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ABSTRACT

Positron Emission Tomography (PET) image segmentation is es-
sential for detecting lesions and quantifying their metabolic activ-
ity. Due to the spatial and spectral properties of PET images, most
methods rely on intensity-based strategies. Recent methods also
propose to integrate anatomical priors to improve the segmentation
process. In this article, we show how the hierarchical approaches
proposed in mathematical morphology can efficiently handle these
different strategies. Our contribution is twofold. First, we present
the component-tree as a relevant data-structure for developing in-
teractive, real-time, intensity-based segmentation of PET images.
Second, we prove that thanks to the recent concept of shaping, we
can efficiently involve a priori knowledge for lesion segmentation,
while preserving the good properties of component-tree segmenta-
tion. Preliminary experiments on synthetic and real PET images of
lymphoma demonstrate the relevance of our approach.

Index Terms— Positron Emission Tomography, segmentation,
component-tree, shaping, mathematical morphology, lymphoma.

1. INTRODUCTION

Positron Emission Tomography (PET) using 18-fluorine fluorode-
oxyglucose (18F-FDG) is recognized as the modality of choice for
lymphoma imaging, due to its high sensitivity and specificity. PET
imaging is now routinely used, not only to detect tumor lesions,
but also to assess their metabolic activity, allowing diagnosis, stag-
ing and treatment response evaluation. Thus, efficient PET image
analysis is essential in clinical practice. However, tumor segmen-
tation is challenging, considering the limitations the modality suf-
fers from: poor spatial resolution compared to anatomical imaging;
partial volume effects and intrinsic noise that lowers the quality of
reconstructed images; and physiological artifacts. Besides, the seg-
mentation of lymphoma is a difficult task because of multiple tumors
location, intensity distribution and contrast to its surrounding tissues.
As a consequence, the development of efficient and easy-to-use im-
age processing and analysis tools for guiding the expert’s diagnosis
is highly relevant.

In contrast to other standard 3D imaging modalities, PET pro-
vides metabolic activity visualization, characterized by the intensity
of an injected radiotracer. Based on this assertion, most approaches
proposed to analyse PET images only rely on this intensity infor-
mation. On the one hand for metabolic assessment, intensity-based
criteria such as the Standardized Uptake Value (SUV) [1] have been
considered. On the other hand, for the detection and segmentation
of lesions, intensity-based approaches have been developed. Indeed,
the segmentation methods designed during the last ten years were

mostly based on thresholding [2], region-growing [3], classification
(FCM [4], FLAB [5]), watershed, or basic mathematical morphol-
ogy pipelines (see [6] for a recent survey). Practically, such methods
generally lead to interactive tools in clinical routines, where the ex-
pert user provides regions of interest (e.g., bounding-boxes) and/or
seeds, and tune threshold values in order to delineate lesions in the
chosen area(s). Despite the low quality of PET images, and based
on the assertion that the intensity provides indirect spatial informa-
tion on organs or lesions gathering the sought metabolic activity, few
strategies were designed to integrate anatomical priors in order to
improve the segmentation process [7, 8]. In contrast to the above
intensity-based methods, they generally consider multimodal images
(e.g., PET/CT or MRI/PET) to collect supplementary anatomical in-
formation, and rely on non-interactive and time-consuming strate-
gies (e.g., deformable models, optimization schemes).

Our purpose is to propose a segmentation strategy combining
the advantages of both approaches: the ability to rely on simple and
real-time interaction paradigms, based on intensity and thresholding;
and the ability to embed anatomical priors that improve the accuracy
of segmentation, in particular by discriminating actual lesions from
organs fixating the radiotracer. To reach that goal, we propose for
the first time to consider the morphological hierarchy paradigm [9,
Ch. 7] for designing PET-oriented connected operators. In Sec. 2,
we propose to use the notion of component-tree [10] as a hierarchical
data-structure allowing us to perform PET segmentation. Indeed, the
component-tree is well-fitted, both for handling 3D images where
the structures of interest correspond to extremal intensity values (as
already proved in angiographic imaging [11]) and for developing in-
teractive and real-time segmentation methods [12]. In Sec. 3, we de-
scribe a strategy based on the recently introduced notion of the shap-
ings [13], that consists of using a two-layer component-tree, namely
a “tree of tree”, to embed additional information such as geometrical
priors. Since the induced data-structure remains a tree, the desired
properties described in Sec. 2, namely user interaction, thresholding
paradigm, and real-time computation, remain valid, while naturally
handling higher-level knowledge. In Sec. 4, we validate this methol-
ogy on phantom images and on 3D PET images of lymphoma, where
results are compared with expert’s manual delineation.

2. COMPONENT-TREES AND GENERALIZED
THRESHOLDING

2.1. Component-trees

From a structural point of view, the component-tree [10] of an im-
age I is a data-structure T that models all the connected compo-
nents (i.e., the maximally connected regions) of I , obtained from
its successive binary level (thresholded) sets. More formally, the



component-tree T is composed of a set of nodes Θ, namely the con-
nected components of the binary level sets, and of edges between
these nodes, that correspond to the transitive opening of the partial
order relation of inclusion ⊆ on Θ. Each node K ∈ Θ is associ-
ated to the (maximal) value v of the level set where the associated
connected component appears.

Various algorithms exist for computing the component-tree of an
image, and the most efficient run in quasi-linear time [14]. In addi-
tion, retrieving an image from its component-tree is a trivial process
that can be carried out in linear time. Processing an image via its
component-tree is then a low-cost operation.

Moreover, the component-tree is a lossless image model. In-
deed, if we consider the image I in its functional form, i.e., as a
mapping I : Ω → V , where Ω is the image support, i.e., the set of
its voxels, and V is its set of grey-level values, then the image I can
be expressed as the supremum of the nodes of T :

I =
∨

K∈Θ

CK (1)

where CK : Ω → V is the cylinder function such that CK(x) =
v for any x ∈ K with v the maximal value that defines K as a
connected component of the level set of I at threshold v, while
CK(x) = 0 anywhere else.

The composition formula (1) leads to a well-defined image for
Θ, but also for any subset of nodes of Θ. In other words, it is pos-
sible to filter the image I by discarding some of the nodes, and then
reconstructing a resulting image from the preserved nodes. Each
point x ∈ Ω in the filtered image then presents a value that is lower
or equal to the initial image; the induced operators are then anti-
extensive.

This anti-extensive filtering paradigm was formalized in [10,
15], and is basically composed of three successive steps:

(i) construction of the component-tree T associated to I;

(ii) reduction of Θ, leading to a reduced component-tree T̂ ; and

(iii) reconstruction of a filtered image Î induced from T̂ .

I
(i)−−−−−→ Ty y(ii)

Î ≤ I (iii)←−−−−− T̂

(2)

2.2. PET image segmentation with component-trees

In the case of PET, the component-tree of an image is organized
from the lowest to the highest values. More precisely, for a given
PET image I , the root of its component-tree T , i.e., the node K that
is equal to the whole support Ω, is obtained from the lowest level
set, at value 0. Conversely, the leaves of T , i.e., the nodesK that are
minimal elements for the inclusion relation ⊆, are the flat zones of
the image of (locally) maximal values, and then correspond to high
metabolic activity areas of lesions and hyperfixating organs.

The main strength of the component-tree, is that it intrinsically
models the space of all the potential thresholding operations that
can be carried out on an image. In addition, the choice of a so-
lution within this data-structure can be performed in linear time, by
scanning the (decreasing) grey-level values along the branches of the
tree, from its leaves to its root. In particular, this process is compliant
with all major strategies, namely fixed thresholding (horizontal cut
in the tree), adaptive thresholding (branch-specific cut in the tree), or

bounding-box thresholding (explicit choice of leaves or branches to
cut in the tree).

Component-trees then constitute a highly relevant model for
intensity-based analysis of PET images. Its low space and time cost
properties are crucial to perform PET image segmentation. In the
next section, we propose a framework for performing component-
tree-based segmentation by embedding a priori geometric informa-
tion, without losing these complexity properties.

3. FROM INTENSITY TO ATTRIBUTE SEGMENTATION:
THE SHAPING PARADIGM

3.1. Shaping: Trees of trees

Another strength of component-trees, that derives from the decom-
position of the image into elementary patterns both in terms of space
and intensity, is the ability to associate an attribute a ∈ A to each
node of the tree, that models additional information.

This attribute-based approach has been considered in the anti-
extensive filtering framework described in Diag. (2). The choice
of the nodes to preserve or discard depends on a Boolean predicate
ρ : A→ {true, false} acting on the attributes. When the attribute is
increasing (i.e., ρ(K) is true for a given nodeK implies the same for
all the nodes between K and the root), the attribute can be handled
similarly to the grey-level of the nodes, in the sense where the node
selection proceeds as a simple thresholding. For instance, this is the
case for attributes such as the number of voxels of the node, used
for area/volume denoising filters. However, most attributes are not
increasing, in general. This means that the validity of the predicate
for a given node does not imply its validity for the rest of the branch.
This is not an issue in the context of automated processing, where
the tree is fully scanned, and ad hoc pruning policies can be applied
a posteriori to homogeneize the results in the different branches of
the tree (see [10, 15] for a discussion on this topic).

In our case, as we wish to carry out threshold-based interac-
tive segmentation, working with increasing attributes is crucial. To
tackle this issue, we propose to rely on the recently introduced no-
tion of shapings [13]. Basically, shapings consists of considering the
component-tree T as an image. Indeed, from a functional point of
view, it can be defined as a mapping T : Θ → A, where voxels are
replaced by nodes, while grey-levels are replaced by values of the
attribute. This approach is tractable only if the space of the attribute
values A is equipped with a total order relation, i.e., can be modeled
as (a subset of) R or Z; this is however the case of most attributes, in
particular numerical ones.

In this case, the “image” T can be thresholded, and for any level
set, the connected components, i.e., the sets of nodes that are linked
by edges in T , can be computed and ordered with respect to the in-
clusion relation. It is then possible to build a component-tree of the
component-tree T . This “tree of tree”, noted T T , can be processed
as any other component-tree, and we can perform anti-extensive fil-
tering with it. The virtue of this new tree is that the attribute com-
puted from the nodes of T is now increasing in T T , which can
then be processed by a thresholding approach. The overall proce-
dure remains quasi-linear in time and space, since we only duplicate
the standard component-tree anti-extensive filtering process, as illus-
trated in Diag. (3):

I
(i)−−−−−→ T (i)−−−−−→ T Ty (ii)

y
Î ≤ I (iii)←−−−−− T̂ (iii)←−−−−− T̂ T

(3)



3.2. Attribute-based segmentation of PET images

We consider the paradigm of shapings to develop an interactive
attribute-based procedure for discriminating active lesions from hy-
perfixating organs in PET images, in the context of lymphoma. As
stated above, an intensity-based strategy, relying either on a single
component-tree or any other – classification, region-growing, wa-
tershed – intensity-based approach, may over-emphasise the high
intensity areas, including true positives, but also many false posi-
tives.

Our working hypothesis, that is relevant in the case of lymphoma
– where the number of lesions is high and their shape is compact,
compared to other fixating organs (e.g., heart, kidneys, etc.) – is that
a compacity/elongation criterion can allow us to better discriminate
the active lesions.

Then, we propose to define an attribute E : 2Ω → R that as-
sociates to any connected subset of Ω, a numerical value describing
how the shape is compact, i.e., similar to a sphere, or elongated. This
attribute is defined by computing the eigenvalues λ1 ≥ λ2 ≥ λ3 as-
sociated to the eigenvectors of the 3 × 3 matrix of inertia of the
(binary) shapes K ⊆ Ω. We define

E(K) = λ3/λ1 (4)

This is the ratio between the lowest and highest eigenvalues, lying in
[0, 1]. If E(K) is close to 1, then λ3 and λ1 (and thus λ2) present
similar values, and K then has a compact shape. When E(K) de-
creases toward 0, K becomes more elongated.

The PET image is first processed to build its component-tree T ,
based on the total order of the metabolic signal. As stated above,
in this first tree, the nodes that are close to the leaves correspond
to the areas of highest intensity, but can be either lesions or hyper-
fixating organs. For each nodeK ∈ Θ of this tree, the attribute value
E(K) ∈ [0, 1] is then computed and stored at the node.

The second component-tree T T is then defined from the “im-
age” T : Θ→ [0, 1], that takes its values in the shape space induced
by E . In this new tree, the root is the node of maximal value, while
the leaves are those of locally minimal values. This second tree T T
is a min-tree (i.e., a component-tree based on (R,≥)), while T was
a max-tree (i.e., a component-tree based on (R,≤)). The nodes that
are close to the leaves then correspond to the more elongated areas,
i.e., the sets of connected components of Ω that are of least rele-
vance, and should then be removed preferentially.

In order to segment the active lesions versus the hyperfixating
organs, we propose two distinct strategies. The first is a thresholding
along the branches of the tree T T , thus pruning the distal parts of the
tree, composed of the nodes that have a compactness value E lower
than a chosen value C ∈ [0, 1]. The second is a differential thresh-
olding that considers the “gap” between the compactness value EK
of the node K and the value EL of the leave of its branch. This gap
EK − EL still varies in [0, 1], with 0 values at the leaves. This cri-
terion remains increasing, thus authorising a (relative) thresholding
approach similar to the first strategy, but with a finer behaviour. This
latter strategy is considered for the experiments described in the next
section.

4. EXPERIMENTS AND RESULTS

4.1. Phantom images

To validate our approach, we first used the NEMA 2007 IEC image
phantom. This phantom contains six spherical “lesions” with diame-
ters 10, 13, 17, 22, 28 and 37 mm. The spheres were filled with vary-
ing 18F concentrations to three different signal to background ratios

(SBRs), namely 2.59:1, 5.06:1 and 8.40:1. Data were acquired on a
Philips GEMINI TF Time-of-Flight PET/CT scanner. The PET im-
ages were obtained with the 3D LOR-RAMLA reconstruction and
CT-based attenuation correction. They present a spatial resolution
of 2.0 mm (Fig. 1, first row).

For comparison, all images were registered to the highest con-
trast image. Reference segmentation was obtained by closest inter-
active thresholding to the known geometry on this image. The ROC
curves of Fig. 2 measure the set differences between the reference
segmentation and our shapings result. It illustrates the impact of the
signal loss on the segmentation results. The obtained results are near
perfect for the image with a very high SBR of 8.40:1. However, even
for more realistic SBRs, including that of value 2.59:1, which is low
with respect to real cases, the obtained results remain satisfactory,
thus underlining the relevance of the shapings approach.

4.2. Real images

Finally, we qualitatively evaluated our method on a series of 13 PET
images of lymphoma patients presenting significant FDG-PET tu-
mor radioactivity uptake before radiotherapy. The acquisitions were
carried out on several PET/CT scanners (Philips ALLEGRO and
GEMINI DUAL GS, Siemens Biograph Sensation 16, GE DISCOV-
ERY ST) with their associated reconstruction algorithms (RAMLA,
TF MLEM, OSEM). They were acquired following standard proto-
col for PET cancer imaging: PET acquisition using a scan time of 3
minutes per bed position, between the base of the skull and mid-tigh,
one hour after the peripheral intravenous injection of an 18F-FDG
dose of 4 to 6 MBq/kg in patients, fasted for at least 6 hours before
FDG injection. PET image were obtained with CT-based attenuation
correction and their spatial resolution (FWHM) varied from 4×4×2
mm3 to 4× 4× 4 mm3.

Our approach was applied to these images and compared to
global thresholding. An example of result is illustrated in Fig. 3.
We observe that the proposed method improves the robustness
to signal heterogeneity in the image; this fact derives from the
component-tree based approach, that intrinsically provides adaptive
thresholding. The shapings paradigm also allows us to take into
account geometric priors, improving in particular the robustness to
texture effects, for instance here in the right lung. Furthermore,
shapings share with the global thresholding the advantages of low
parametricity, easy interaction and real-time computing.

5. CONCLUSION AND PERSPECTIVES

We have introduced the first application of morphological hierar-
chies for the segmentation of PET images. We have shown that the
component-tree handles the principal approaches of intensity-based
segmentation, subsuming the thresholding strategies considered un-
til now. We have also proposed a solution based on the shapings
paradigm to embed anatomical priors, while preserving a threshold-
based strategy, that allows us to satisfy important properties such as
real-time computing, and user-friendly interaction. For future work,
we plan to use several attributes, to enrich the anatomical priors guid-
ing the segmentation. Second, we also plan to use morphological
(CT, MRI) data, in addition to PET images, as already proposed in
recent works [7, 8]. These are indeed prerequisites to retrieve ac-
curate anatomical information, both from geometrical and relational
points of view. As a side effect, we will need to handle vectorial at-
tributes (resp. multimodal imaging), and thus to define the attribute
space of T (resp. I) in a partial order framework, which are not han-
dled by component-trees. To tackle this issue, we will cross the con-



(a) SBR = 8.40:1 (b) SBR = 5.06:1 (c) SBR = 2.59:1

Fig. 1. First row: phantom PET images, with three different SBRs.
Second row: segmentation results. MIP visualization. See Sec. 4.1.

Fig. 2. ROC curves for the relative thresholding based on attribute-
based approach, for various SBRs (see Fig. 1).

Fig. 3. Left: PET image. Middle: optimal global thresholding.
Right: relative shaping segmentation. Maximum intensity projec-
tion. See Sec. 4.2.

cept of shapings with the recently introduced notion of component-
graph [16], in order to develop the next generation of hierarchical
approaches for PET image segmentation.
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