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Abstract—The context of this paper is the labelling of a
document image database in an industrial process. Our work
focuses on the quality assessment of a given labelled database.
In most practical cases, a database is manually labelled by an
operator who has to browse sequentially the images (presented
as thumbnails) until the whole database is labelled. This task
is very repetitive; moreover the filing plan defining the names
and number of classes is often incomplete, which leads to many
labelling errors. The question is then to certify if the quality
of a labelled batch is good enough to globally accept it. Our
objective is to ease and speed up that evaluation that needs up
to 1.5 more times than the labelling work itself. We propose an
interactive tool for visualizing the data as a graph. That graph
enhances similarities between documents as well as the labelling
quality. We define criteria on the graph that characterize the
three types of errors an operator can do: an image is mislabelled,
one class should be split in more pertinent subclasses, several
classes should be merged in another. This allows us to focus the
operator attention on potential errors. He can then count the
errors encountered while auditing the database and assess (or
not) the global labelling quality.

I. INTRODUCTION

This work aims at helping companies that provide digitizing
solutions. One of their tasks is to label a huge amount of
document images (ID cards, forms, tickets, receipts, . . . ).
A typical digitizing process consists in scanning physical
documents and manually labelling each image in accordance
with a filing plan. According to our industrial partner1, a human
operator can manually label between 300 to 500 documents
in one hour. On average, a typical customer order represents
between 5 and 6 weeks of manual labelling for one operator.
There are three main difficulties related to this task. Firstly,
this work is extremely repetitive and requires a high level of
concentration to avoid mislabelling. Secondly, some images are
hard to label. Two images that belong to two different classes
can look very similar and have only few differences (a different
name in a form, the size of a ticket, . . . ). The last difficulty is
linked to the filing plan which is a document dedicated to the
human operator where the number and the name of classes are
defined. As a labelling campaign lasts several weeks, the filing
plan can change (classification rules, creation or suppression
of classes). All these difficulties result in mislabelling errors.
There are three different kinds of possible errors. The first one
corresponds to a “misclassification error”: a document image
is classified in class A instead of class B. The two other errors
are linked to changes in the filing plan: the “merge error” which
corresponds to the addition of new classes in the filing plan

1We would like to thanks www.gestform.com for supporting this work

(some images that were classified in class A need now to be
classified in the classes A1, A2 and A3) and the “split error”
happens when several classes are removed from the filing plan
(the classes A1, A2 and A3 need to be merged in a unique class
A). As the filing plan can change many times in a labelling
campaign, split and merge errors can occur very often.

Digitizing companies guarantee a minimum amount of
labelling errors to their customers. Quality assessment of
labelled document images is provided by doing a manual
audit. Generally, during the 2 or 3 first weeks of the labelling
campaign, 100% of the already classified database is audited. In
the next weeks, the percentage of audited images usually drops
to 10% of the database. Statistics made on many productions
show that an audit of 100% of a database needs 1.5 more times
than the labelling process itself. This audit process is currently
done through a very basic human-machine interface: for each
class, images are sequentially presented to the operator who
points out the labelling errors. We have previously tested this
kind of visual interface in a document image classification
process. Experiments we carried out in [1] clearly highlighted
that dealing with a huge amount of documents and classes is
really hard to handle in that way. That’s why we propose to
use information visualization techniques in order to help the
operator.

Information Visualization exploits human visual capabilities
to support visual exploration and analysis [2] and tackles
the problem posed by the abundance of information [3].
Schneiderman [4] provides some recommendations for the
visual exploration of data, which are now known as the Visual
Information-Seeking Mantra: “overview first, zoom and filter,
then details-on-demand”. Providing an overview enables the
operator to identify the main trends in the data and therefore to
guide his exploration and to focus his attention on interesting
parts. Zooming and filtering are basic interaction techniques
in information visualization allowing to reduce the amount
of displayed elements and thereby to reduce the operator’s
cognitive load. Last but not least, details-on-demand stands for
techniques providing detailed information about few elements
of the data when and only when requested by the operator.

In this article we propose to use the graph based infor-
mation visualization framework Tulip [5] to create a visual
interactive tool. The originality of this work stands in the visual
representation of the document database as a multilevel graph
visualisation: a first level represents the similarities between
classes while a second one represents the similarities between
documents. By adding a business logic linked to the audit
process we provide a tool that allows a smart data browsing



to quickly detect labelling errors. An operator needs to have
visual feedback about similarities between documents or classes
and about interclass distances or intraclass distances to audit a
document images database. Moreover, by focusing his attention
on the part of the graph corresponding to the three kinds of
typical errors (misclassification, split errors, merge errors), we
assume that the whole auditing process will be easier and
quicker.

Section II presents previous work about image database
browsing. Section III details how we use the visual algorithms
available in Tulip [5] to create a visual interface dedicated to
auditing process. Section IV details 3 measures specially created
to identify, in a graph of documents, the tree main errors that a
human operator can do during a labelling campaign. Section V
evaluates the proposal and section VI concludes this paper.

II. PREVIOUS WORK

The research area closest to our work is the browsing of
image databases. As far as we know, no specific proposition has
been published on the problem of document image database
visualization and browsing. In most cases image browsing
solutions have been proposed for content-based image retrieval
purposes.

The authors of [6] list three main classes of visualization
methods in a survey on this subject. The first class corresponds
to mapping-based visualizations: similarities between images
are computed in a high-dimensional feature space and are
preserved as well as possible in a 2D projection where images
are displayed to the operator. The second class groups clustering-
based visualizations methods. Clustering becomes necessary
when the size of the database increases. Clusters of images
are defined according to image feature vectors or according
to image metadata and only one representative image of each
cluster is displayed to the operator. The last class is composed
of graph-based visualization methods. Generally, the nodes of
the graph are images and edges between images are created
according to their similarities. Among the ways to generate the
final visualization from such a graph, one can find various
mass spring algorithms. Standard browsing tools are then
provided to explore the image database visualization: panning,
zooming, vertical exploration in hierarchical visualizations,..
A specific way of browsing can be defined according to
the application requirement. For example, in image retrieval
applications, the browsing can be driven by relevance feedback
criteria. As an example of a generic tool for interactive
visualization and analysis of image databases, we can cite
PEx-Image [7]. It integrates complementary functionalities:
various features computations, feature selection, various 2D
projections including distance-based projection and similarity
trees. Several views of the same data can be coordinated. Many
use-cases are described in the article: comparison between
the relevance of two features sets for a given labelled dataset,
classification task guided by image similarities, integration of
textual information associated with images. In terms of data
size, PEx-Image can handle up to 9000 images.

The authors of [8] present a framework combining multi-
media analysis and advanced visualization to facilitate image
retrieval in the domain of digital forensics. We can place our
work in the same research topic, which is called Multimedia

Analytics. We generate a visualization of a document image
database which combines a clustering based on metadata (the
image labels) and a graph based visualization. The proposed
framework allows the operator to efficiently detect labelling
errors in the database.

III. GRAPH CONSTRUCTION AND VISUALIZATION TOOLS

We want to abstract our image dataset as a graph and display
it. The advantage of using a graph instead of a sequential images
visual interface is the ability to show the proximity relation
between documents through edges. In this section, we detail
how the graph is constructed.

a) Features Extraction: For each image, we compute
two kinds of features. Firstly, we apply an OCR on the whole
database. It allows the computation of a global histogram of the
occurrences of the 500 most frequent words extracted from the
database (from one digitization campaign to another, the content
of the histogram is different). A basic text mining algorithm
(stop word and lemmatization) is used as preprocessing for
listing only pertinent words. Secondly, we compute image
features. We decided to characterize an image with the same
features that we used in [1]: an image is divided into 12 areas
of equivalent size; for each part, the average grayscale of the
pixels is computed; the height and width of the image are also
kept as features. The choice of using OCR results and very
basic image features is motivated by the fact that we try to
reproduce the cognitive mechanism of an operator. Most of
the time, he labels an image from its layout after viewing a
thumbnail or by identifying 2 or 3 words in the document.

After features extraction, each document can be described
either by a vector of size 500 (text features), 14 (image features),
or 514 (fusion of the 2 vectors).

b) Graph Construction: Let us denote by Gf = (V,Ef )
the graph representing a dataset depending on the extracted
features f . Each element of the node set V = (vi)i=1...nv

corresponds to a document. Ef = (ei)i=1...ne
is the set of

edges and corresponds to an oriented similarity between two
documents. There is an edge efi = (vm, vn) if the document
vn is within the k closest neighbors of vm according to the
features f . Let us denote by L = (li)i=1...nl

the set of
classes labels (e.g., the type of document). The application
C : V → L provides the label of each document. A metagraph
GM (Gf , C) = (VM , EM ) is constructed from the graph
Gf . Each node vMi

of the metagraph represents a class of
documents: vMi

= {vj/C(vj) = li}. There is an oriented edge
(metaedge) between two metanodes (classes) if at least one
node (document) of the source class has one of its k-nearest
neighbor in the target class: EM = {(vMi , vMj )/∃(vn, vm) ∈
Ef , C(vn) = li, C(vm) = lj}.

c) Graph Quality: We want to assess the quality of the
labelling. It can be done with measures able to quantify the
quality of a graph partitioning by analysing the meta-graph.
Theses quality measures are adapted from [9] because of the
k-nn structure of the graph. We evaluate the internal cohesion
of a metanode (document class) by comparing its edge density
to the maximal edge density it could have. Let us denote by
Ef (vMi

, vMj
) ⊂ Ef the set of edges linking one node of class

li to one node of class lj , and by V (vMi
) ⊂ V the set of nodes

of class li (i.e. the nodes represented by vMi
). The internal



cohesion of a metanode (i.e., a class) is then defined as:
IC(vMi

) =
|Ef (vMi

,vMi
)|

|V (vMi
)|∗min(k,|V (vMi

)|−1) . Note that the mini-
mum stands for cases where a metanode contains less than
k nodes. The same principle is used to evaluate the cohesion
between two classes of documents. The external cohesion is de-
fined on a meta edge as: EC(eMij

) =
|Ef (vMi

,vMj
)|

|V (vMi
)|∗min(k,|V (vMj

)|)
with eMij

= (vMi
, vMj

). In the best theoretical case, all the
IC values are equal to 1 and all the EC values are equal to
0 meaning that all the k nearest neighbors of a document are
in the same class. In other words, it means that the manual
annotation is consistent with the computed features.

From these local quality metrics, we are able to compute a
global quality metric (higher is better):

Qf =

∑
vMi

ICf (vMi
)

|L| −

∑
eMij

ECf (eMij
)∑

vMi

min(|L|−1,|V (vMi
)|∗k)

d) Interaction for Database Understanding: This section
describes the exploration tool that we have designed to help
experts to identify labelling errors (Figure 1 shows a screenshot
of that software).

It is necessary to display the computed meta-graph on screen.
Each node is represented by a thumbnail of the document it
represents and each edge is represented as a straight line. First
step when building a visualization of a graph is to assign
coordinates to its nodes and/or edges using a graph drawing
algorithm. While many are dedicated to particular classes of
graphs (e.g. planar graphs, trees, or hierarchical graphs), the
most popular approach to draw general graphs is the force-
directed one as it provides visually pleasant and structurally
significant results. Such algorithms use a physical analogy
to lay the nodes out by considering each node as a physical
object and each edge as a spring. In the resulting layout, close
nodes (in term of graph distance) should therefore be laid
out close in the representation. A force model allows then,
through several iterations, to obtain a local minimum energy
level. We use the FM3 algorithm [10] that provides a good
compromise between computation time and aesthetics. A good
visualization of graph should also avoid node-node overlaps.
Even if FM3 can take node sizes into account to prevent such
overlaps, it does not provide any guarantee. To remove the
remaining overlaps, we use as a post-process the algorithm
Fast Overlap Removal (FOR) [11] that removes node-node
overlaps while minimizing the total amount of displacements.
In our case, we need to draw the meta-level as well as the
classes of documents. In order to take into account the area
needed to draw each class during the layout of the meta-level,
we use a bottom-up approach. The induced graph (nodes of the
same class) represented by each metanode is therefore drawn
first using FM3 and FOR. The layout bounding box of each
class is then used to set the size of the corresponding metanode.
Finally the meta-level is drawn with the same combination of
algorithms.

To guide the operator in its exploration process, we also
render the internal/external cohesions (see III.c) with colors.
As these two measures are both bounded between 0 and 1,
we use a linear color mapping from red to green where green
is always associated to a good cohesion and red to a bad
one. Concerning the metanodes, the higher is the internal
cohesion, the higher the level of confidence in the labelling of

the corresponding documents is. On the contrary, a high external
cohesion indicates that the corresponding classes are linked
by a large number of edges. The operator should therefore
check whether the corresponding classes should be merged. To
highlight even more high external cohesions, the width of the
edges of GM are also mapped to the external cohesion.

As it was previously mentioned, the graph can be generated
according to several configurations of features. The operator
interface provides a tool that allows to select manually the
features to use and then change the visual representation of
the database. Note that we can also generate a graph based on
the fusion of the graph based on OCR features and the graph
based on image features.

All these general interaction tools are useful for visualizing a
big clustered image database. However, to facilitate the labelling
audit, the operator needs to be further guided. We propose to
focus his attention on potential labelling/split/merge errors.

Our software also provides a zoom and pan (in order to
help the operator to understand the recommendations when
clicking on them) interaction tool as well as an interaction tool
to emphasize the neighborhood of a given node. When clicking
on a node, we build a metagraph as defined in III.b by only
considering the focus document and its neighborhood. Again,
a color mapping (resp. color and width mappings) is applied
on the metanodes (resp. the edges linking metanodes). The left
panel of the software displays detailed information about the
focused document: a bigger picture of it, a description of it,
and a thumbnail of its neighbors ordered by their own class.

IV. THREE MEASURES FOR IDENTIFYING POTENTIAL
LABELLING ERRORS AND IMPROVE THE OPERATOR

EXPERIENCE

In section I, we have listed three kinds of recurrent errors
occurring when labelling a dataset. In order to correct an error,
it is necessary to apply the inverse operation (i.e. a merge
for a split error or a split for a merge error). The operator
interface integrates an error suggestion module where potential
errors and their proposed corrections are listed. It is up to the
operator to accept or reject each proposition. If the manual
labelling is effectively erroneous, the operator can validate the
proposition and an error counter is incremented. As it would
be confusing for the operator to change the topology of the
graph during the audit process, we do not correct and modify
the graph after each error assessment. With the global view of
the errors encountered, the operator can finally accept or reject
the labelling work whenever he wants.

a) Mis-labelling errors: For each class (metanode), we
propose a list of documents (nodes) which could be moved in
another class. The main idea is to identify nodes that are highly
connected to a set of nodes belonging to another class. We verify
all the possible moves of documents from the class of interest
to the classes where it is linked and keep the modification
which provides the best final quality value if we apply it. The
complexity depends on the number of inter edges. The operator
can assess or not the error and its proposition of correction. If
he does, the number of errors is incremented. Then the second
most isolated node of class ln is processed in the same way,
and so on until the operator considers there is no more labelling



Fig. 1: Screenshot of our software. The middle panel shows the metagraph as defined in III.b. While nodes correspond to
documents and edges link similar documents, metanodes contain all nodes with identical labels and metaedges link metanodes
containing linked documents. Metanode color (resp. metaedge color) indicates its internal cohesion (resp. external cohesion).
When pointing a document, the tool also displays the metagraph corresponding to the direct neighborhood of that document.

errors in the class ln. The number of counted errors is the total
number of errors assessed by the operator.

b) Merge Error: In case of a merge error, the correction
must propose to extract from a metanode some nodes in other
new classes (ie: split a metanode). Given an existing class ln,
we can define SGfn the induced subgraph of Gf where all
its nodes are of class ln. We compute a partitioning of this
subgraph using the Markov clustering algorithm MCL [12].
MCL algorithm is able to extract compact clusters in a graph.
Let’s denote by MCLfn the list of clusters of nodes computed
by the MCL algorithm on the graph SGfn.We can consider that
each cluster corresponds to a new class. We exclude clusters
composed of only one node (considered as noise). Considering
that MCL often split a metanode into a lot of clusters of
different sizes, we propose to keep only the three biggest of
them. We assume that proposing no more than three splits is
enough for confirming (or not) the merge error that we have
detected.The operator can then take the decision to create three
new classes from this clustering result. If the operator accept
the split suggestion of a class n, the number of errors associated
to this kind of error is incremented by the number of nodes
removed from the original class.

c) Split Error: We consider that the correction of a split
error consists in merging two existing classes into another one.
If there is an important number of edges in Gf linking nodes
of one class to another, the two classes are likely to be merged.
Thus, for each metanode, we propose another metanode with
which it could be merged. Given a source metanode vMm ,
the target metanode is found as follows: argmaxn |{(vi, vj) ∈
Ef/C(vi) = lm, C(vj) = ln,m 6= n}|. In practice, if the
proposed merging is pertinent, the operator validates it. The
number of counted errors is incremented by the number of

nodes of vMm
.

V. EVALUATION

a) Visual results: As mentioned in [8] about multimedia
analytics, it is hard to evaluate such kind of software because
“there are so many factors influencing the results”. The tests we
proceeded on documents coming from industrial digitization
campaigns show that the database total size is not the only
issue we have to deal with for providing an easy visualization.
Classical problems of document image database visualization
are partially handled in our software. The visualization is correct
up to 300 documents in a class (no image overlapping, fast
processing-time for displaying). However, some specific factors
can limit the operator interactions during the audit process.
Obviously, the operator efficiency depends on how well he
knows the database content and on the size of each document
class. Thanks to our proposition we can overcome this last issue
for identifying mislabelling, merge and split errors. Counting a
mislabelling error is made easy by presenting to the operator,
at the same time, only one document image and its supposed
correct label (cf figure 1, right part). In the same way, split error
identification is made easy by avoiding a sequential browsing of
each metanode. By alternatively clicking on the two proposed
label, the operator can visualize the two classes easily and
decide if he has to merge them or not. At least, the features
for identifying merge errors really help for quickly identifying
if a metanodes has to be split in three new metanodes. As it is
illustrated on figure 2.a-b by successively clicking on buttons
“1/2/3” near the class label a camera movement is carried out
(zoom and pan). It allows a very simple comparison of each
subgraph extracted after the application of MCL algorithm.



(a)

(b)

Fig. 2: An example of merge error. In that case, MCL algorithm
proposed to split the “Hotel” class (a) into 3 main sub-classes
(colored in the picture); one of these sub-classes corresponds
to “Office Furniture” documents (b).

TABLE I: Percentage (mean/standard deviation) of wrong
suggestions before a good re-labelling proposition. Feature
used: f1=ocr+image, f2=ocr , f3=image

k = 10 k = 20
f1 f2 f3 f1 f2 f3

DB 100 µ 0.24 0.20 0.28 0.22 0.23 0.23
σ 0.87 0.24 0.94 0.84 0.42 0.94

DB 3000 µ 0.30 0.24 0.34 0.28 0.26 0.47
σ 0.23 0.17 0.27 0.28 0.27 0.28

TABLE II: Computational performance (in seconds) of the
applications for three different databases

|V | |L| Drawing Quality Split sugg. Move sugg. Merge sugg.
115 14 0.032 0.006 0.006 0.021 0.001
3224 14 1.927 0.014 0.275 1.343 0.009
30394 210 8.463 0.047 11.954 75.937 2.634

b) Suggestion performance: Results of tests carried-out
on two real databases (with more than 100 and 3000 documents
and 14 classes) are presented in TABLE I. k parameter has been
empirically selected. We want to verify if the system allows the
operator not to browse all the documents in order to find errors.
For each database, we generate 100 graphs where only one
labelling error has been generated. For different values of k
and different extracted features, we compute how many times
(proportionally to the number of documents of the current
class of the erroneous document) an operator has to reject
our proposition before we correctly identify a labelling error.

Globally, test shows that for a small or a big database, about
20% to 30% of a metanode need to be browsed before we
identify a labelling error (instead of 100% without our tool).
Huge values of standard deviation show that very often, first
proposition is good (50% of the time), but sometimes more
than 45% of document class have to be browsed. A usage
evaluation and demonstration is available in http://njournet.
com/files/DocClass.mp4. TABLE II presents the computational
performance of the implemented methods on three different
databases with k = 10 (application in C++, Intel R© CoreTM

i7-3840QM CPU@2.80GHzx8, 32Gb of RAM).

VI. CONCLUSION AND PERSPECTIVES

This article presents a new proposition for an efficient
browsing of large databases of document images to identify
classification errors. We focus the operator attention on potential
errors through graph based quality measurements. We validated
the computational efficiency of proposal with a database
composed of 30000 document manually labelled. Besides
testing new image feature, we will also investigate if it is
relevant to use a learning distance method or non linear distance
instead of using a simple k-nn algorithm. It is also interesting
to take the advantage of the computational capabilities of the
computer to use more complex features and to reach quickly
a best labelling in the feature extraction step. The software
should also allow the correction of the labelling errors instead
of only finding them.
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