the edge
bends as control points.

6 Results and Discussion
Table 1 summarises the benchmark of graphs and the per-

formance of each algorithm. We consider that an algorithm
is unable to draw a graph if the program meets memory
issues or after 36 hours of computation. No method is
able to draw soc-pokec-profiles, FM3 and FM3

FOR are un-
able to draw soc-LiveJournal1, and the FM3

FOR is unable to
draw wiki-Talk and cit-Patents due to FOR. Note that these
problematic graphs are among the largest ones. These 4
problematic graphs are not used in the following analysis in
order to compare only graphs drawable by all the methods.

Computation times of HCBL are far better than the com-
putation times of the baselines FM3 and FM3

FOR, as well as
HCBL FM3

FOR for all graphs (except for soc-LiveJournal1
probably because drawing all the subgraphs with FM3
produces smaller clusters and reduce the probability to

have to remove overlaps). In term of median, HCBL com-
putes the layout in 6.89 seconds while FM3, FM3

FOR and
HCBL FMFOR respectively compute it in 22.80, 79.92 and
15.01 seconds. In order to statistically verify that HCBL
is faster, we have computed the Wilcoxon signed-rank test
on the total computation time with a significance level of
α = 0.05. The test confirmed that HCBL statistically per-
forms better than FM3, FM3

FOR and HCBL FM3
FOR (the 3

p-values are all close to 0.000132� 0.05).

In average, 5.9% of the time is used to hierarchically clus-
ter the graph, 93.21% of the time to compute the layout of
the graphs, 0.06% of the time to compute the final position
of the nodes from the relative positions of the metanodes ,
and 0.81% of the time to build the edges bends.

On that benchmark, most of these structures are quasi-
cliques. The performance gain of HCBL is explained by the
low time complexity of the Circular drawing compared to
FM3 and FOR as it that runs in linear time.

Figure 1 shows a sample of graph drawings obtained by
HCBL. One can easily notice that the three drawings pre-
sented in that figure are similar. This is due to the clustering
step that oftenly produces a quotient graph with a tree topol-
ogy for the last level of abstraction. We assume that this is
one of the advantages of HCBL (in addition to good com-
putation time) as it highlights the main cores of the network
while keeping peripheral structures of the network away
from the center of the drawing. However, the clusters sepa-
ration is made at the expense of a large drawing area with
empty area that can be solved in a visualization system with
interaction tools. In comparison, the drawings produced by
FM3 and FM3

FOR are unsatisfactory due the scale-free and

4

comic-hero-network ca-AstroPh ca-HepPh

F
M

3 F
O

R
H

C
B

L
ce

nt
ra

lp
ar

to
fH

C
B

L

Figure 1: Drawing produced by FM3
FOR baseline (on top), HCBL proposal (middle) for comic-hero-network, ca-AstroPh and

ca-HepPh graphs and a zoomed view on the central part of these graphs (bottom).

small-world properties of these graphs. For such class of
graphs, FM3 (as well as any other force-directed method)
usually produces drawing with an “hairball” effect. This
makes the analysis of the graph difficult as it does not em-
phasize the topological structures of the network. Moreover,
it also produces many node overlaps that may also hinder
the analysis. As the number of overlaps is large, FM3

FOR
does not improve these drawings but rather distorts them.

7 Conclusion
This paper presents a computationally efficient method,

HCBL, to compute the drawing of large graphs which uses
a hierarchical clustering based on the coreness equivalence
classes and their connectivities ; recursively computes the
drawing of each hierarchical cluster with area and topology-
aware drawing algorithms; and uses edge bundling to ag-
gregate edges between nodes of different clusters and thus
to reduce visual clutter.

We have compared it against one of the best methods of
the state of the art (FM3) and against an area aware version
of it (FM3

FOR) on a benchmark of 23 real-world large graphs.
We have statistically verified that the proposed method per-
forms faster than these baselines, and we have empirically
verified that HCBL provides meaningful results. We have
also evaluated a not topology-aware version (that only uses
FM3

FOR) which also performs better than the baselines.
We use a redundant data structure to obtain the best

performance which may be memory consuming in case of
deep hierarchy tree. A future direction is to define a data
structure making a trade off between computation time and
memory use in order to support the drawing of larger graphs
(up to million of nodes and hundred of million edges). An-
other interesting direction is to constraint the hierarchy tree
topology which could reduce the number of metanodes be-
longing to a quotient graph and the size of the input of each
layout algorithm. Finally, it would be interesting to im-

5

prove the edge bundling step by defining a method avoiding
node-edge overlap as well as cluster-edge overlap to better
emphasize the hierarchical organization of the network.

Acknowledgments
This work was partially funded by the SpeedData project

(PIAO17298-398711).

References
[1] A.T. Adai, S.V. Date, S. Wieland, and E.M. Marcotte. Lgl: creating a

map of protein function with an algorithm for visualizing very large
biological networks. Journal Mol Biol, 340(1):179–190, 2004.

[2] Ricardo Alberich, Joe Miro-Julia, and Francesc Rosselló. Marvel
universe looks almost like a real social network. arXiv preprint
cond-mat/0202174, 2002.

[3] José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and
Alessandro Vespignani. k-core decomposition: A tool for the visual-
ization of large scale networks. arXiv preprint cs/0504107, 2005.

[4] D. Archambault, T. Munzner, and D. Auber. Smashing Pea-
cocks Further: Drawing Quasi-Trees from Biconnected components.
IEEE Transactions on Visualization and Computer Graphics (Proc.
Vis/InfoVis 2006), 12(5):813–820, 2006.

[5] Daniel Archambault, Tamara Munzner, and David Auber. Smashing
peacocks further: Drawing quasi-trees from biconnected compo-
nents. Visualization and Computer Graphics, IEEE Transactions on,
12(5):813–820, 2006.

[6] Daniel Archambault, Tamara Munzner, and David Auber. Topolay-
out: Multilevel graph layout by topological features. Visualization
and Computer Graphics, IEEE Transactions on, 13(2):305–317,
2007.

[7] David Auber, Patrick Mary, Morgan Mathiaut, Jonathan Dubois,
Antoine Lambert, Daniel Archambault, Romain Bourqui, Bruno
Pinaud, Maylis Delest, Guy Melançon, et al. Tulip: a scalable graph
visualization framework. In Extraction et Gestion des Connaissances
(EGC) 2010, pages 623–624, 2010.

[8] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decom-
position of networks. cs.DS/0310049, 2003.

[9] Michael Baur, Ulrik Brandes, Marco Gaertler, and Dorothea Wagner.
Drawing the as graph in 2.5 dimensions. In Graph Drawing, pages
43–48, 2005.

[10] Ralf Brockenauer and Sabine Cornelsen. Drawing clusters and
hierarchies. In Drawing graphs, pages 193–227. Springer, 2001.

[11] B. Cheswick, H. Burch, and S. Branigan. Mapping and visualizing
the internet. In Proc. USENIX, 2000.

[12] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and
P. Mutzel. The Open Graph Drawing Framework (OGDF), chap-
ter 17. CRC Press, 2013.

[13] Walter Didimo and Fabrizio Montecchiani. Fast layout computation
of hierarchically clustered networks: Algorithmic advances and
experimental analysis. In Information Visualisation (IV), 2012 16th
International Conference on, pages 18–23, 2012.

[14] Tim Dwyer, Kim Marriott, and Peter J Stuckey. Fast node overlap
removal. In Graph Drawing, pages 153–164, 2006.

[15] A. Frick, A. Ludwig, and H. Mehldau. A Fast Adaptive Layout
Algorithm for Undirected Graphs. In Proc. Graph Drawing 1994
(GD’94), pages 388–403, 1994.

[16] T. M. J. Fruchterman and E. M. Reingold. Graph Drawing by Force-
directed Placement. In Software-Practice and Experience, volume
21(11), pages 1129–1164. nov 1991.

[17] Pawel Gajer and Stephen G. Kobourov. Grip: Graph drawing with
intelligent placement. In Proceedings of the 8th International Sym-
posium on Graph Drawing, GD ’00, pages 222–228, 2001.

[18] Helen Gibson, Joe Faith, and Paul Vickers. A survey of two-
dimensional graph layout techniques for information visualisation.
Information Visualization, 12(3-4):324–357, 2013.

[19] Stefan Hachul and Michael Jünger. Drawing large graphs with a
potential-field-based multilevel algorithm. In Graph Drawing, pages
285–295, 2005.

[20] David Harel and Yehuda Koren. Graph drawing by high-dimensional
embedding. In Graph Drawing, pages 207–219, 2002.

[21] Danny Holten. Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data. Visualization and Computer Graphics,
IEEE Transactions on, 12(5):741–748, 2006.

[22] Takayuki Itoh, Chris Muelder, and Kwan liu Ma. A hybrid space-
filling and force-directed layout method for visualizing multiple-
category graphs. In In IEEE Pacific Visualization, 2009.

[23] Yehuda Koren, Liran Carmel, and David Harel. Ace: A fast multi-
scale eigenvectors computation for drawing huge graphs. In Informa-
tion Visualization, 2002. INFOVIS 2002. IEEE Symposium on, pages
137–144, 2002.

[24] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed
networks in social media. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1361–1370, 2010.

[25] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible explana-
tions. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, pages 177–187,
2005.

[26] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolu-
tion: Densification and shrinking diameters. ACM Transactions on
Knowledge Discovery from Data (TKDD), 1(1):2, 2007.

[27] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Ma-
honey. Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters. Internet Mathematics,
6(1):29–123, 2009.

[28] Julian J McAuley and Jure Leskovec. Learning to discover social
circles in ego networks. In NIPS, volume 272, pages 548–556, 2012.

[29] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. Trust
management for the semantic web. In The Semantic Web-ISWC 2003,
pages 351–368. Springer, 2003.

[30] Stephen B Seidman. Network structure and minimum degree. Social
networks, 5(3):269–287, 1983.

[31] J. M. Six and I. C. Tollis. A framework for circular drawings of
networks. In Proc. Graph Drawing 1999 (GD’99), pages 107–116,
1999.

[32] Soon Tee Teoh and Ma Kwan-Liu. Rings: A technique for visualizing
large hierarchies. In Graph Drawing, pages 268–275. Springer, 2002.

6

