Romain Giot
email: romain.giot@labri.fr

Romain Bourqui
email: romain.bourqui@labri.fr

Fast Graph Drawing Algorithm Revealing Networks Cores

Keywords: Graph drawing, Hierarchical clustering, Network community visualization

Graph is a powerful tool to model relationships between elements and has been widely used in different research areas. Size and complexity of newly acquired graphs prohibit manual representations and urge a need for automatic visualization methods. We are interested with the node-links diagram which represents each node as a glyph and edge as a line between the corresponding nodes. We present a novel layout algorithm that emphasizes the cores of very large networks (up to several hundred thousand of nodes and million of edges) in few seconds or minutes. Our method uses a hierarchical coreness decomposition of the graph and a combination of existing layout algorithms according to the clusters topologies. Area-aware drawing algorithms which produce node overlap-free drawings are used to reduce the visual clutter. Edges are bundled along the hierarchy of clusters to highlight the network communities and reduce edge visual clutter. We validated our approach by comparing our method against one of the fastest method of the state of the art on a benchmark of 23 large graphs extracted from various sources. We have statistically proved that our method performs faster while providing meaningful results.

Introduction

Graphs play an important role in many research areas, such as biology, microelectronics, social sciences, data mining and computer science. Improvements in data acquisition techniques urge a need for automatic visualization methods, as the size and the complexity of such acquired graphs prohibit manual drawing. Therefore, the graph drawing and the information visualization communities focus on designing effective visualizations of such large graphs. Among the different visualization methods, we are interested in the node-links diagram which represents each node as a glyph (usually a circle or rectangle) and each edge as a line (straight or curved) between the corresponding nodes. For particular classes of graphs, such as trees, planar graphs or directed acyclic graphs, effective solutions have been found that give very good results in terms of time/space complexity and in terms of aesthetic criteria. However, real-world graphs from application domains usually do not belong to these classes. To find an algorithm that gives good results (in term of computation time, aesthetic criteria and information emphasized) for arbitrary large graphs is a very difficult problem.

We present a new layout algorithm, called HCBL (for Hierarchical Coreness Based Layout), that emphasizes the cores of very large networks (up to several hundred thousand of nodes and million of edges) in few seconds or minutes. It is based on a hierarchical coreness decomposition of the graph and a combination of existing layout algorithms according to the clusters topologies. It bundles edges along the hierarchy of clusters to highlight the network communities and to reduce edge visual clutter. We validated our approach by comparing HCBL against one of the fastest method [START_REF] Hachul | Drawing large graphs with a potential-field-based multilevel algorithm[END_REF] of the state of the art on a benchmark of 23 large graphs extracted from various sources, and have statistically proved that HCBL performs faster while providing meaningful results.

The strengths of the algorithm are: (i) it can lay out very large graphs in few seconds or minutes and outperforms one of the fastest force directed algorithm [START_REF] Hachul | Drawing large graphs with a potential-field-based multilevel algorithm[END_REF]; (ii) it emphasizes the cores of the network, and therefore eases the visual community detection task; (iii) it provides a layout minimizing visual clutter as node-node overlap cannot occur and as edge bundling is used to reduce edge clutter; (iv) it is easy to implement and could be parallelized in order to be even faster.

The paper is structured as follows. Section 2 provides the notations used within the paper. Section 3 reviews related work on large graph layouts. Section 4 details the different steps of our graph drawing algorithm and section 5 describes the benchmark protocol we have set up to evaluate HCBL. Section 6 presents the result and provides discussion. Finally, section 7 draws a conclusion and gives directions for future work.

Notations and Vocabulary

This section presents the notations and definitions used in the paper. Let G = (V, E) be a simple graph, with V the set of vertices, E ⊆ V × V the set of edges. A free tree T = (V, E) is a connected graph without cycles, while a rooted tree is a tree with one vertex which is the root and directed edges from the root to the leaves. A clustered graph CG = (G, T) corresponds to a graph G and a rooted tree T whose leaves are the nodes of G. Each node v of T represents a cluster of vertices of G that are the leaves of the subtree of T rooted at v. The height of the clustered graph is the height of the tree. A Quotient graph [START_REF] Brockenauer | Drawing clusters and hierarchies[END_REF]

Q G = (V Q , E Q) of a partition (C 1 , . . . ,C k) of the nodes of G = (V, E) is defined as follows: V Q = {C 1 , . . . ,C k } and (C i ,C j) ∈ E Q if and only if i = j and ∃u ∈ C i and v ∈ C j such that (u, v) ∈ E. For a clustered graph CG = (G, T), to each level l of T corresponds a quotient graph Q l G = (V l G , E l G)
where V l G is the partition represented by the nodes of level l of T . We call metanode a node of the quotient graph that represents a cluster C i in the original graph, and a metaedge links two metanodes. A subgraph H of G induced by a set C ⊆ V is the k-core of G if and only if ∀v ∈ C, degree H (v) ≥ k and H is the maximum subgraph with this property [START_REF] Stephen B Seidman | Network structure and minimum degree[END_REF]. Obviously the (k+1)-core of a graph G is a subgraph of the k-core of that graph. The coreness of a node v of G is equal to c if it belongs to the c-core but not the (c+1)-core, that is the maximal core a node belongs to.

Previous Work

Large graph drawing has been widely studied during the last decades and different approaches have been proposed. These approaches could be classified into two categories: the multilevel one and the linear algebra one.

The force directed algorithms are the most popular in the multilevel category. They overcome the time complexity/computation time issue of classical force directed algorithm (e.g. [START_REF] Frick | A Fast Adaptive Layout Algorithm for Undirected Graphs[END_REF][START_REF] Fruchterman | Graph Drawing by Forcedirected Placement[END_REF]) by computing a multilevel clustering of the graph and make a trade-off between computation time and aesthetics of the resulting layout. FM 3 [START_REF] Hachul | Drawing large graphs with a potential-field-based multilevel algorithm[END_REF] is one of the fastest methods of the literature while providing meaningful layouts in O(|V |log|V | + |E|). The graph is recursively reduced by using rules which use an analogy with galaxies, until reaching a fixed amount of nodes. Then, the algorithm uses a force directed model with multipoles expansion to draw each level of the hierarchical clustering. Gajer and Kobourov [START_REF] Gajer | Grip: Graph drawing with intelligent placement[END_REF] used a different approach with graph distances between nodes (called Maximal Independent Set Filtration) to iteratively elect representatives until only a very few nodes remain. Classical force directed algorithms are then used to lay out each level of representatives. Although the force directed algorithms can handle very large graphs, the resulting layouts suffer from the socalled hairball effect [START_REF] Gibson | A survey of twodimensional graph layout techniques for information visualisation[END_REF] (i.e. a large amount of clutter due to the number of edge crossings). For very complex networks, other methods based on detection of communities and/or particular topological structures may be more suited. In both [START_REF] Six | A framework for circular drawings of networks[END_REF] and [START_REF] Archambault | Smashing Peacocks Further: Drawing Quasi-Trees from Biconnected components[END_REF], the authors used the biconnected components decomposition to extract the underlying tree structure of the network. In TopoLayout [START_REF] Archambault | Topolayout: Multilevel graph layout by topological features[END_REF], Archambault et al. generalize that method and recursively extract topological features from the graph and then use drawing algorithms dedicated to them. In [START_REF] Itoh | A hybrid spacefilling and force-directed layout method for visualizing multiplecategory graphs[END_REF] and [START_REF] Didimo | Fast layout computation of hierarchically clustered networks: Algorithmic advances and experimental analysis[END_REF], the authors proposed similar methods based on the computation of a hierarchical decomposition and a hybrid space filling-force directed algorithm to draw in a bottom-up manner the entire network. The coreness [START_REF] Stephen B Seidman | Network structure and minimum degree[END_REF] has also been the key point of some of these community detection methods as it provides interesting results while offering a good time complexity in O(|E|). Baur et al. proposed in [START_REF] Baur | Drawing the as graph in 2.5 dimensions[END_REF] to display the graph in 2.5D where the bottom layer contains the 1-core of the graph and the highest layer contains the highest core of the network. In that method, the subgraph with the highest core value is first drawn with a spectral layout algorithm and the lower cores are progressively inserted in the drawing using a force directed algorithm. Alvarez-Hamelin et al. [START_REF] José | k-core decomposition: A tool for the visualization of large scale networks[END_REF] also use the coreness value as an information in order to draw a graph. The nodes are then lay out on nearly concentric circles using polar coordinates where the radius of the coordinate of a node depends on its coreness and its neighborhood.

Harel and Koren [START_REF] Harel | Graph drawing by high-dimensional embedding[END_REF] provide an algorithm, named HDE, that first extracts m pivots from the graph corresponding to m different points of view. Then a distance matrix is built by computing the distances between all the nodes of the graph and these m pivots. The algorithm finally performs a dimensionality reduction using a classical Principal Component Analysis to obtain a 2 or a 3 dimensional representation of the network. In [START_REF] Koren | Ace: A fast multiscale eigenvectors computation for drawing huge graphs[END_REF], the authors use a different approach, called ACE, based on the eigenvectors of the Laplacian matrix of the graph. To speed up the computation, the authors introduce the algebraic multigrid method which computes an approximation of the eigenvectors using a hierarchy of matrices. That method computes the eigenvectors of the highest level matrix and estimates the eigenvectors of lower and lower levels. To embed the graph in d dimensions, the authors use the d most representative eigenvectors. Such algorithms offer very good computation times but aesthetics of the results are satisfactory only on a "specific subset of general graph, many of which are grids" according to [START_REF] Archambault | Topolayout: Multilevel graph layout by topological features[END_REF].

of the nodes of the original graph are recursively computed by traversing the hierarchy tree in a top-down manner. We also use a variant of the technique of Holten [START_REF] Holten | Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data[END_REF] which bundles the original edges along the hierarchy tree (corresponding to the hierarchical clustering) to ease the visual identification of the network cores. Detailed explanations follow:

Hierarchical Clustering with the Coreness

HCBL computes the coreness [START_REF] Batagelj | An o(m) algorithm for cores decomposition of networks[END_REF] of each node of the graph and uses the connected components of each equivalent class as a partition of the nodes. That step produces a flat partition of the nodes where each set of the partition is connected and only contains nodes of equal coreness. HCBL then computes the quotient graph associated to that partition. This allows to obtain a first level of abstraction of the network. These steps are repeated on the resulting quotient graph until the partitioning step produces a single cluster to obtain a hierarchical partition of the network. Even if the number of iterations and thereby the number of levels of the hierarchy have not been theoretically bounded, our experiments (see section 6) show that it barely exceeds 10.

Area and Topology-Aware Layout of Clusters

HCBL lays out the quotient graphs of the hierarchy in a bottom-up manner with area-aware drawing algorithms which ensures that no node-node overlap happens at any level of the hierarchy. Inspired from the TopoLayout method [START_REF] Archambault | Topolayout: Multilevel graph layout by topological features[END_REF], HCBL uses dedicated drawing algorithms depending on the clusters topology. It considers three cases for a cluster C = (V C , E C): (i) if C is a quasi-clique with density greater than 0.8 1 , it uses a circular drawing algorithm; (ii) if C is a free tree, it uses the area-aware version of Archambault et al. [START_REF] Archambault | Smashing peacocks further: Drawing quasi-trees from biconnected components[END_REF] of Rings [START_REF] Tee | Rings: A technique for visualizing large hierarchies[END_REF] which is particularly suited for emphasizing isomorphic sub-trees as well as symmetries; (iii) otherwise, it uses a combination of FM3 algorithm [START_REF] Hachul | Drawing large graphs with a potential-field-based multilevel algorithm[END_REF] followed by the Fast Overlap Removal (FOR) algorithm [START_REF] Dwyer | Fast node overlap removal[END_REF] (which has been, modified to consider circular nodes instead of squared ones).These three general cases are generic enough to be present in most graphs.

Metanode Expansion

Once the position of nodes and metanodes have been computed relatively to their parent metanode in the hierarchy, it is necessary to compute their final absolute coordinates. This is achieved by substituting in a top-down manner each metanode by its underlying cluster and by centering this cluster to its metanode coordinate. As (i) we have set the size of each metanode to the size of the bounding box of the underlying cluster, and (ii) we have used overlap free layout methods, such substitution cannot not create node-node overlap. Note that we consider each (meta)node is circular.

Edge Bundling

The final step of HCBL consists in reducing edge-edge clutter due to edges crossings. To do so, the edge bundling technique [START_REF] Holten | Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data[END_REF] is applied to all inter-clusters edges2 which eases the visual detection of clusters in the overall drawing of the graph. By laying out the metanodes of the hierarchy, we have also built a nested representation of the hierarchy tree representing the hierarchical clustering. In that tree, leaves are the original nodes of the graph while internal nodes are the metanodes of the different quotient graphs. The original edge bundling method uses clusters center as bends to route the edges. We use a different novel approach where the bends are set on the border of the clusters. For each edge e, we first determine in the quotient graphs of each level of the hierarchy, the meta-edge M e representing e. We then compute the two middle bends of e as the intersection points of M e and its extremities. The remaining bends of e are computed by iteratively adding bends where the line between the previous bend and the center of the deeper cluster intersect.

Experimental Protocol 5.1 Materials

To perform the evaluation of HCBL, we used a benchmark of 23 real world graphs. The number of nodes varies from 4039 to 8797692 with a median of 60388.0 while the number of edges varies from 28980 to 68993773 with a median of 408102. Several graphs were downloaded from the SNAP database 3 [START_REF] Leskovec | Signed networks in social media[END_REF][START_REF] Leskovec | Graphs over time: densification laws, shrinking diameters and possible explanations[END_REF][START_REF] Leskovec | Graph evolution: Densification and shrinking diameters[END_REF][START_REF] Leskovec | Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters[END_REF][START_REF] Julian | Learning to discover social circles in ego networks[END_REF][START_REF] Richardson | Trust management for the semantic web[END_REF]: ca-AstroPh, ca-CondMat, ca-GrQc, ca-HepPh, ca-HepTh, cit-HepPh, cit-HepTh, cit-Patents, email-Enron, email-EuAll, facebook combined, gplus combined, soc-Epinions1, soc-LiveJournal1, socpokec-profiles, soc-Slashdot0811, twitter combined, wiki-Vote, wiki-Talk ; pgraph is a protein homology graph presented in [START_REF] Adai | Lgl: creating a map of protein function with an algorithm for visualizing very large biological networks[END_REF]; Cheswick-2005 is the internet tomography dataset generated in 2005 by Cheswick's Internet Mapping Project [START_REF] Cheswick | Mapping and visualizing the internet[END_REF]; hero-social-network and comic-hero-network which represent relations between Marvel characters [START_REF] Alberich | Marvel universe looks almost like a real social network[END_REF]. Table 1 summarizes them.

Baseline Algorithms and Analysis methodology

In that evaluation, we propose to compare HCBL to (i) FM 3 , (ii) FM 3 followed by our modified FOR (FM 3 FOR), and (iii) a variant of HCBL which only uses FM 3 FOR drawing algorithm (HCBL FM 3 FOR).

Technical Aspect

HCBL is implemented in C++11 with Tulip visualization framework 4.6 [START_REF] Auber | Tulip: a scalable graph visualization framework[END_REF]. FOR and FM 3 algorithms were already available within the Tulip framework. The FM 3 implementation integrated in the Tulip framework is provided by Open Graph Drawing Framework [START_REF] Chimani | The Open Graph Drawing Framework (OGDF), chapter 17[END_REF] and implies All computations have been done only with one core of the CPU, and no tasks were run in parallel. Images are generated only with the biggest component of the graph (but computation is done with all nodes), the colors of each node depends on its coreness, and the transparency of the edges is proportional to the inverse of its length. The intercluster edges are displayed with cubic-b-splines which use the edge bends as control points.

Results and Discussion

Table 1 summarises the benchmark of graphs and the performance of each algorithm. We consider that an algorithm is unable to draw a graph if the program meets memory issues or after 36 hours of computation. No method is able to draw soc-pokec-profiles, FM 3 and FM 3 FOR are unable to draw soc-LiveJournal1, and the FM 3 FOR is unable to draw wiki-Talk and cit-Patents due to FOR. Note that these problematic graphs are among the largest ones. These 4 problematic graphs are not used in the following analysis in order to compare only graphs drawable by all the methods.

Computation times of HCBL are far better than the computation times of the baselines FM 3 and FM 3 FOR , as well as HCBL FM 3 FOR for all graphs (except for soc-LiveJournal1 probably because drawing all the subgraphs with FM3 produces smaller clusters and reduce the probability to have to remove overlaps). In term of median, HCBL computes the layout in 6.89 seconds while FM 3 , FM 3 FOR and HCBL FM FOR respectively compute it in 22.80, 79.92 and 15.01 seconds. In order to statistically verify that HCBL is faster, we have computed the Wilcoxon signed-rank test on the total computation time with a significance level of α = 0.05. The test confirmed that HCBL statistically performs better than FM 3 , FM 3 FOR and HCBL FM 3 FOR (the 3 p-values are all close to 0.000132 0.05).

In average, 5.9% of the time is used to hierarchically cluster the graph, 93.21% of the time to compute the layout of the graphs, 0.06% of the time to compute the final position of the nodes from the relative positions of the metanodes , and 0.81% of the time to build the edges bends.

On that benchmark, most of these structures are quasicliques. The performance gain of HCBL is explained by the low time complexity of the Circular drawing compared to FM 3 and FOR as it that runs in linear time.

Figure 1 shows a sample of graph drawings obtained by HCBL. One can easily notice that the three drawings presented in that figure are similar. This is due to the clustering step that oftenly produces a quotient graph with a tree topology for the last level of abstraction. We assume that this is one of the advantages of HCBL (in addition to good computation time) as it highlights the main cores of the network while keeping peripheral structures of the network away from the center of the drawing. However, the clusters separation is made at the expense of a large drawing area with empty area that can be solved in a visualization system with interaction tools. In comparison, the drawings produced by small-world properties of these graphs. For such class of graphs, FM 3 (as well as any other force-directed method) usually produces drawing with an "hairball" effect. This makes the analysis of the graph difficult as it does not emphasize the topological structures of the network. Moreover, it also produces many node overlaps that may also hinder the analysis. As the number of overlaps is large, FM 3 FOR does not improve these drawings but rather distorts them.

Conclusion

This paper presents a computationally efficient method, HCBL, to compute the drawing of large graphs which uses a hierarchical clustering based on the coreness equivalence classes and their connectivities ; recursively computes the drawing of each hierarchical cluster with area and topologyaware drawing algorithms; and uses edge bundling to aggregate edges between nodes of different clusters and thus to reduce visual clutter.

We have compared it against one of the best methods of the state of the art (FM 3) and against an area aware version of it (FM 3 FOR) on a benchmark of 23 real-world large graphs. We have statistically verified that the proposed method performs faster than these baselines, and we have empirically verified that HCBL provides meaningful results. We have also evaluated a not topology-aware version (that only uses FM 3 FOR) which also performs better than the baselines. We use a redundant data structure to obtain the best performance which may be memory consuming in case of deep hierarchy tree. A future direction is to define a data structure making a trade off between computation time and memory use in order to support the drawing of larger graphs (up to million of nodes and hundred of million edges). Another interesting direction is to constraint the hierarchy tree topology which could reduce the number of metanodes belonging to a quotient graph and the size of the input of each layout algorithm. Finally, it would be interesting to im-prove the edge bundling step by defining a method avoiding node-edge overlap as well as cluster-edge overlap to better emphasize the hierarchical organization of the network.

 1 i.e. |E C | ≥ 0.8 |V C | * (|V C |-1)

2

 2

Figure 1 :

 1 Figure1shows a sample of graph drawings obtained by HCBL. One can easily notice that the three drawings presented in that figure are similar. This is due to the clustering step that oftenly produces a quotient graph with a tree topology for the last level of abstraction. We assume that this is one of the advantages of HCBL (in addition to good computation time) as it highlights the main cores of the network while keeping peripheral structures of the network away from the center of the drawing. However, the clusters separation is made at the expense of a large drawing area with empty area that can be solved in a visualization system with interaction tools. In comparison, the drawings produced by FM 3 and FM3 FOR are unsatisfactory due the scale-free and

Table 1 :

 1 Summary of the dataset and performances of each algorithm. / 0 is used to represent the cases impossible to compute.

		Graph	Tree				Total times				Individual cumulative times
	Graph	#nodes	#edges	height	HCBL (s)	FM 3 (s)	Gain(%)	FM 3 FOR (s)	Gain(%)	HCBL FM 3 FOR (s)	Gain(%)	Lay.	Clust. Exp.	Bundl.
	cheswick-2005	190384	228354	3	16.90	122.28	623	422.01	2397	95.36	464.26	14.21	1.46	0.10	0.41
	soc-Epinions1	112298	508837	8	9.93	73.65	642	225.05	2167	82.61	732.34	3.07	4.16	0.17	1.38
	soc-Slashdot0811	154676	905468	8	14.99	108.02	620	324.19	2062	95.02	533.89	7.22	4.21	0.14	2.06
	email-Enron	73384	367662	6	6.20	34.87	462	112.47	1714	44.67	620.72	3.11	1.68	0.07	0.76
	email-EuAll	300069	420045	6	25.65	119.38	365	396.22	1444	1836.00 7057.89	12.04	8.50	0.49	2.12
	ca-CondMat	46266	186936	5	6.89	22.80	230	79.92	1059	15.01	117.69	5.78	0.56	0.02	0.27
	twitter combined	81306	2420766	7	14.90	56.03	276	156.44	949	31.10	108.72	4.08	4.83	0.09	4.44
	cit-HepTh	48239	352807	6	9.12	27.24	198	87.50	859	16.52	81.14	7.12	1.02	0.03	0.53
	cit-HepPh	60388	421578	6	12.12	37.15	206	110.22	809	22.33	84.24	9.55	1.33	0.04	0.66
	ca-HepTh	19754	51971	4	2.58	8.48	228	23.15	795	5.82	125.27	2.26	0.17	0.01	0.08
	pgraph	30727	1206654	5	5.80	17.61	203	49.60	755	12.84	121.42	3.09	1.10	0.01	0.70
	ca-AstroPh	37544	396160	6	7.36	21.30	189	61.33	732	12.43	68.82	5.63	0.82	0.02	0.55
	hero-social-network	10469	178115	6	1.14	4.68	309	8.80	669	3.29	187.84	0.43	0.29	0.01	0.32
	comic-hero-network	19286	96519	5	2.64	7.96	201	19.68	645	5.58	111.37	2.05	0.29	0.01	0.18
	ca-HepPh	24016	237010	6	4.50	12.08	168	31.14	592	7.25	61.16	3.69	0.39	0.02	0.21
	wiki-Vote	8491	103689	6	1.17	4.66	300	7.43	537	2.99	156.31	0.74	0.20	0.01	0.16
	ca-GrQc	10484	28980	4	1.20	3.62	202	5.94	395	2.37	97.91	1.05	0.08	0.00	0.05
	gplus combined	107614 30494866	9	152.00	369.01	142	514.54	238	209.10	37.57	7.53	64.92	0.18	52.28
	facebook combined	4039	88234	4	0.84	1.56	84	1.77	109	1.30	54.12	0.64	0.08	0.00	0.09
					Problematic graph for baseline only							
	soc-LiveJournal1	8797692 68993773	8 6792.00	/ 0	∞	/ 0	∞	1070.00	-84.25 6069.20 404.97	4.05 313.78
	cit-Patents	5348328 16518948	5 3819.00	12841 236.23	/ 0	∞	5136.00	34.49 3530.40 210.81	1.46	20.69
	wiki-Talk	2516783	5021410	8 1841.00 3939.20 113.95	/ 0	∞	1948.00	5.81 1806.10	16.70	0.68	8.37
					Problematic graph for baseline and proposal							
	soc-pokec-profiles	1632803 30622564	/ 0	/ 0	/ 0	/ 0	/ 0	/ 0	/ 0	/ 0	/ 0	/ 0	/ 0	/ 0
	a representation of the graph in both Tulip and OGDF datas-								
	tructures, which is memory consuming. During the exper-								
	imentation, we only captured the execution time of each								
	drawing algorithm (neither graph loading nor rendering time								
	were measured). The computation has been done on a lap-								
	top with an Intel R Core TM i7-3840QM CPU@2.80GHzx8,								
	32Gb of RAM, 64Gb of swap, running Ubuntu 14.04 64bits.								

A Multilevel and Topology-Aware Drawing AlgorithmWe propose a bottom-up multilevel layout algorithm. First, we compute a hierarchical clustering of the graph with the quotient graph of each level by using the coreness measure. This iterative process ends when the quotient graph contains only one cluster or is a tree. Then, the quotient graphs of the hierarchy are laid out in a bottom-up manner. It ensures that no node-node overlap can occur as the size of a metanode is set to the size of the bounding box of the underlying cluster layout. Finally, final absolute positions

i.e. edges having their extremities in different clusters

http://snap.stanford.edu/data/

Acknowledgments

This work was partially funded by the SpeedData project (PIAO17298-398711).