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Abstract

Most often the dynamic analysis of rotor-to-stator rub is performed using 1D models. This leads to
a small computational cost, but the reliability of the results is difficult to assess. This research work
compares and analyzes the results of 1D and 3D rotor-stator contact problems, for different contact
conditions more and less severe. The rotor vibrations are due to rotating imbalance at a given constant
rotating speed. In this paper, it is shown that regarding the rotor orbits, the 3D and 1D models responses
are very close. However, using a 3D model improves the simulation results. The 1D model actually suffers
from limitations resulting from rigid-body displacement assumption of the rotor’s crosssection, which
originates approximations in the rotor-to-stator contact modeling. Thus, the friction torque generated
by the contact is overestimated in a 1D model. The 3D model, however, can present some local effects
in the vicinity of the contact zone.
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1 Introduction

An accidental blade loss causes a rotor unbalance which leads to rotor-to-stator contact while the turbine is
slowing down and crosses a critical speed.

Rotor-stator contact can lead to diversified consequences (cf. [1]). It may be permanent like a full annular
rub with a forward synchronous whirl, or with a backward whirl. This later can be a rolling without sliding
called a dry whirl (or a dry friction backward whirl) and can also be a rolling (with friction) with a sliding
in the opposite direction of the spinning (dry whip). The intensity of the friction forces is the main factor
behind the dry whip phenomenon [2]. Therefore, the friction coefficient [3], an the rigidity of the rotor and
of the stator are the main factors [4] involved.

The rotor-stator contact can be intermittent, i.e., with rebounds. Rebounds can be periodic, quasi-
periodic or chaotic [5].

The eigen modes of the rotor-stator system may change due to the coupling that occurs during the
interaction phase [1,6]. Local zone plastifications may also lead to eigen mode changes.

Thermo-mechanical effects are also observed. In fact, the rotor-stator contact energy is transformed to
heat that causes local expansions leading to supplementary unbalance and reduces the rotor-stator gap dis-
tance [7]. Generally, most of this heat is received by the rotor causing it to deflect (the Newkirk phenomenon)
[8]. Thermo-mechanical effects can lead to spiral vibrations. This has been highlighted on a Jeffcott rotor
in Sawicki et al. [9] and on real machines in Bachschmid et al. [10].

However, if the rotor is performing a free rotation after a blade loss, slowing down can occur. Roques et
al. [11] remains one of the few research studies in the literature to deal with the slowing down of a turbine
then leading to rotor to stator contact when passing through a critical speed. The authors highlight the
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effect of the friction coefficient, and of the stator rigidity on a turbine slowing down behavior. An analytical
model was used in Braut et al. [12] to study the Jeffcott rotor slowing down due to its contact with a
suspended rigid stator.

It is obvious that the rotor-stator contact problem is a complex and highly nonlinear problem, presenting
both multiphysical (vibrations, contact, thermo-mechanical effects, etc.) and multi-scale (local deformations,
etc.) phenomena that are complicated to model and to take into account correctly. In the literature,
assumptions are made and it is difficult to assess their validity, even if comparisons with experimental results
are provided. As mentioned previously, rotor slowing down and Dry Whip depend highly on the friction
torque and the rigidity of the system. However, the first models in the literature to deal with rotor-stator
contact problems are based on a simple Jeffcott rotor [13]. Moreover, the rotational velocity is constant,
and is kept so along the rotor-stator contact phase by a compensating torque. These simplified models are
described by differential equations and solved analytically, neglecting the gyroscopic effects [14].

One of the main drawbacks of these simplified models is the rigid body assumption for the rotor and
stator modeling. A way to improve the model accuracy while limiting the computational coast consists in
using 1D models based on beam finite elements. This has been proposed recently in Peletan et al. [15] for
the analysis of an industrial EDF turbine with a harmonic balance method (see also [16]). The rotor to
stator contact has also been studied in Roques et al. [11] with the same type of beam model. The transient
response is calculated with a time integration scheme. Though industrial examples have been considered in
these two previous papers, the approximations resulting from beam assumption and thus the beam to beam
contact for the rotor to stator contact modeling are difficult to assess. The aim of this research study is to
assess the need for more realistic models, i.e., 3D models for rotor-stator contact problems. This is an up-to-
date issue if we examine the literature on the blade/casing contact problems. In fact, blade/casing contact
problems involve physical aspects and require modeling techniques that present important similarities with
rotor-stator contact problems [17]. Most of the research developments in the literature use beam models
to simulate blade/casing contact interactions. However, the need for 3D models for a better understanding
of blade/casing contact has recently appeared [18]. Indeed, local plastifications, surface coating extraction,
local thermo-plastic effects, etc. cannot be seen unless a 3D model is used. The contribution of 3D modeling
to blade/casing problem simulations raises the question of the validity of simplified beam models for rotor-
stator contact problems. In fact, rotor-stator contact problems involve more complex modeling and physical
aspects than those of a blade/casing contact problem. For instance, a mistaken friction torque estimation
can lead to a dry whip behavior, in spite of a forward synchronous whirl. Such misleading conclusions can
occur on simplified rotor-stator contact models since such models are not capable of a rigorous presentation
of the contact surfaces and the physical aspects of surface to surface contact and friction.

This paper aims at illustrating the contribution of a 3D finite elements modeling of the rotor-stator
contact interactions and consequently the limits of a simplified 1D model, by comparing the results of both
models. Numerical examples are constructed to be consistent with industrial EDF turbines. However some
data have been changed for confidentiality purposes.

1D and 3D simulations are carried out with the open source finite element software Code_Aster [19].

The paper is organized as follows. Firstly, the contact algorithms and the time integration techniques
adapted to the problem are exposed. Then, the rotor-stator system is presented, and three application
examples highlight the main contributions of a 3D model to rotor-stator contact problems.

2 The contact problem and the solution techniques

The contact/friction problem is a highly nonlinear complex problem. Solving a contact problem requires
first to solve a geometric problem relative to the position of the two contacting bodies, and then to solve
the incremental contact problem that enables one to obtain the contact pressure from which depends the
friction force [20]. The computational cost and the stability of the solution depend also on the choice of the
time integration technique.

2.1 The geometric and optimization problem

The master-slave formation [21] remains one of the most popular methods for solving the geometric problem.
Solids S; and Ss in Fig. 1 are susceptible of contact. The geometric problem consists in calculating the



Figure 1: Contact between two bodies.

distance between the master and the slave surfaces, respectively I'y and I';. The nodes of I's are projected
on I'y and the distance between the two surfaces is computed as
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z1 is a node that belongs to I'; and Zo € T’y is the result of the following optimization problem that is
equivalent to projecting z; on I's according to the outgoing normal direction n of I's:
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Three main cases are distinguished: g, > 0: no contact, g, = 0: perfect contact and g, < 0: interpene-
tration. Although the third condition is not a physical one, it may occur for some contact algorithms such
as the penalty method (cf. Section 2.2). The normal contact condition is the non-penetration of the two
contact bodies known as the Kuhn-Tucker-Karush [22] formulation:

gn > O, Pn 2 07 Pndn = 0 (3)

where p,, is the contact pressure.
The tangential behavior (friction) generates a tangential force F; that is often simplified by a Coulomb
friction law by adopting a friction coefficient u that depends only on the material and surface properties:

IF: |l < ppn (4)

In a master-slave formulation, the master surface is often the one that possesses the higher rigidity.
However, if both surfaces are of the same rigidity, Noels [23] proposes a double face algorithm that alternates
master and slave surfaces. The master-slave formulation is adapted to a rotor-stator contact problem and
enables us to avoid interpenetration if both surfaces are meshed with quadratic elements.

In this paper, the 3D rotor-stator contact problems are based on a master slave formulation with a
quadratic mesh for both the rotor and the stator.

2.2 Choosing the contact solution method

A penalty contact method is the only solution technique proposed in 1D contact modeling in Code_Aster.
For the 3D model, Lagrange multipliers method [24] can be used. However, in Code_Aster, this latter
leads to an unaffordable computational cost. It also has convergence problems if the contact conditions are
severe. Therefore, penalty contact algorithms are used in both 1D and 3D contact problems. Using the same
method makes the two modeling techniques consistent and more appropriate to the objective of comparing
their corresponding results (see Section 5).

The penalty contact method transforms the contact problem to a non-constrained optimization problem.
The problem size is not increased by contact condition; however, its major drawback is that it allows
interpenetration. In fact, this method imposes a contact force that is proportional to the interpenetration
value and of opposite direction: Fpo = K,|g,| where K, > 0 is a penalty coefficient. The higher K,,
the more accurate the method is. If K,, — oo, the penalty method is equivalent to the physical problem
described in Fig. 3 but high penalty coefficient values lead to tangent matrix conditioning problems and to



algorithm divergence. Therefore, interpenetration cannot be avoided. Similarly, the tangential behavior of
the contact can be penalized by a coefficient K; > 0.
For a non-adhesive contact problem, the fundamental dynamic equation, according to the penalty method,
reads
Mii+ Cu+ Ku + / (K7nGndgn + Kigt - 0g¢)dl's = Fexy (5)

ry

If the contact is adhesive, Fig. 5 becomes

Miui + Cu+ Ku + / (Kngndgn + Fi - 0g)dl'y = Foxt (6)
Iy

A parametric study should be performed to verify the independence of the solution from the penalty
coefficients K,, and K;.

2.3 Choosing the time integration technique

Implicit integration schemes in impact problems usually present small interest, since their unconditional
stability that allows us to use large time steps is not a real profit, since small time steps are required in
order to accurately account for the physical phenomena that are taking place. Thus, explicit integration
techniques are more adapted to contact problems, with a fewer cost per time step.

Moreover, for nonlinear dynamics, and particularly, for contact problems “conventional” integration
schemes, such as the Newmark integration scheme present conditional stability. Unconditionally stable
integration schemes were developed for such applications. We mention the Constraint Energy Momentum
Algorithm (CEMA) method proposed by Hughes et al. [25] as well as the Modified Energy-Momentum
Method (MEMM) method (see [26]). The EMCA method (energy momentum conserving algorithm) was
introduced by Simo and Tarnow [27] and modified in Romero and Armero [28] by the introduction of a
numerical dissipation, which lead to the EDMC method (energy dissipation momentum conserving). This
latter is still one of the best for contact problems.

However, standard finite element softwares have not yet integrated such integration schemes, since their
formulation depends on each study case. A Newmark integration scheme is the unique choice for 3D contact
problems in Code_Aster. The Newmark integration scheme is not energy conservative for contact/friction
problems [29]. The energy conservation is achieved in a frictionless contact problem by a non-penetration
kinematic condition expressed on the velocity [30], also called the persistence condition [31]. Moreover, high
frequency oscillations appear and may lead to divergence, when the Newmark scheme is used to solve contact
problems. However, if the time step is small enough and numerical dissipation is introduced, the Newmark
scheme is stable and conserves the angular momentum [32,33] for contact problems. This was performed in
this paper for 3D contact problems and resulted in a large computational cost.

Moreover, the integration schemes used for 1D rotor-stator contact problems, and that for 3D contact
problems cannot be the same on Code_Aster. In fact, the integration scheme that offers good stability for 1D
contact problems is an explicit non-damped Runge-Kutta integration scheme [34]. It offers a good stability
for contact problems and a time step adaption technique that enables us to use small time steps in the
vicinity of severe contact conditions, and larger time steps for noncontacting conditions. In our study case,
the initial time step is 5 x 107° s and goes to 5 x 10~7 s in the vicinity of contact conditions. However, the
main drawback of this integration scheme is that it is memory consuming and 8 GB RAM were needed to
solve the 1D contact problems.

3 The rotor-stator system under study

In this paper, an example has been constructed from an accidental blade off in a nuclear power plant turboset.
The corresponding unbalance is introduced under the form of a local force which induces rotor vibrations.

The considered system is depicted in Fig. 2, the disk being described as a rigid body. The upper part of
Fig. 2 shows the upper half of the rotor’s longitudinal cross section. The length and the radius of the rotor
are 20.15 m and R = 1.075 m respectively.
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Figure 2: Dimensions of the rotor-stator system under study.

(a) The dimensions of the stator (in meters)

Ring Blades
Inner radius R; 1.083 Length [ 0.755
Thickness 0.207 Wideness L 0.038

Thickness along the z-axis (of Fig. 2) e =0.15
(b) The materials of both the rotor and the stator

Density (kg/m?) 7800
Young Modulus E (Pa) 2.1 x 101!
Poisson coefficient 0.3

Coulomb friction coeflicient between the rotor and the stator 0.2

Table 1: Dimensions and materials

The stator consists of two rings linked by a number of blades. In order to simplify the model, and as
done in the thesis of Roques et al. [11], the exterior ring is not modeled and the extremities of the blades
are fixed. Two stator models are considered and are shown in the lower part of Fig. 2. For the first one, the
stator is a simple ring, and for the second one a more realistic model is used, i.e., a ring that is suspended
on 8 blades'. The first stator model makes it easier to analyze the rotor-stator contact problem (controlling
the interpenetrations, the rotor displacements, observing local deformations on the stator, etc.) and to make
suitable conclusions, before considering the more complex and realistic example of the suspended stator.

The stator’s center is located at the rotor’s axis (on point N, in Fig. 2). The dimensions of the stator as
well as the rotor’s and stator’s materials are found in Table 1.

A 6.8 x 106 N unbalance force that follows the rotor’s rotations is applied to the simply supported rotor
at point Np. It is triggered by the loss of a 100 kg mass at a 2.75 m distance from the rotating axis, when
the rotational velocity of the latter is 1500 rpm.

The rotor rotational velocity is a data of the problem. Its time evolution is governed by Eq. (7) in
Section 4.2, which leads smoothly to a constant value. Due to the rotating unbalance, the rotor vibrations
are amplified until a rotor-stator contact is detected.

IThe industrial stator has a larger number of blades. However, reducing the number of blades simplifies the model and
reduces the computational cost while having minor influence on the objectives and conclusions of this research work.



One current limitation of Code_Aster is that the rotational velocity is a data of the dynamic problem.
Its evolution law is not an unknown of the mechanical problem. Therefore, rotor-stator contact will not lead
to a deceleration of the rotor, but rather, will result in stator local deformations, rotor torsions, etc.

4 Models of the rotor-stator contact problem in an industrial code

Few results in the literature deal with 3D rotor-stator contact problems. This may well be due to the
somehow high computational cost engendered by such models. To reduce this computational cost, the 1D
and 3D dynamical model coupling was the main concern in Tannous et al. [35] but no 3D contact modeling
was addressed at that time.

This paper proposes a first 3D contact model between the rotor and the stator, implemented within
an industrial FE code, namely Code_Aster, whose features have been enhanced to address a complex 3D
rotor-stator problem, consistent with the previous 1D contact model.

4.1 Contact model suited to the 1D geometry description: the impact law

The penalty approach is used for both the 1D and the 3D contact problems in the scope of this paper. In
this section, we present the geometric approach that is available for 1D contact problems in Code_Aster. It
is a simple and efficient 1D modeling approach (cf. [36]), based on a node-to-node contact formulation.

The equations of motion that take into account the gyroscopic effects are settled in the 1D model rotating
frame. The involved impact law has been improved recently to take into account the computation of the
frictional torque between the rotor and the stator. Dedicated to the 1D problem, this model is presently one
of the best 1D contact approaches, due to its computational efficiency and accuracy.

It is illustrated in Fig. 3. Considering a simple stator (a ring without blades, whose inner radius and
thickness are respectively R and €), its beam model is a set of curved beam elements along a circle whose
radius is R + €/2. Concerning the rotor model, each cross section is represented in the beam model by a
single node. It may potentially impact all the different nodes of the stator. The precision of the model
indeed directly lies on the number of nodes on the stator, as well as does the computational cost. Each
contact condition takes into account a rigid disk around the potential contacting nodes to represent the
correct distance between the impacting parts. The disk positions are adjusted along the computation when
the rotor and stator beam elements are deforming. Nevertheless, the model does not take into account the
cross-section deformation.

An explicit integration scheme of the Runge-Kutta family is the optimal choice that has been selected in
Code_Aster for these 1D rotor-stator contact problems.

4.2 3D modeling of the rotor-stator contact problem within Code Aster

Contrary to the previous model for which the rotation velocity is prescribed by the user, in the 3D model,
it is taken into account by prescribing movement of the end sections of the rotor. In this study, the rotor is
subjected to a null rotation acceleration at ¢ = 0, that is afterwards increased in such a way that it produces
a given velocity w at time ¢, with a null acceleration (to prevent transient effects):

t\ 2
wit)=wx [3-2x — | = (7)
(-25)

These end sections are far enough from the contact area so that the different possibilities in the prescribed
movement do not influence the solution close to the contact locations.

Contact conditions are dealt with a master-slave formulation with penalty, and the only available inte-
gration technique for 3D impacts in Code_Aster is a damped Newmark scheme. This last choice may not
be optimal in our case since it leads to high computational costs. Implementation of other schemes is a
development perspective.
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Figure 3: The choc law basics (the dots are the different stator nodes).

5 Model consistency

The two previous models appear to be consistent since the only differences concern the contact methods and
their solution algorithms. Once converged, their solutions therefore can be compared. Since the study case
involves a rotor which is slender enough, Fig. 2, the beam element model is expected to be accurate.

The 3D rotor is meshed with quadratic elements involving 1400 nodes (see Fig. 7). This mesh provides
sufficient precision and reduces the difference between the beam and the 3D rotors to its maximum. The
same 3D rotor model is used in the subsequent application examples. Note that a finer mesh (tests have been
performed on a 2000, 3000 and 4000 node 3D rotor meshes) does not lead to a higher similarity between the
beam and the 3D models.

Both solutions exhibit a similar behavior. As Table 2 illustrates it, a small but inevitable difference
exists between the natural frequencies of the beam rotor model and those of the 3D rotor model. Their
small values nevertheless allow us to conclude that the two rotor models are equivalent. Fig. 4 depicts the
eleventh natural mode of the rotor.

Moreover, the 1D and 3D rotors have similar transient behaviors when submitted to a dynamic loading:
Fig. 5 shows the orbits of point N, in the (z,y) plane due to an unbalance loading without a rotor-stator
contact. It is obvious that the two rotors exhibit a similar behavior. This is also the case for the velocities?
and accelerations. The 1D and the 3D rotor models are therefore consistent.

However, the industrial stators are not slender enough to be modeled by beam elements. The ring itself,
with the dimensions of Fig. 2, can present a 10 percent frequency difference, even on the lowest natural
frequencies, between the 1D stator model and even the mostly refined quadratic 3D rotor mesh. More
details can be found in the PhD thesis of Tannous [37]. Therefore, the 1D contact model will consist of
a rotor modeled by beam elements, while the stator is modeled by 3D quadratic elements. The contact
between the 1D rotor and the 3D stator is solved via the impact law (cf. Section 4.1) and is called a 1D
contact model. The 3D contact model will consist of a contact between a 3D rotor and the same 3D stator
as the one used for the 1D contact problem. The contact is solved via a penalty contact algorithm with a
master-slave formulation.

For the 3D contact model, three sections of the rotor are subjected to contact with the stator. For the
1D contact model to be consistent with the 3D one, three contact sections are chosen on the rotor (three
different shapes are used to point out the three different beam nodes in Fig. 6). Each one consists of a beam
node that may enter in contact with a series of stator nodes situated at the same z-axis position and having
the same shape as their rotor contact node in Fig. 6.

According to the impact law, the rotor nodes are affected by rigid disks of radius R (the same radius as
the 3D rotor) while the stator nodes possess zero radius rigid disks.

Moreover, since the impact law and the penalty contact method (for 3D contact models) use penalty

2The velocities are important since the friction torque depends on the contact velocities. The 1D and the 3D rotors velocities
are very close.



No Natural frequencies (Hz)

Mode nature

Beam rotor 3D rotor

1-2 23.77 23.75 Bending

3-4 62.48 62.29 Bending

5 79.85 79.87 Torsion

6-7 115.33 114.69 Bending

8 128.68 128.79 Traction/Compression
9 159.71 159.86 Torsion

10-11  178.1 176.66 Bending

Table 2: 3D and beam rotors natural frequencies comparison.
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Figure 4: The eleventh natural mode of the rotor. (a) Beam rotor model. (b) 3D rotor model.
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Figure 6: 1D contact model, between a beam rotor model and a 3D stator, via the impact law.

Figure 7: The 3D rotor-stator system of this study case.

coefficients that influence the values of the contact and friction forces, the same penalty coefficients are used
for both the 1D and the 3D contact models.

Note that, since in Code_Aster the rotational velocity is a data of the dynamic problem and since no
direct and reliable access to the contact forces and torques is possible, then no slowing down due to the rotor-
stator contact is studied, and the comparisons between the 1D and the 3D contact models are performed on
the basis of the rotor orbits and the stator behavior. The main contributions of a 3D model are highlighted.

6 Application examples

Three study cases are considered. In the first one, the rotational velocity of the rotor is 240 rpm and the stator
consists of a simple ring (without blades, see Fig. 2). The stator external surface is fixed. Such a contact
case is relatively simple to analyze. Interpenetrations are easily detected, since the rotor displacements are
limited to the gap size (8 mm) added to the stator deformations, which are practically negligible in such a
case.

We then model a more complex and realistic rotor-stator contact case at the same rotational velocity, in
which the stator is suspended by blades. The rotor-stator contact and friction lead to blade deformations
and cause stator rotations. The third and last study case is dedicated to a rotor-stator contact, when the
rotor velocity is close to its critical velocity.

In all three study cases, the rotor starts rotating with null velocity and acceleration and reaches its
constant rotating speed at ¢, = 0 : 01 s according to Fig. 7.



6.1 Rotor contacting a stator without blades

We consider the 3D rotor-stator system in Fig. 7 whose dimensions are those of Fig. 2. The stator consists
of a simple ring with no blades, and with fixed external surface. Quadratic 3D elements are used®: the rotor
counts 1400 nodes and the stator counts 259 nodes. Master slave contact formulation is considered, with
136 nodes on the stator contact surface (slave surface) and 80 nodes on the rotor contact surface (master
surface).

For the 1D model, we recall that the stator model is the same as in the 3D model. But the rotor is
discretized with beam elements and counts 41 nodes.

Since penalty contact algorithms are used, a parametric study is performed, in the following, to show
the negligible influence of the penalty parameters on the 1D and 3D contact results. The highest penalty
coeflicients, for which convergence is reached, are chosen, so that the interpenetrations are minimized and
can be neglected. These coefficients are denoted k, and k;, respectively for normal and tangential penalty
parameters. For this case of study, k, = 10'4 N/m and k; = 10° N/m. Three contact cases are studied. In
the first one, ks = k,/10 and k;s = k;/10. In the second, the nominal parameters are considered, i.e., k,
and k; and in the third one k,y = k, x 10 and ki = k; x 10 are selected. If the three simulations lead to
similar results, then the influence of the penalty coefficients is neglected. This is performed on both the 1D
and the 3D contact models.

Fig. 8 shows a comparison of the orbits of point N, belonging to the 1D main rotor axis at the contact
section location. It is obvious that the penalty coefficients have negligible influence on the rotor orbits. Thus,
the chosen penalty parameters enable us to have a good physical representation of the contact phenomenon.
The interpenetrations are negligible and do not exceed a maximum of 0.01 mm (note that the rotor-stator
gap distance is about 8 mm).

The same parametric study is also performed on the 3D model, and for the same penalty coefficients.

Results are presented in Fig. 9, and show a negligible sensitivity to the penalty parameters, a sensitivity
that is even less than the one observed on the 1D contact problem. For the 3D model, each contact case
requires a 30 h computational time on a 2.5 GHz QuadCore with 10 GB RAM machine, and for a time step
equal to 5 x 107° s. 3D contact problems are, therefore, CPU time consuming as illustrated in this study
case, especially when an implicit integration technique is used.

In the following a comparison of the 3D rotor orbits (at point N.) with the 1D rotor orbits is set.

Fig. 10 shows an obvious difference between the 1D and the 3D contact models. It can be seen that before
contact both models have similar responses, as it has been shown also earlier in a case without contact, see
Fig. 5. Therefore the differences observed in Fig. 10 are only due to contact modeling and not due to the
models themselves. For a better understanding of the difference sources, let us check the stator behaviors of
the 1D and the 3D contact problems.

The stator of the 3D contact simulation at ¢ = 0.875 s is amplified by a 1.5 x 10° factor and is shown in
Fig. 11. The stator shows a local deformation at the contact with the rotor. However, if the stator of the
1D simulation is amplified by the same factor and shown at the same contact instance (see Fig. 12), no local
deformation is found.

In fact, the rotor-stator contact in a 1D simulation engages a wider contact surface than a 3D contact
simulation (« > f in Fig. 13) due to the rigidity of the rotor contact cross-section in a beam model assump-
tion. Thus, no local deformation of the stator is observed in a 1D rotor-stator contact model. This is, in a
part, the source of difference between the 1D and the 3D contact models.

To numerically demonstrate this conclusion, we plot a 1.5 x 10* times amplified deformation of the 3D
rotor crosssection in the contact zone at ¢t = 0.875 s as shown in Fig. 13. The triangles represent the different
cross-section nodes. This latter is no more a disk, and this can easily be seen if the cross section is compared
to a disk having the same center as the cross-section and passing through the node that is the most far from
the circle center. The cross-section deformation reduces the rotor to stator contact surface with respect to
that of a rigid cross-section assumption in a beam model. This conclusion highlights the necessity of a 3D
contact model for rotor-stator contact simulations, and is to be endorsed in the following study cases.

3A sufficiently refined 3D mesh with quadratic elements is suited to obtain reliable results. In our study case, refining the
mesh leads to non-negligible computational cost for the same result precision.
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Figure 8: Influence of the penalty coefficients on the 3D contact problem.

6.2 Rotor contacting a suspended stator

In this study case, the stator is suspended by blades and is presented in Fig. 14. Its dimensions are those of
Fig. 2.

Fig. 15 shows simultaneously the 1D and the 3D rotor, as well as the 3D stator that is used in both 1D
and 3D rotor-stator contact simulations.

In this study case the stator is meshed quadratically and counts 2280 nodes. 128 nodes belong to the
contact surface’.

The rotor is spinning at 240 rpm. The time evolution of this rotation speed is smooth. It is described
in Fig. 7 and presented in Fig. 16 with ¢,, = 0.01 s. This allows us to minimize the transient stage due to
initial conditions or when the rotation speed becomes constant since the accelerations are null at start up
and at t = t,,,. The time step is 5 x 1075 s.

For a one second simulation period, the computational time is 60 h on a 8 GB RAM and a Quad2-Core
2.75 GHz CPU computer.

Since the penalty contact method is chosen, a parametric study is performed on the normal and tangential
penalty coefficients to ensure that penetration is negligible and results are not dependent on these coefficients.
The nominal values k,, = 104 N/m (normal contact) and k; = 10'° N/m (tangential contact) are thus taken,
since it appears that multiplying or dividing these coefficients by 10 do not lead to solution changes.

Now the results of the 1D and 3D contact models are compared. First, the rotor behaviors are examined.
Fig. 17 shows a comparison between the orbits of point N, of both the beam and the 3D models.

Differences on the rotor orbits are small. In fact, a stator suspended by blades absorbs some of the impact
energy and reduces local stator deformations.

We now examine the stator behavior. Fig. 18 shows a comparison between the displacements of point
(4 (see Fig. 2) for a beam and a 3D modeling of the rotor-stator contact.

Larger displacements are obtained (up to three times) for the beam modeling of the stator when compared
to the 3D model, along the y-axis direction. This direction is indeed the tangential direction that is influenced
by the friction force. This is also illustrated when checking the tangential displacement of point Cs (in the
x-axis direction) as shown in Fig. 19, but with a less extend in the normal contact direction, as in Fig. 20
with the displacements of point Cj along the x-axis direction. In fact, there are two types of errors: one in
amplitude, and the other one in phase. The first one is quite large. The second one is small as it can be seen
at the beginning of the simulation, which results from the frequency consistency of both models. However,
even though this phase error is small, it increases over the simulation and may lead to out of phase results
between 1D and 3D models. Moreover, the tangential displacement of the 1D stator has a gradually varying
amplitude. The change from one amplitude to another coincides with impacts, also seen on the rotor’s orbit

4Note that a more refined mesh does not have a remarkable effect on the results, while increasing significantly the compu-
tational cost.
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Figure 11: 3D deformed stator amplified by a 1.5 x 10° scale at t = 0.875 s.

Figure 12: 1D deformed stator amplified by a 1.5 x 10° scale at t = 0.875 s.
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Figure 14: 3D model of the rotor-stator system.

in Fig. 17.

Note that the 1D contact problem is solved via a non-damped Runge-Kutta integration scheme, while
the 3D problem is solved via a damped Newmark integration scheme. It is not possible to use the same
integration scheme and damping for both the 1D and the 3D contact problems. Therefore, some of the
differences between the 1D and the 3D solutions is due to using different integration techniques. For example,
we observe high frequency oscillations on the 1D solution in Figs. 19 and 18 for ¢t € [0.7,0.8] s, and this is
not the case for the 3D solution. These oscillations are not a source of error and do not lead to divergence.
However, along the contact normal direction, the influence of the time integration scheme choice is clearer.
In fact, the 3D solution is getting damped for ¢ € [0.6,0.9] s and that is not the case of the 1D one as
seen in Fig. 20 which shows the displacements along the x-axis of point C; for both the 1D and the 3D
contact simulations along the contact normal direction. For a better clarity, the 1D and 3D solutions are
also presented separately at the right hand side of Fig. 20. One can say that the difference between the two
solutions is obvious and the use of different integration schemes makes this difference wider, but cannot be
the main cause of the difference.

As a conclusion, the differences between the beam and 3D contact models arise from the contact force,
both with its normal and tangential components, but with a predominance of the tangential one, so for the
rotor-stator friction torque that differs between the two models. The main source of discrepancy arises from
the rotor cross-section stiffness, leading to a wider contact surface for the beam model than for the 3D model,
as discussed in Section 6.1 and illustrated in Fig. 13. To assess it, Fig. 21 depicts the deformed stators, with
an amplification factor of 100, at t = 0.876 s. The stator rotation around its main axis is clearly larger for
the 1D model than for the 3D one, as the blade deflections exemplified it.
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Figure 15: 1D and 3D models of the rotor-stator system.
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Figure 16: The time evolution of the rotation speed w(t).
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The rotational velocity being an input of the dynamic problem in our study case, the rotor-stator impact
does not involve a rotor deceleration, but leads to a rotational deflection of the stator. In the converse case,
when the rotational velocity is an unknown of the problem, its deceleration would have been larger for the
1D contact model than for the 3D one. This motivates the necessity of using a 3D model in the case of the
analysis of a turbine slowing down due to an accidental condition. This 3D model improves the physical
accuracy of the rotor-stator impact problem.

6.3 Rotor contacting a suspended stator in the vicinity of a natural frequency

In this example, the same rotor-stator system and parameters are used. The only difference is that the
rotational velocity of the rotor is set to w = 636 rpm, corresponding to 10.6 Hz which is the first natural
frequency of the rotor. We first check that the behavior of both the 1D and the 3D rotors at this rotational
velocity is consistent and that both the rotors are excited in the same manner. We then check the penalty
parameters and ensure that the results are not dependent on them. The retained values are k,, = 104 N/m
and k; = 1019 N/m.

A 0.2 s simulation is performed. The computational cost of the 1D simulation does not exceed 3 min.
However, the 3D computational cost is much higher. Due to the contact severity, the time step needed for
the convergence dropped from 5 x 107° s to 5 x 10~7 s. The contact severity actually increases due to the
vicinity of the natural frequency. This fact is highlighted in Fig. 22 that represents the orbits of point N,
with and without a rotor-stator contact. The contact severity combined with an implicit solution via the
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Figure 23: State of the stator at ¢ = 0.1576 s.

Newmark scheme leads to a prohibitive computational cost: 170 computational hours on a Quad-Core 2.5
GHz machine with 12 GB RAM were needed for the 3D computations.

The friction torque is clearly overestimated as illustrated in Fig. 23, which represents the state of the
1D and 3D stators at t = 0.1567 s. Note that no amplification is needed to observe the deformation of the
stator in this study case.

This application example highlights the increase in the computational cost of a 3D model when the
rotational velocity approaches a natural frequency of the rotor. The 1D model presents non-negligible
estimations that lead to an overestimation of the friction torque, and a stator behavior that is very different
from the 3D one.

7 Conclusions

This paper aimed to compare 3D and 1D models of rotor to stator contact. The 1D model obviously relies on
more restrictive assumptions than the 3D model, mainly because of the use of a beam model which is based
on a rigid-body kinematics for the cross-section. Therefore, the 3D results can be considered as reference
results which provide a mean to assess the validity of the 1D model. Simulation examples were carried out
on industrial turbines inspired from the TAG of EDF nuclear parks and on the industrial finite element code
Code_Aster. The main conclusions are recalled in the following.

In a 3D model, the rotor cross-section deformation leads to a narrower rotor to stator contact interface,
and thus leading to local deformations and a stator behavior that is explicitly different between a 1D and
a 3D model. Moreover, the rigid rotor cross-section in a 1D model causes an overestimation of the friction
torque. The friction torque is the main factor that decelerates a free rotating rotor, causes backwards whirl,
etc. Thus, overestimating the friction torque leads to mistaken conclusions and raises the question of the
validity of 1D rotor-stator contact models that dominate the literature and are basically based on rigid
Jeffcott rotors and rigid stators. Such models suffer from limitations to describe real industrial problems.

Moreover, deciding whether a 3D model is imperative is not only a question of friction torque over-
estimation by a 1D model. The 3D model remains mandatory in spite of its high computational cost, if
the stator is deformable and the contact is severe (in the vicinity of a natural frequency for example) in
order to accurately account for the stator local deformations neglected by a 1D model due to the rigid rotor
cross-section assumption.

The results showed also that, in spite of a better accuracy, the increase of the penalty coefficients makes
the convergence less likely and increases the computational cost. In 1D modeling, it contributes to an increase
in the memory storage needed for the solution.
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This paper underlines the low performance of the 3D models, which in part is due to the time integration
technique. One can use an explicit scheme. Another way to reduce the computational time consists in using
a strategy which enables us to switch from the 1D model to the 3D model when contacts occur, as proposed
by the authors in Tannous et al. [35]. This enables us to combine the advantages of 1D and 3D models. The
1D model is actually accurate enough without contact, while the 3D model is required in the nonlinear part
of the simulation.
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Technological Research COSINUS program (IRINA, project ANR 09 COSI 008 01 TRINA).
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