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Abstract. High fidelity modeling and simulation of moderately dense sprays at rela-
tively low cost is still a major challenge for many applications. For that purpose, we
introduce a new multi-fluid model based on a two-size moment formalism in sections,
which are size intervals of discretization. It is derived from a Boltzmann type equation
taking into account drag, evaporation and coalescence, which are representative of
the complex terms that arise in multi-physics environments. The closure of the model
comes from a reconstruction of the distribution. A piecewise affine reconstruction in
size is thoroughly analyzed in terms of stability and accuracy, a key point for a high-
fidelity and reliable description of the spray. Robust and accurate numerical methods
are then developed, ensuring the realizability of the moments. The model and method
are proven to describe the spray with a high accuracy in size and size-conditioned
variables, resorting to a lower number of sections compared to one size moment meth-
ods. Moreover, robustness is ensured with efficient and tractable algorithms despite
the numerous couplings and various algebra thanks to a tailored overall strategy. This
strategy is successfully tested on a difficult 2D unsteady case, which proves the effi-
ciency of the modeling and numerical choices.
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1 Introduction

Two-phase flows constituted of a gaseous phase carrying a disperse condensed phase
play a key role in many industrial and scientific applications e.g. spray combustion in
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Diesel engines or aeronautical combustion chambers, heterogeneous energetic materials
in solid rocket motors, fluidized beds, etc. In all these applications the disperse phase
is composed of particles/droplets of various sizes that can possibly evaporate, break-
up, coalesce or aggregate, and have their own inertia and size-conditioned dynamics
and heating. The needs of research and industrial applications and the availability of
powerful computational means appeal for high-fidelity, robust and efficient descriptions
of the disperse phase in such flows.

We choose to describe the dynamics of the disperse phase in a statistical sense using
a kinetic approach because of its accuracy and flexibility. The disperse phase information
is completely contained in the so-called Number Density Function (NDF). The NDF mea-
sures an ensemble average (over a given set of initial conditions) number of particles at
a specific location in the phase space at a given time. The phase space is determined by
the number of internal coordinates that describe the particle state: position, velocity, size,
temperature, etc. These variables evolve due to physical phenomena: transport, drag
force, evaporation, heating, collisions etc. which are accounted for through the Williams
equation [39]. Moreover, in many applications, the coordinate of the phase space that is
the most essential to deal with is size, because the other internal coordinates, such as the
velocity or the temperature, are strongly conditioned on it.

There are several strategies to solve this kinetic equation. Lagrangian-Monte-Carlo
approach [2, 11, 17] allows to approximate the NDF by a sample of discrete numerical
parcels describing particles of various internal coordinates. It is called Direct Simulation
Monte-Carlo method (DSMC) in [3] and is generally considered to be the most accurate
method for solving this type of equation; it is specially suited for Direct Numerical Simu-
lations (DNS) on canonical configurations since it does not introduce any numerical dif-
fusion. However, the number of parcels required to achieve a satisfactory statistical con-
vergence comes to be high in 3D cases, especially for unsteady configurations, when the
size distribution has to be well approximated in addition to the spatial repartition of the
spray. To overcome this limitation, Eulerian methods offer a promising alternative. The
main objective is then to describe both the size distribution and the velocity (and eventu-
ally the temperature) conditioned on size. The size distribution, for the spray as well as
for non-inertial particles (aerosol, soots) can be modeled thanks to three types of methods:
1) the sectional methods [15, 35] introducing a discretization of the size variable into in-
tervals called sections, 2) the moment methods (see for example [19,26,28,40,41]), which
consist in writing equations on some moments of the NDF, 3) the class methods, sampling
the size variable (see citations of [8] and [33]). The velocity and temperature can be easily
considered by class methods. However, these methods suffer from their inability to tackle
integral terms except at the cost of strong modal simplifications. For the other methods,
moments are used to capture the velocity (or temperature) conditioned on size. For the
spray, a sectional type method, called multi-fluid, was then rigorously derived from the
kinetic model [24, 25], considering only zero and first order moments in velocity. It leads
to a good description of the size polydispersity and size-velocity correlations of evapo-
rating sprays with small enough droplets, at a reduced cost compared to DSMC [6], since
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deterministic methods of discretization in the spatial dimension are affordable and effi-
cient. For bigger droplets, higher order moments have to be considered [20], such as the
velocity dispersion, for example using a Gaussian closure [12, 31, 32, 37]. This multi-fluid
methods can reproduce accurately the size distribution, as well as the size-conditioned
velocity if a large enough number of sections are used, but they remain usually too costly
for practical applications. The moments methods allows the use of a smaller number of
variables, a closure being often done by reconstructing a NDF from these moments, but it
does usually not allow to accurately solve the NDF. Moreover, this induces complications
when there are several internal variables and realizable numerical schemes are difficult
to design, i.e. schemes ensuring that the vector of conserved quantities is always a mo-
ment of some distribution. Still some satisfactory solutions are given for particular cases
in [14, 21, 27, 40].

To improve multi-fluid methods, several size moments can be considered in each sec-
tion in order to be able to decrease the number of sections and then the overall cost of the
method, for the same accuracy. It leads to some hybrid method between sectional and
moment methods and the NDF is reconstructed inside the section. This reconstruction
has to be efficient and accurate since it has to be done in each cell at each time step to
close the equations. Such kind of hybrid method was developed in [23] for the descrip-
tion of the evaporation, using a polynomial reconstruction of the size NDF to close the
equations, or a bi-affine one for the case of the two moment method, in order to ensure
the positivity of this NDF. The interest of using two size moments inside the section, in-
stead of an affine NDF reconstruction of MUSCL type from one moment per section, was
also clearly shown on the accuracy of the method. However, only integer moments in the
droplet surface variable were considered, in such a way that the mass density were only
recovered thanks to the reconstruction. Moreover, the numerical analysis of the method
were done only for the case the polynomial reconstruction in the section, not for the bi-
affine one, which is always positive. Another two size moment (TSM) method [9,10] uses
two important variables in each section: the number density and the mass density. To au-
tomatically ensure its positivity, an exponential function is used as the reconstruction in
the sections, similarly to what is obtained with the entropy maximization strategy [29]. It
was used for for the simulation of dynamics and coalescence of particles in solid propel-
lant combustion [9] but two limitations were exposed in that work: first the complexity
and cost of the inversion algorithm and second its lack of accuracy -especially on steep
and strongly varying size distributions- as a result of a numerical limitation to prevent
overflows during inversion. More than two moments were also used for the description
of evaporating dilute sprays, with the entropy maximization strategy for the reconstruc-
tion [19, 21, 27, 38]. This method showed its potential for the simulation of the injection
of a liquid disperse phase into a gas for automotive engine applications. However, the
more moments are used, the more realizability conditions has to be respected, demand-
ing the development of realizable numerical methods and algorithms, which do not de-
grade the computational efficiency. Moreover, all the hybrid methods reviewed above
use a constant reconstruction of the velocity in the section, thus limiting the description
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of size-velocity correlations inside the section, except [38], where a size-velocity moment
is added, which brings in additional difficulties.

In this paper, the objective is to write a model on physically important variables in
the sections, with a limited number of constraints on it (the realizability conditions) and
with a closure thanks to a very simple, robust and accurate reconstruction. To limit the
constraints, only the TSM methods are then considered. Moreover, a piecewise affine re-
construction for the size distribution, from the number and mass density, is considered,
in the simplest way allowing to ensure its positivity. Since it is a keypoint both in terms
of cost and accuracy of the method, this reconstruction is analyzed and compared to the
exponential one. The velocity description inside the section is also improved, without
considering any additional moment. Accurate and realizable schemes are then devel-
oped and validated for two categories of physical phenomena that are evaporation -a
continuous drop size variation (derivative operator)- and coalescence -a discontinuous,
non-linear, drop size variation (integral source term), in conjunction with the treatment
of drag. This is done for each of such operator separately, in the perspective of the use of
operator splitting for the complete problem and it comforts us on the fact that other phe-
nomena can be treated as well (condensation, break-up, heating) but this is not discussed
further for the sake of clarity and size of the paper. Some realizable transport schemes
being given in [10, 21, 38] for structured meshes and in [36] for TSM on unstructured
ones, this issue is no more discussed here. Finally, a comprehensive test case, exhibiting
the size/velocity couplings [9] through drag, evaporation and coalescence, is performed
with the chosen approach, allowing to assess its potential on realistic problems.

The paper is organized in the following way. In section 2 we introduce the multi-fluid
model for a disperse phase. In section 3 we detail reconstruction techniques for the size
and size-conditioned variables with a particular focus on numerical properties of accu-
racy, stability and cost. In section 4 we present and we systematically assess numerical
schemes for the resolution of the evaporation part of the multi-fluid system. In section 5
a numerical scheme for the coalescence part of the multi-fluid system is devised and as-
sessed. Finally in section 6 the full strategy is tested on a 2D unsteady case, which proves
the efficiency of the modeling and numerical choices.

2 Eulerian spray modeling

Eulerian multi-fluid models can be derived from a kinetic model describing transport,
drag, evaporation, heating, collisions and breakup [9, 10, 24, 25]. Here, it is done from
a simplified kinetic model, extracting the main difficulties by considering the different
categories of physical phenomena in the simplest way: transport, drag force inducing a
size-velocity coupling, evaporation, which is an advection in the size phase space and
coalescence, which is an integral source term. Moreover a particular attention will be de-
voted in this paper to ensure that the methods developed are applicable to more complex
laws and to other phenomena, this application effort being done in another piece of work
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for complex drag, evaporation and heating laws [34].

2.1 A kinetic description: the Williams equation

A dilute or moderately dense spray can be described by its number density function
(NDF) f φ, where f φ(t,x,φ,u,T)dxdudφ denotes the average number of droplets (in a sta-
tistical sense) at time t, in a volume of size dx around a space location x, with a velocity in
a du-neighborhood of u, with a temperature in a dT-neighborhood of T and with a size in
a dφ-neighborhood of φ. The droplets are assumed to be spherical and characterized by
one geometry parameter φ, which can be the radius R, the surface S of the volume V. All
variables being considered as non-dimensional, the relation between these size parame-
ters are given by S=R2 and V=R3. The NDF being the same in all three representations,
we notice that f RdR= f SdS= f VdV.

For the sake of simplicity and for the purpose of this paper, we consider that the
evaporation process is described by a d2 law without convective corrections, that the
drag force is given by a Stokes law, and finally that the unsteady heating of the droplets
does not need to be modeled so that the evaporation law coefficient does not depend on
the heating status of the droplet and the variable T is no longer considered. We refer
to [9, 33] for a consideration of heating.

The evolution of the NDF is described by the following Boltzmann-type equation [39]:

∂t f φ+∂x ·(u f φ)+∂u ·(F f φ)−∂φ(Kφ f φ)=
1

Kn
Γ( f φ, f φ), (2.1)

where Kn is the Knudsen number. The Stokes drag force per unit mass is given by
F = (ug−u)/St, where ug is the gas velocity and the Stokes number St is linear as a
function of the droplet surface S(φ): St=AS(φ). The evaporation rate Kφ =KS/S′(φ)
is such that KS is a constant, denoted K in the following. The kinetic modeling for the
collision operator is taken from [18, 25]. Then, in our context of dilute to moderately
dense sprays, only binary collisions are taken into account and the mean collision time
is assumed very small compared to the inter-collision time. Moreover, the mass and the
momentum of droplets are supposed to be preserved during the collision. Finally, we as-
sume that every collision leads to coalescence. This last assumption is discussed in [1,17]
since colliding droplets can bounce on each other or separate by reflexion or stretching
if the remaining internal kinetic energy of the new droplet is too high. It brings in no
limitation of this proposed framework. The collision operator resulting from these hy-
potheses is developed as Γ( f V, f V)=Q++Q− where Q+ and Q− respectively correspond
to the quadratic integral operators associated with creation and destruction of droplets
due to coalescence [17]:

Q−=−
∫

V∗

∫
u∗

f V(t,x,V,u) f V(t,x,V∗,u∗)β
(
(V)

1
3 ,(V∗)

1
3

)
|u−u∗|dV∗du∗

Q+=
1
2

∫
V∗∈[0,V]

∫
u∗

f V(t,x,V�,u�) f V(t,x,V∗,u∗)β
(
(V∗)

1
3 ,(V�)

1
3

)
|u�−u∗|JdV∗du∗
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where, considering two precursor droplets of volumes V∗ and V� colliding to form a new
droplet of volume V, the mass and momentum conservation are written: V� = V−V∗

and V�u�=Vu−V∗u∗. Moreover, J is the Jacobian of the mapping (V,u) 7→ (V�,u�) and
β(r∗,r�) = π(r∗+r�)2 is the impact parameter. Let us remark that a collision efficiency
can be considered in the coalescence kernel [9] but is equal to one here, for the sake of
simplicity.

This equation is not solved directly, but a system of equations on moments of f φ is
derived from it. The formalism and the associated assumptions needed to derive the
Eulerian multi-fluid models are introduced in [24] and extended to the consideration of
coalescence in [25]. We recall the two main steps, which are the semi-kinetic and the
sectional integrations in order to precisely introduce the new models considered in the
present contribution.

2.2 Semi-kinetic model

In a first step, we reduce the phase space to the only droplet size variable. We then only
consider the first two moments in the velocity variable:

nφ(t,x,φ)=
∫

u∈R
f φ(t,x,u,φ)du, nφ(t,x,φ)ud(t,x,φ)=

∫
u∈R

u f φ(t,x,u,φ)du. (2.2)

The mono-kinetic assumption [24] is used to close the equations, meaning that, at a given
time and space location, the droplets having the same sizes have the same velocities, with
no dispersion:

f φ(t,x,u,φ)=nφ(t,x,φ)δ(u−ud(t,x,φ)). (2.3)

This assumption is reasonable for dispersed sprays when the Stokes number St is small
enough [6]. For more inertial droplets, higher order velocity moments have to be consid-
ered [12, 20, 37], but this is not in the scope of this paper. For denser sprays, for which
collisions can occur, this monokinetic assumption has been discussed in [25]. Indeed,
the coalescence source term induces a velocity dispersion, since there is no reason for
a droplet created by the coalescence of two droplets of various sizes, which is deduced
from momentum conservation, to exactly match the velocity corresponding to its new
size. In [25], the Eulerian multi-fluid model was considered as a projection of the orig-
inal distribution function at the kinetic level onto a 1D sub-manifold. The semi-kinetic
model, giving equation on nφ and nφud is then obtained by assuming a Gaussian velocity
distribution and taking the limit when the dispersion of this distribution tends to zero.
This leads to the following system, written for φ=V for the sake of simplicity, dropping
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the V superscript in nV to simplify the notations:

∂tn+∂x(nud)−∂V(KVn)=
1

Kn

(
−n(V)

∫ ∞

0
n(V∗)β(V,V∗)|ud(V)−ud(V∗)|dV∗

+
1
2

∫ V

0
n(V−V∗)n(V∗)β(V−V∗,V∗)|ud(V∗)−ud(V−V∗)|dV∗

)
,

∂t(nud)+∂x(nud⊗ud)−∂V(KVnud)=n(V)
ug−ud(V)

St(V)

+
1

Kn

(
−n(V)ud(V)

∫ ∞

0
n(V∗)β(V,V∗)|ud(V)−ud(V∗)|dV∗

+
1
2

∫ V

0
n(V−V∗)n(V∗)β(V−V∗,V∗)

(V−V∗)ud(V−V∗)+V∗ud(V∗)
V

|ud(V∗)−ud(V−V∗)|dV∗
)

.

2.3 Multi-fluid models

The second modeling step leading to the Eulerian multi-fluid model is described in [9,
24, 25]. It relies on the choice of a discretization 0 = φ0 < φ1 < ···< φN = φmax for the
droplet size phase space, where φmax can eventually be equal to infinity. A system of
conservation equations is then written for each fixed interval [φk−1,φk] called section.
The set of droplets in one section can then be seen as a “fluid” exchanging mass and
momentum. In the original Eulerian multi-fluid model [24, 25], only the mass density
and the momentum corresponding to each section are considered, dimensionless here:

mk =
∫ φk

φk−1

V(φ)nφ(φ)dφ, mkuk =
∫ φk

φk−1

V(φ)ud(φ)nφ(φ)dφ, (2.4)

where V(φ) is the volume corresponding to the size variable: V(R) = R3, V(S) = S3/2.
Only one size moment is then considered: the moment of order 3/2 if the size variable
is the surface, as advised in [22]. This method is referred to as the One Size Moment
(OSM) method in the following. For a better description of the size distribution inside
each section, some extension of the model using two moments were developed in [9],
adding the number density of the section, which is the moment of order 0:

nk =
∫ φk

φk−1

nφ(φ)dφ. (2.5)

This model is referred to as Two Size Moment (TSM) model and it is the subject of the
present paper. Since two moments are involved, a realizability constraint appears, so that
they remain moments of a positive NDF on the considered interval:

0<V(φk−1)nk <mk <V(φk)nk, or nk =mk =0. (2.6)
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To close the equations for the OSM or TSM method, the size distribution and the
velocity are reconstructed from the moments in the section:

nφ(φ)=
N

∑
k=1

κk(φ)1[φk−1,φk ](φ), ud(φ)=
N

∑
k=1

χk(φ)1[φk−1,φk ](φ). (2.7)

The resulting equations are then:

∂tnk+∂x(nkuk)=N (k+ 1
2 )−N (k− 1

2 )+
1

Kn
(
Qn+

k −Q
n−
k

)
, (2.8)

∂tmk+∂x(mkuk)=E (k+
1
2 )−E (k− 1

2 )−M(k)+
1

Kn
(
Qm+

k −Q
m−
k

)
, (2.9)

∂t(mkuk)+∂x(mkU
(k)
2 )=E (k+

1
2 )

u −E (k−
1
2 )

u −M(k)
u +mkF(k)+

1
Kn
(
Qmu+

k −Qmu−
k

)
, (2.10)

where the fluxes for the evaporation, with an upwind formulation, are written:

N (k− 1
2 )=Kκk(φk−1), E (k−

1
2 )=KV(φk−1)κk(φk−1), M(k)=

∫ φk

φk−1

V ′(φ)Kκk(φ)dφ,

E (k−
1
2 )

u =KV(φk−1)κk(φk−1)χk(φk−1), M
(k)
u =

∫ φk

φk−1

V ′(φ)Kκk(φ)χk(φ)dφ.

The transport term and the drag term are given by

mkU
(k)
2 =

∫ φk

φk−1

κk(φ)χk(φ)⊗χk(φ)dφ, mkF(k)=
∫ φk

φk−1

V(φ)
ug−χk(φ)

St(φ)
κk(φ)dφ.

and the coalescence source terms are:

Qn+
k =

1
2

N

∑
i=1

N

∑
j=1

Q1
ijk, Qn−

k =
N

∑
i=1

N

∑
j=1

Q1
kij, Qm+

k =
N

∑
i=1

N

∑
j=1

Q2∗
ijk, Qm−

k =
N

∑
i=1

N

∑
j=1

Q2∗
kij,

Qmu+
k =

N

∑
i=1

N

∑
j=1

Q3∗
ijk, Qmu−

k =
N

∑
i=1

N

∑
j=1

Q3∗
kij,

with  Q1
ijk

Q2∗
ijk

Q3∗
ijk

=
∫∫
Dijk

∣∣∣χj
(
r2)−χj

(
r�2
)∣∣∣
 1

r3

r3χj
(
r2)

κi(r)κj(r�)β(r,r�)drdr�. (2.11)

where Dijk ={(r∗,r�)∈ [ri−1,ri]×[rj−1,rj], (r∗)3+(r�)3∈ [r3
k−1,r3

k ]} [9].
One obtains a system on mk and mkuk for OSM, with the constraint mk ≥ 0 and on

nk, mk and mkuk for TSM under the realizability constraint (2.6). This system is closed as
soon as the size and velocity reconstructions are given. It means that one has to define



9

some κk≥0 and χk from the considered variables with the constraints (2.4) and (2.5) for
TSM. For OSM [24,25], constant reconstructions in the sections were used. The TSM leads
to a more accurate description of the size distribution inside the section, depending on
how the reconstruction is done. This key point is thoroughly analyzed in the next section
and will condition the good behavior and the accuracy of the model. Moreover, a key
improvement of the velocity reconstruction is proposed, without adding any moments,
which will be essential for an accurate and robust description of the spray dynamics.

3 Size and velocity reconstruction from the moments

We first deal with the size reconstruction, which is the most sensitive part in term of
robustness and accuracy. Both the exponential reconstruction [9] and a new affine recon-
struction are considered. The analysis of the latter is then given in terms of stability and
accuracy. The two reconstructions are then compared on specific test cases. Finally, two
types of velocity reconstructions are described: constant or affine in the section.

In the following, the size variable is the droplet surface S since it was shown to be
the best choice for purely evaporating cases (see [22] and Appendix A). Indeed, the
influence of the behavior of the NDF at zero size induced by this choice is important when
considering evaporation, whereas it has no real impact on phenomena like coalescence.

3.1 Size reconstruction

We consider the discretization 0= S0 < S1 < ···< SN = Smax of the size interval [0,Smax[
and one denotes ∆Sk =Sk−Sk−1 for each k∈{1,2,.. .,N} and ∆S=mink∈{1,2,...,N}∆Sk. The
distribution κk is here reconstructed from the moments of order 0 and 3/2, nk and mk,
such that:

nk =
∫ Sk

Sk−1

κk(S)dS, mk =
∫ Sk

Sk−1

S3/2κk(S)dS.

The realizability condition (2.6) is then written, here: 0<S3/2
k−1nk<mk<S3/2

k nk or nk=mk=0.
An exponential form of the reconstruction was first used [9, 10], automatically ensuring
non-negativity for the reconstruction. But due to its computational drawbacks, we decide
to introduce here a simple affine reconstruction in a way also ensuring non-negativity.

3.1.1 Exponential reconstruction

In [9, 10], a reconstruction of the distribution is chosen as an exponential in each section:

fa(S)= ak exp(−bk (S−Sk−1)), S∈ [Sk−1,Sk]. (3.1)

The values of the two parameters ak and bk are computed so that the moments of order
0 and 3/2 of fa on the section [Sk−1,Sk] are exactly nk and mk. It can then be shown [10]
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that bk is the unique zero of the function b 7→ gk(b)−
mk

nk
, where gk is defined for b∈R by:

gk(b)=

∫ Sk
Sk−1

S3/2e−bSdS∫ Sk
Sk−1

e−bSdS
(3.2)

=
1

1−e−b∆Sk

[
S3/2

k−1−S3/2
k e−b∆Sk +

3
2b

(√
Sk−1−

√
Ske−b∆Sk

)
+

3ebSk−1

2b

∫ √Sk

√
Sk−1

e−br2
dr

]

and ak is given by:

ak =
bk

1−exp(−bk∆Sk)
nk. (3.3)

Numerically, Ridders’ method [30] is used to compute bk by solving the non-linear system

gk(b) =
mk

nk
. This function gk(b) is computed using the Dawson’s integral for b< 0, the

exponentially-scaled complementary error function for b > 0 and a Taylor expansion is
used to spare cost for small values of |b|, a particular attention being devoted to the
junctions. The function gk is then quite costly to compute and the resolution of the non-
linear problem induces usually about 7 to 17 † evaluations of gk to converge with an error
smaller than 10−4. Moreover, the reconstruction’s accuracy and stability are threatened

by overflow for large values of |b| so that bk is searched in the interval
[
− X

∆Sk
,

X
∆Sk

]
,

where eX is the overflow constant. Moreover, errors are still encountered at the inversion
step for large values of |b|. It corresponds to sections where the moment vector (nk,mk)

is closed to the boundary of the moment space [38], i.e. where the mean volume
mk

nk
is

closed to S3/2
k−1 or S3/2

k . Indeed, the derivative of gk(b) is then very low, behaving as b−2 or

even b−2.5 in the first section. This means that a small error on the ratio
mk

nk
induces quite

a large error on bk. And the error on the parameter bk induces an error of the same order
times ∆Sk, for the value of the reconstructed function at one bound of the section, since
nk =O(∆Sk) and:

fa(Sk−1)=
bk

1−exp(−bk∆Sk)
nk, fa(Sk)=

bk

exp(bk∆Sk)−1
nk.

All that limits the accuracy of the method if steep distributions are handled. Concerning
the cost, the reconstruction itself can be costly due to the large number of evaluation of
a costly function. Moreover, computing source terms such as (2.11) can also be costly.
Since no analytical formula can be written, computation based on a quadrature of the
measure κk(S)dS was proposed in [9], allowing a good accuracy, even when large |bk|

†For the result fo section 3.1.5, the accuracy is obtained thanks to a smaller tolerance (10−8) on the evaluation
of the bk, then demanding 9 to 25 evaluations of gk in most cases.
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Figure 1: The three types of affine reconstructions.

are involved, but at the price of a computation of quadrature points at each time step
and for each section. Then, because of its possible lack of accuracy and high cost, which
will be experienced in section 3.1.5, (and also in sections 4.1.4 and 5.2 for the cost for the
evaporation and coalescence operators), an alternative reconstruction is proposed.

3.1.2 Affine reconstruction

There is a great interest in using as simple functions as polynomial ones for the recon-
struction, hopping then an easy computation of the source terms and also a simplification
of the computation of this reconstruction. However, their positivity is no more ensured.
Here, for TSM, a simplified version of the positive bi-affine reconstruction of [23] is pro-
posed, from the moment of order 0 and 3/2 whereas moments of order 0 and 1 were
considered in [23]. So we will first show how this kind of reconstruction can always be
done. Then, some nice stability and accuracy properties are shown for this new piecewise
affine reconstruction, in the context of the approximation of regular functions, which are
essential for a good accuracy of our spray simulations.

The reconstructed function fa is then taken continuous inside each section ]Sk−1,Sk[
and affine on the whole section or on a part of it, the function being zero elsewhere. This
function can then be written:

fa(S)=


0 if Sk−1≤S≤S(k)

a

αk+(βk−αk)
S−S(k)

a

S(k)
b −S(k)

a
if S(k)

a ≤S≤S(k)
b

0 if S(k)
b ≤S≤Sk

i∈{1,.. .,N}, (3.4)

with only three considered cases illustrated in Figure 3:

[C.1] S(k)
b ∈]Sk−1,Sk[, S(k)

a =Sk−1 and βk =0.

[C.2] S(k)
a =Sk−1 and S(k)

b =Sk.

[C.3] S(k)
a ∈]Sk−1,Sk[, S(k)

b =Sk and αk =0.

Let us denote Rk−1=
√

Sk−1, Rb =
√

S(k)
b and

µ
(k)
in f =

2
∆S2

k

∫ Sk

Sk−1

(Sk−S)S3/2dS, µ
(k)
sup =

2
∆S2

k

∫ Sk

Sk−1

(S−Sk−1)S3/2dS.
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These two last scalars belong to ]S3/2
k−1,S3/2

k [. The values of the parameters of the recon-
struction (3.4) are then given in the following proposition.

Proposition 3.1 (Piecewise affine reconstruction). Let nk >0 and mk∈]S3/2
k−1nk,S3/2

k nk[, for
some k∈ {1,2,.. .,N}. Then, there exists on ]Sk−1,Sk[ a unique non-negative continuous
function fa given by (3.4) with [C.1], [C.2] or [C.3] and such that

∫ Sk

Sk−1

fa(S)dS=nk,
∫ Sk

Sk−1

S3/2 fa(S)dS=mk. (3.5)

The function’s parameters are given by:

• If S3/2
k−1<

mk

nk
<µ

(k)
in f , then S(k)

a =Sk−1, βk =0 and
√

S(k)
b is the root in ]

√
Sk−1,

√
Sk[ of

Pk(X)=2X5+4Rk−1X4+6R2
k−1X3+

(
8R3

k−1−
35mk

4nk

)
X2

+

(
10R3

k−1−
35mk

2nk

)
Rk−1X+

(
5R3

k−1−
35mk

4nk

)
R2

k−1 (3.6)

and

αk =
2nk

S(k)
b −Sk−1

. (3.7)

• If µ
(k)
in f ≤

mk

nk
≤µ

(k)
sup , then S(k)

a =Sk−1, S(k)
b =Sk and

αk =
2
[
µ
(k)
supnk−mk

]
∆Sk

[
µ
(k)
sup−µ

(k)
in f

] , βk =
2
[
mk−µ

(k)
in f nk

]
∆Sk

[
µ
(k)
sup−µ

(k)
in f

] . (3.8)

• If µ
(k)
sup <

mk

nk
<S3/2

k , then S(k)
b =Sk, αk =0 and

√
S(k)

a is the root in ]
√

Sk−1,
√

Sk[ of

Qk(X)=2X5+4RkX4+6R2
kX3+

(
8R3

k−
35mk

4nk

)
X2

+

(
10R3

k−
35mk

2nk

)
RkX+

(
5R3

k−
35mk

4nk

)
R2

k (3.9)

and

βk =
2nk

Sk−S(k)
a

. (3.10)
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Proof. If such a function fa exists, then the constraints (3.5) can be written

nk =
αk+βk

2
(S(k)

b −S(k)
a ), mk =αk

∫ S(k)
b

S(k)
a

S(k)
b −S

S(k)
b −S(k)

a

S3/2dS+βk

∫ S(k)
b

S(k)
a

S−S(k)
a

S(k)
b −S(k)

a

S3/2dS.

In the case [C.2], the resolution of this system on αk and βk gives (3.8) and they are non-

negative if and only if µ
(k)
in f ≤

mk

nk
≤µ

(k)
sup. In the case [C.1], S(k)

b has to be such that

mk

nk
= g(S(k)

b ), g(x)=

∫ x
Sk−1

(x−S)S3/2dS∫ x
Sk−1

(x−S)dS
=

2
(x−Sk−1)2

∫ x

Sk−1

(x−S)S3/2dS

and the ratio
mk

nk
is smaller than µ

(k)
in f =g(Sk) since the function g is an increasing function

on ]Sk−1,+∞[. Let us denote Rb =
√

S(k)
b , Rk−1 =

√
Sk−1, Rk =

√
Sk. Dividing by (Rb−

Rk−1)
2, it leads to:

mk

nk
=

4
35(Rb+Rk−1)2

(
2Rb

5+4Rk−1Rb
4+6R2

k−1Rb
3+8R3

k−1Rb
2+10R4

k−1Rb+5R5
k−1

)
.

It is then easy to show that Rb should be a root of the polynomial function defined by
(3.6). Moreover, let us remark that:

Pk(Rk−1)=35R2
k−1

(
R3

k−1−
mk

nk

)
<0,

Pk(Rk)=
35

4(Rk−Rk−1)2 ∆S2
k

[
µ
(k)
in f−

mk

nk

]
>0.

Then Pk has at least one root on ]Sk−1,Sk[. Moreover, using Descartes’ rule of signs, we
show that Pk has at most one positive root since the coefficients are either positive or of
the same sign as 32

35 R3
k−1−

mk
nk

or to 20
35 R3

k−1−
mk
nk

for the two last ones.

The last case is similar to the previous one. Indeed, for [C.3], one necessarily has
mk

nk
>

µ
(k)
sup

(
>

2
7

R3
k

)
and Ra=

√
S(k)

a is a root of Qk. Moreover, Qk has only one root in ]Rk−1,Rk[

since Qk(Rk−1)<0, Qk(Rk)>0 and thanks to Descartes’ rule of signs.

Let us denotes:

Sm,k =
1
2

(
35

mk

nk

)2/3

One can remark that, in the case [C.1], P(
√

Sm,k)>0, meaning that S(k)
b <Sm,k. This allows

to treat easily the last section in the case Smax =+∞, which is a great advantage over the
OSM method.
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Moreover, a root of a polynomial has to be computed in cases [C.1] and [C.3]. Nu-
merically, the second order modified Mueller method [5] is used to compute it. It usually
requires between 5 and 9 evaluations of the polynomial to obtain an error smaller than

10−4 on
√

S(k)
a /Smax or

√
S(k)

b /Smax. It is the heaviest part of the inversion but it occurs
generally for a small number of sections as experimented and seen through the following
result for narrow enough sections.

Proposition 3.2. Let f be a C2 function on [Sk−1,Sk] and nk and mk be its moments of
order 0 and 3/2. Then µ

(k)
in f ≤

mk

nk
≤ µ

(k)
sup as soon as ∆Sk‖ f ′‖∞+ 7

12 ∆S2
k‖ f ′′‖∞ ≤ f (Sk−1),

where ‖.‖∞ is the norm of L∞(Sk−1,Sk).

Proof. Let us compute the following ratio:

R=
2

µ
(k)
sup−µ

(k)
in f

mk

nk
−

µ
(k)
in f +µ

(k)
sup

2

=∆Sk

∫ Sk
Sk−1

f (S)
[
S

3
2 ∆Sk−

∫ Sk
Sk−1

σ
3
2 dσ

]
dS∫ Sk

Sk−1
f (S)dS

∫ Sk
Sk−1

(2σ−Sk−Sk−1)σ
3
2 dσ

.

Then, denoting d2(S)= f (S)− f (Sk−1)−(S−Sk−1) f ′(Sk−1) :

|R|=

∣∣∣∣∣∣
∫ Sk

Sk−1
d2(S)

[
S

3
2 ∆Sk−

∫ Sk
Sk−1

σ
3
2 dσ

]
dS+

∫ Sk
Sk−1

(S−Sk−1) f ′(Sk−1)
[
S

3
2 ∆Sk−

∫ Sk
Sk−1

σ
3
2 dσ

]
dS

1
∆Sk

[
∆Sk f (Sk−1)+

∫ Sk
Sk−1

( f (S)− f (Sk−1))dS
]∫ Sk

Sk−1
(2σ−Sk−Sk−1)σ

3
2 dσ

∣∣∣∣∣∣
≤ ‖ f ′′‖∞δ2+‖ f ′‖∞|δ1|

f (Sk−1)− ∆Sk
2 ‖ f ′‖∞

,

as soon as f (Sk−1)>
∆Sk

2 ‖ f ′‖∞ and with

δ1=

∫ Sk
Sk−1

(S−Sk−1)
[
S

3
2 ∆Sk−

∫ Sk
Sk−1

σ
3
2 dσ

]
dS∫ Sk

Sk−1
(2σ−Sk−Sk−1)σ

3
2 dσ

=
∆Sk

2

and

δ2=

∫ Sk
Sk−1

(S−Sk−1)
2

2

∣∣∣S 3
2 ∆Sk−

∫ Sk
Sk−1

σ
3
2 dσ

∣∣∣dS∫ Sk
Sk−1

(2σ−Sk−Sk−1)σ
3
2 dσ

≤

∆S3
k

6

(
−S

3
2
k−1∆Sk+

∫ Sk
Sk−1

σ
3
2 dσ

)
∫ Sk

Sk−1
(2σ−Sk−Sk−1)σ

3
2 dσ

Introducing Rk−1=
√

Sk−1 and Rk =
√

Sk and after some algebra:

δ2≤
7

12
∆S2

k
2R4

k+6R3
k Rk−1+10R2

k R2
k−1+9RkR3

k−1+3R4
k−1

3R4
k+9R3

k Rk−1+11R2
k R2

k−1+9RkR3
k−1+3R4

k−1
≤ 7

12
∆S2

k .

If ∆Sk‖ f ′‖∞+ 7
12 ∆S2

k‖ f ′′‖∞≤ f (Sk−1), then |R|≤1 and consequently µ
(k)
in f ≤

mk

nk
≤µ

(k)
sup.
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This result induces that the case [C.2] will concern an increasing fraction of the sec-
tions, when their width tends to zero. Moreover, in this case, formulas for the reconstruc-
tion are analytical, whereas in the other cases, the root of a fifth order polynomial has to
be computed. This could induce a lower cost of the reconstruction itself, compared to the
exponential reconstruction, which will be checked in Section 3.1.5 with some examples.
Let us now analyze this method as regards stability and accuracy.

3.1.3 Stability of the affine reconstruction

Since numerical methods will induce errors on the moments, let us analyzed the effect
of such errors on the reconstruction. But instead of the moments itself, one considers
the following independent variables: nk and µk =

mk
nk

for each k. This change allows to
separate the effect of a change of level of the function from the effect of a change of the
mean volume. Computation in each of the cases [C.1], [C.2] and [C.3] allows to show the
following property.

Proposition 3.3. The piecewise affine reconstruction defined by proposition 3.1 is a C1

application from the space {(nk,µk)k∈{1,...,N}|∀k, nk≥0, µk∈]S3/2
k−1,S3/2

k [} to the set of piece-
wise C1 functions equipped with the L∞ norm. Moreover, its partial derivatives are given
by:

∂µk fa(S)=nk
2S−S(k)

a −S(k)
b∫ S(k)

b

S(k)
a

σ
3
2 (2σ−S(k)

a −S(k)
b )dσ

1
[S(k)

a ,S(k)
b ]

(S),

∂nk fa(S)=



2
S(k)

b −S(
S(k)

b −Sk−1

)2 1
[Sk−1,S(k)

b ]
(S) if µk∈]S

3
2
k−1,µ(k)

in f [,2
Sk−S
∆S2

k

µ
(k)
sup−µk

µ
(k)
sup−µ

(k)
in f

+2
S−Sk−1

∆S2
k

µk−µ
(k)
in f

µ
(k)
sup−µ

(k)
in f

1[Sk−1,Sk ](S) if µk∈ [µ
(k)
in f ,µ

(k)
sup],

2
S−S(k)

a(
Sk−S(k)

a

)2 1
[S(k)

a ,Sk ]
(S) if µk∈]µ

(k)
sup,S

3
2
k [.

Any moment of ∂nk fa(S) or ∂µk fa(S) is bounded, independently from ∆S (one can
even remark that the moments of order 0, 1/2 or 3/2 of ∂nk fa(S) are smaller than a con-
stant times nk). This ensures the stability of the reconstruction.

3.1.4 Accuracy of the affine reconstruction

Since we use the reconstruction to close our equations, we can state that the closer the
reconstruction is to the exact distribution, the more accurate our model will be. Here,
the accuracy of the reconstruction is analyzed assuming that the values of the moments
are exact. The effect of the error on the moments was analyzed in the previous section,
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devoted to stability. In the asymptotic limit of a large number of sections, one has the
following result.

Theorem 3.1 (Accuracy of the piecewise affine reconstruction). Let f be a C2 fonction on
[0,Smax] with Smax <∞ with a finite number of zeros. Let nk and mk be its moments of order 0
and 3/2 on ]Sk−1,Sk[, for k∈{1,2,.. .,N} and fa the corresponding piecewise affine reconstruction
given by the proposition 3.1. Then, fa is a second order approximation of f when the maximal
section width ∆S tends to zero: ‖ f− fa‖L1(0,Smax)=O(∆S2).

Proof. In order to treat separately the case [C.2], let us denote I2 the set of all k∈{1,2,.. .,N}
such that the reconstruction corresponds to the case [C.2]. One also denotes I∆S = {S∈
[0,Smax] | f (S)≤2∆S| f ′(S)|+ 25

12 ∆S2‖ f ′′‖L∞(0,Smax)} in such a way that ∪k 6∈I2 [Sk−1,Sk]⊂I∆S,
thanks to the proposition 3.2. For a small enough value of ∆S, I∆S is a union of intervals
[a,b] around each zero λ of f , and∫ b

a
| f ′(x)|dx=

∣∣∣∣∫ λ

a
f ′(x)dx

∣∣∣∣+∣∣∣∣∫ b

λ
f ′(x)dx

∣∣∣∣= | f (a)|+| f (b)|=O(∆S).

It means that
∫
I∆S
| f ′(S)|dS=O(∆S) and

∑
k 6∈I2

∫ Sk

Sk−1

f (S)dS≤
∫
I∆S

f (S)dS≤
∫
I∆S

(
2∆S| f ′(S)|+ 25

12
∆S2‖ f ′′‖L∞(0,Smax)

)
dS=O(∆S2).

Moreover, since f and fa have the same integrals on each section:

∑
k 6∈I2

∫ Sk

Sk−1

| f (S)− fa(S)|dS≤2 ∑
k 6∈I2

∫ Sk

Sk−1

f (S)dS=O(∆S2).

For k ∈ I2, the reconstruction corresponds to the case [C.2]. Let then us define the
function u, C2 on [0,1], by: u(x)=( f− fa)(Sk−1+x∆Sk) for x∈ [0,1]. One have u′′=∆S2

k f ′′

since fa is affine on the entire section. Moreover, since f and fa have the same moments
of order 0 and 3/2 on ]Sk−1,Sk[, the function u is such that∫ 1

0
u(x)dx=0,

∫ 1

0
(Sk−1+x∆Sk)

3/2u(x)dx=0. (3.11)

One introduces a Taylor expansion on it, between the values y∈ [0,1] and x∈ [0,1]:

u(x)=u(y)+(x−y)u′(y)+
(x−y)2

2
u′′(vx,y),

with vx,y a value between x and y. This expansion is introduced in (3.11) and then

A
(

u(y)
u′(y)

)
=−1

2

( ∫ 1
0 (x−y)2u′′(vx,y)dx∫ 1

0 (x−y)2[(Sk−1+x∆Sk)
3/2−(Sk−1+y∆Sk)

3/2]u′′(vx,y)dx

)
,
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with

A=

(
1 1

2−y
α β

)
,

(
α
β

)
=
∫ 1

0

(
1

x−y

)[
(Sk−1+x∆Sk)

3/2−(Sk−1+y∆Sk)
3/2
]

dx.

One can then solve the system and write u(y):

u(y)=−
β
∫ 1

0 (x−y)2u′′(vx,y)dx+(y−1/2)
∫ 1

0 (x−y)2[(Sk−1+x∆Sk)
3/2−(Sk−1+y∆Sk)

3/2]u′′(vx,y)dx

2
∫ 1

0 (x−1/2)(Sk−1+x∆Sk)3/2dx
.

A majoration is then done, introducing γ=Sk−1/dS: |u(y)|≤‖u′′‖L∞(0,1)F(γ) with

F(γ)=
1
3

∫ 1
0 (x−y)[(γ+x)3/2−(γ+y)3/2]dx+ 1

2

∫ 1
0 (x−y)2

∣∣(γ+x)3/2−(γ+y)3/2
∣∣dx∫ 1

0 (2x−1)(γ+x)3/2dx
.

If γ is not zero, then it can be written:

F(γ)=
2
∫ 1

0 (x−y)[(1+x/γ)3/2−(1+y/γ)3/2]dx+3
∫ 1

0 (x−y)2
∣∣(1+x/γ)3/2−(1+y/γ)3/2

∣∣dx

6
∫ 1

0 (2x−1)[(1+x/γ)3/2−1]dx
.

Then, F is a continuous function of γ defined on R+ and bounded since it tends to the
following constant, when γ tends to infinity:

F(γ)→2
∫ 1

0
(x−y)2dx+3

∫ 1

0
|x−y|3dx≤ 2

3
+

3
4
=

17
12

.

Then ‖ f− fa‖L∞(Sk−1,Sk) ≤C∆S2
k‖ f ′′‖L∞(Sk−1,Sk), with a constant C independent from ∆Sk.

And finally

‖ f− fa‖L1(0,Smax)≤ ∑
k 6∈I2

∫ Sk

Sk−1

| f (S)− fa(S)|dS+ ∑
k∈I2

‖ f− fa‖L∞(Sk−1,Sk)∆Sk =O(∆S2).

One can remark that the second order accuracy is proven in L∞ norm in each section
corresponding to case [C.2]. Moreover, the previous result is easily generalizable to the
case where f is equal to zero in a finite number of sub-intervals of [0,Smax].

3.1.5 Numerical accuracy of the reconstructions on some test cases

The aim of this section is to compare the accuracy of the two types of TSM reconstructions
and of the OSM reconstruction on various probability density functions (PDFs): their
numerical order of accuracy as well as their accuracy for a small number of sections. This
allows to test the quality of the closure given by the models.

Let us then introduce the following PDFs f0, defined on [0,1], and plotted in Figure 2:
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Figure 2: Model size distributions.

• a regular PDF: f0(S)=
(1+8S)(1−S)2

I0
exp

(
0.001

(
1− 1

(1−S)2

))
with I0=0.9963

• a bimodal PDF, defined as a sum of two beta PDFs: f0(S)=10
[
2S(1−S)4+S4(1−S)

]
• a beta PDF: f0(S)=105

[
S4(1−S)2

]
• a gamma PDF: f0(S)=

155

Γ(5)I0
S4exp(−15S) with I0=0.9991

• a lognormal PDF: f0(S)=
1

I0Sσ
√

2π
exp

(
− (log(S)−µ)2

2σ2

)
with I0 =0.9977, σ=0.45

and µ=−1.2777.

One computes moments of order 0 and 3/2 of f0 on each interval of a regular dis-
cretization of [0,1] in N sections. The section width is then ∆S= 1/N. From these mo-
ments, the affine reconstruction and the exponential one are computed and compared
with the original function f0. An example of such kind of comparison is given in Fig-
ure 3, for the bimodal PDF, with 4 and 8 sections. The corresponding L∞ norm of the dif-
ference between f0 and its reconstruction, depending of the section width, is then plotted
in Figure 4 for the two types of reconstruction. The second order of accuracy of the affine
reconstruction is observed. It is a stronger result than the one shown in theorem 3.1, since
L1 norm was considered in this theoretical result, or L∞ one but for the sections where
an affine reconstruction is possible in the “complete” section (case [C.2]). It is interesting
since the evaporation induces the use of pointwise values of the reconstruction. More-
over, the case [C.2] is the most usual: the cases [C.1] and [C.3] only appear for at most
3 sections for the bimodal, beta and gamma PDFs and on a decreasing proportion of the
sections for the lognormal and regular PDFs, up to 0.2% or 0.5% of the total number of
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Figure 3: Bimodal distribution (black line) and its exponential (left) and affine (right) reconstructions with 4
(red dashed line) and 8 (blue solid line) sections.

sections for the most discretized case. For the exponential reconstruction, there is a re-
duction of the order of accuracy for the bimodal and the beta PDFs. This is due to the loss
of accuracy of the computation of the parameter b when |b| is large enough and to the
limitation of this parameter for the computation. Indeed, the limitation occurs in a small
number of sections (about 0.1%) but |b| is larger than 200 in about 1% of the sections and
larger than 100 in about 2%. Moreover, one can also remark that the accuracy of the affine
reconstruction is higher than the exponential one in all tested cases and is high even with
a small number of sections. For example, the error is about 1% for 16 sections with the
regular PDF. Concerning the computation cost, the affine reconstruction is usually more
than twice as fast as the exponential one.
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Figure 4: L∞ norm of the error for the affine (left) and the exponential (right) reconstructions.
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3.2 Velocity reconstruction

In the previous works [9,24,25], a constant velocity was always considered in the section,

except in [38]: χk(S)=uk. This leads to: U (k)
2 =uk⊗uk, E (k−

1
2 )

u =E (k− 1
2 )uk,M(k)

u =M(k)uk,

F(k)=
ug−uk

St
,

1
St

=

∫ φk
φk−1

V(φ)
St(φ)κk(φ)dφ∫ φk

φk−1
V(φ)κk(φ)dφ

and Q3∗
ijk =Q2∗

ijkui,(
Q1

ijk
Q2∗

ijk

)
= |ui−uj|

∫∫
Dijk

(
1

(r∗)3

)
κi(r∗)κj(r�)β(r∗,r�)dr∗dr�. (3.12)

To increase the accuracy on the description of velocities as conditioned by size, a
velocity distribution that is polynomial in size was considered in the sections in [38], at
the cost of transporting extra size-velocity crossed-moments. Here, we test a MUSCL
type reconstructions to increase the accuracy with a smaller increase of cost. The size
conditioned velocity is written as a function of surface and reads:

ud(S)=
N

∑
k=1

χk(S)1[Sk−1,Sk ](S), χk(S)=uk+γ(k)(S−S(k)
avg). (3.13)

The parameter S(k)
avg is chosen such that mkuk =

∫ Sk
Sk−1

S3/2χk(S)κk(S)dS and the slope γ(k)

is computed thanks to a minmod limiter:

S(k)
avg=

∫ Sk
Sk−1

S5/2κk(S)dS∫ Sk
Sk−1

S3/2κk(S)dS
∈ ]Sk−1,Sk[, γ(k)=minmod

(
uk+1−uk

S(k+1)
avg −S(k)

avg

,
uk−uk−1

S(k)
avg−S(k−1)

avg

)
.

Let us remark that for the affine TSM, S(k)
avg can be written as a rational function of

√
S(k)

a

and
√

S(k)
b , whereas its analytical expression is more complex for the exponential TSM.

In all cases, this velocity reconstruction should give us a second order reconstruction of
the velocity, as a function of the droplet surface.

3.3 Conclusion on the reconstructions

At this point, the system (2.8-2.10) is closed by a reconstruction of the size distribution
κk and of the velocity χk from the moments nk, mk and mkuk. Considering the size dis-
tribution, the affine reconstruction introduced in this paper is shown to be stable and
second order accurate in all cases and not only in the case [C.2] where the reconstruction
linearly depends on the moments. Moreover, its cost is twice as low as the exponential
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reconstruction and its accuracy is better on tested cases. Finally, its simple shape makes
the source term computation easier. Concerning the velocity, an affine reconstruction is
proposed, instead of the usually used constant one, in order to improve the description
of this quantity inside the section.

The system (2.8-2.10) has now to be solved numerically under the constraint of pre-
serving the realizability of the moments in each section. To do so a splitting strategy is
used. Then dedicated schemes are developed separately for each operator. Since trans-
port schemes were already developed in [10, 38], one focus on evaporation and drag and
on coalescence.

4 Scheme for evaporation and drag

The system corresponding to evaporation and drag is the following ODE system:

dtnk =Kκk+1(t,Sk)−Kκk(t,Sk−1), (4.1)

dtmk =KS3/2
k κk+1(t,Sk)−KS3/2

k−1κk(t,Sk−1)−
3
2

∫ Sk

Sk−1

√
SKκk(t,S)dS, (4.2)

dt(mkuk)=KS3/2
k κk+1(t,Sk)χk+1(t,Sk)−KS3/2

k−1κk(t,Sk−1)χk(t,Sk−1) (4.3)

− 3
2

∫ Sk

Sk−1

√
SKκk(t,S)χk(t,S)dS+

∫ Sk

Sk−1

√
S

ug−χk(S)
A dS,

where K = KS is the constant evaporation rate and A= St(S)/S is a constant for the
considered Stokes drag force. In fact, one have one ODE system for each point x (or
each cell of the mesh in the spatially discretized version). But, since these systems are
independent, the spatial dependence is skipped for the sake of simplicity and without
any loss of generality.

We will first deal with the two first equations, corresponding to the pure evaporating
case, since they are independent of the velocity, here. Let us first remark that directly
using on this system an explicit Euler scheme, or any explicit SSP Runge-Kutta method,
may return non-realizable moments and will not be robust, as shown in Appendix B.
Various realizable schemes can be used. When considering integer moments, a kinetic
scheme was introduced in [23] for the constant evaporation law. Another robust scheme
is developed in [27] for high order moment methods for eventually non-constant evap-
oration rate. In the following, this last scheme is referred to as the “quadrature kinetic
scheme” since we show that it can be interpreted as a quadrature of the kinetic scheme’s
formulae. Here, in our context of fractional moment method, the kinetic scheme is first
adapted. Then, the quadrature kinetic scheme and a simplified version of it are devel-
oped and numerically tested. Finally, the quadrature kinetic scheme is extended to the
additional consideration of the drag force.
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4.1 Case with evaporation alone

4.1.1 Kinetic scheme (KS) for the evaporating case

The system (4.1-4.2) is related to the following kinetic equation on the droplet distribution
n(t,S)=

∫
f (t,u,S)du:

∂tn−∂S(Kn)=0. (4.4)

This kinetic equation has the following analytical solution: n(t,S)= n(0,S+Kt). Let us
denotes nn

k and mn
k some approximation of the moments of order 0 and 3/2 of n(tn,.)

on the section [Sk−1,Sk]. Then, a kinetic scheme (KS) is defined which consists in solv-
ing exactly (4.4) on a time step, from a reconstruction ∑N

k=1κn
k (S)1[Sk−1,Sk ](S) of the NDF

corresponding to the moments nn
k and mn

k and in taking its moments. With the CFL-like
condition K∆t≤∆Sk and with the convention κn

N+1=0, we get:

nn+1
k =

∫ Sk

Sk−1+K∆t
κn

k (S)dS+
∫ Sk+K∆t

Sk

κn
k+1(S)dS (4.5)

mn+1
k =

∫ Sk

Sk−1+K∆t
(S−K∆t)3/2κn

k (S)dS+
∫ Sk+K∆t

Sk

(S−K∆t)3/2κn
k+1(S)dS (4.6)

This can be rewritten, for k>1, in such a way that some flux terms appear:

nn+1
k =nn

k−
∫ Sk−1+K∆t

Sk−1

κn
k (S)dS+

∫ Sk+K∆t

Sk

κn
k+1(S)dS (4.7)

mn+1
k =mn

k +
∫ Sk

Sk−1

[
(S−K∆t)3/2−S3/2

]
κn

k (S)dS (4.8)

−
∫ Sk−1+K∆t

Sk−1

(S−K∆t)3/2κn
k (S)dS+

∫ Sk+K∆t

Sk

(S−K∆t)3/2κn
k+1(S)dS

This scheme, applied to the use of two integer moments, was analyzed in [23]: with the
use of an affine reconstruction on the complete section (corresponding to case [C.2] here),
the scheme was shown to be second order accurate. Here, thanks to Theorem 3.1, it can
be shown easily, and in all cases, that the scheme is second order consistent in L1 norm
(and in L∞ norm for sections in case [C.2]). Proposition 3.3 induces its stability.

This kinetic scheme then highly accurate, due to the fact that the kinetic equation is
solved exactly during the time step. However, it can be not easily generalized to non
constant evaporation laws. It is the reason of the development of simplified schemes.

4.1.2 Quadrature kinetic scheme (QKS) for the evaporating case

The scheme presented in [27] is derived for a system of moments Mi,k =
∫ Sk

Sk−1
Si f (S)dS,

with i=0,1,.. .,2Nm−1 on each section k. It is seen as a 3-step method:

1. A distribution f n is reconstructed from the moments (Mn
k,i)i=0,...,2Nm−1,k=1,...,N at t=

tn in order to compute the “fluxes”, Φn
k,i =

∫ Sk−1+K∆t
Sk−1

Si f n(S)dS
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2. For each k = 1,.. .,N, the Nm weights wk,α and abscissas σk,α, corresponding to the
quadrature of the moment vector (Mk,i−Φn

k,i+Φn
k+1,i)i=0,...,2Nm−1 and then to the

measure f n(S)1]Sk−1+K∆t,Sk+K∆t[(S)dS, are computed.

3. The moments (Mn+1
k,i )i=0,...,2Nm−1 corresponding to the weights wk,α and the abscis-

sas σk,α−K∆t are computed: Mn+1
k,i =∑Nm

α=1 wk,α(σk,α−K∆t)i.

In fact, this can be seen as a quadrature formula of the kinetic scheme given by:

Mn+1
k,i =

∫ Sk

Sk−1

Si f n(S+K∆t)dS=
∫ Sk+K∆t

Sk−1+K∆t
(S−K∆t)i f n(S)dS.

Let us remark that since only integer moments are considered, the scheme is identical to
the kinetic one, no erreor being introduced by the quadrature. Moreover, this interpreta-
tion of the scheme as a quadrature formula on the kinetic scheme is still valid for the case
of size dependant evaporation coefficient K, but the use of the quadrature then induces
an additional error compared to the kinetic scheme.

Here, the moments of order 0 and 3/2 are used. Quadrature formulas are used on the
kinetic scheme (4.5-4.6). But, here, the interval ]Sk−1+K∆t,Sk+K∆t[ is divided into the
two following intervals ]Sk−1+K∆t,Sk[ and ]Sk,Sk+K∆t[ and the quadrature is done on
each one. This sub-division is relevant for the global problem, including the drag force
or a more complex evaporation rate. Indeed, since each section has its own velocity and
could have its own evaporation rate as in [34], it will be interesting to consider separately
the droplets coming from their respective sections. Moreover, to obtain a good approx-
imation, while still conserving the moment of order 3/2, we use two quadrature points
and moments of order 0, 1/2, 1, 3/2, these moments being computed analytically. It can
be seen as a classical two-point quadrature on the measure obtained by the change of
variable R=

√
S. An analytical formula can then be used [7]. Let us then denote (w1,w2)

and (
√

σ1,
√

σ2) the quadrature points of 2Rκn
k (R2)1]Sk−1+K∆t,Sk [(R2)dR and (w̃1,w̃2) and

(
√

σ̃1,
√

σ̃2) the quadrature points of 2Rκn
k+1(R2)1]Sk ,Sk+K∆t[(R2)dR. They are then such

that:∫ Sk

Sk−1+K∆t
Sj/2κn

k (S)dS=
2

∑
i=1

wi(σ
0
i )

j/2
∫ Sk+K∆t

Sk

Sj/2κn
k (S)dS=

2

∑
i=1

w̃i(σ̃
0
i )

j/2 j∈{0,1,2,3}.

(4.9)
Then, the update values of the moments are:

nn+1
k =

2

∑
i=1

wi+
2

∑
i=1

w̃i,

mn+1
k =

2

∑
i=1

wi(σi−K∆t)3/2+
2

∑
i=1

w̃i(σ̃i−K∆t)3/2.

Compared to the kinetic scheme, an additional error comes from the use of the quadra-
ture for integration of some function g on the measure described above. Since the support
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widths of the measures are smaller than ∆Sk/(Rk+Rk−1), this error will behave at most
as O(∆S4

k/(Rk+Rk−1)
4) as soon as the function g is C4, its fourth order derivative ap-

pearing in the bound. However, for the mass density, g(x)=(x2−K∆t)3/2 and g(4)(x) is
singular at x=

√
K∆t. This means that some accuracy will be lost in the first section.

4.1.3 Simplified quadrature kinetic scheme (SQKS) for the evaporating case

For practical applications, a still simpler algorithm can be needed to reduce the cost,
using a “quadrature” with only one point, i.e. a mean surface. This can be done directly
on the moments of order 0 and 3/2. Then, one compute the values of the moments of
order 0 and 3/2 on each of the separated intervals ]Sk−1+K∆t,Sk[ and ]Sk,Sk+K∆t[ and
we deduce the value of a mean surfaces σ and σ̃:

nm =
∫ Sk

Sk−1+K∆t
κn

k (S)dS, nmσ3/2=
∫ Sk

Sk−1+K∆t
S3/2κn

k (S)dS,

ñm =
∫ Sk+K∆t

Sk

κn
k+1(S)dS, ñmσ̃3/2=

∫ Sk+K∆t

Sk

S3/2κn
k+1(S)dS.

The update values of the moments are then:

nn+1
k =nm+ñm,

mn+1
k =nm(σ−K∆t)3/2+ñm(σ̃−K∆t)3/2.

Here, compared to the kinetic scheme, the additional error coming from the quadra-
ture is now dominant. Indeed, it leads to an error behaving as O(∆S2) and then to a
global first order consistency error.

4.1.4 Results on the purely evaporating case

To compare the schemes, the purely evaporating problem with a dimensionless evapo-
ration rate K=1 is resolved using the initial dimensionless distributions defined in sec-
tion 3.1.5. More precisely, the regular and the bimodal distributions are used since they
offer a different behavior in terms of accuracy of the affine and exponential reconstruc-
tions, as shown above. A uniform discretization in S on [0,1] is used and the CFL-like
condition is fixed such that K∆t/∆S=0.8. Computations are done from t=0 to the end
of the evaporation, t = 1, with the different kinds of schemes (KS, QKS and SQKS) for
TSM with the affine reconstruction (aff TSM) and only KS for TSM with the exponential
reconstruction (exp TSM) and for OSM, in order to assess the effect of the reconstruction.

One then compares the reconstructed distribution f n
r (S) at each time tn from the com-

puted moments (nn
k ,mn

k )k to the analytical solution f (tn,S)= f0(S+Ktn). Let us define the
error by maxn‖ f n

r − f (tn,.)‖L1(0,1). This error is then presented in Figure 5, as a function of
the section width ∆S=1/N for a number N of sections from 2 to 1024 and for the two ini-
tial distributions. As expected, the KS is second order accurate with the piecewise affine
reconstruction. In fact, one would have noticed the same order of accuracy by using the
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Figure 5: Purely evaporating case with the regular initial distribution (left) and the bimodal one (right): maximal
value in time of the L1 norm of the error on the NDF depending on the section width. Lines of slope 1 and 2
are represented by black dashed lines.

L∞ norm instead of the L1 norm. With the exponential one, it is also second order accu-
rate when considering the regular initial distribution but there is a loss of accuracy for
the bimodal initial distribution, resulting from the loss of accuracy of the reconstruction
in this case. The KS for OSM leads to a first order of accuracy corresponding to the first
order of accuracy of the reconstruction. Concerning the other schemes, one can see that
the accuracy of the QKS is really close to the one of the KS. In fact, the L∞ norm of the
error on the distribution saturates with the QKS, due only to the first section: when elim-
inating this section in the evaluation of the error, one recovers a second order of accuracy
with this norm. Finally, the SQKS is first order accurate as expected, but with an accuracy
still at least ten times better than OSM with the KS. So, using TSM, even with this simpli-
fied scheme, still induces a much better accuracy for the consideration of the evaporation
than OSM with the KS and twice as much sections, i.e. with the same number of size
moments (but with a larger number of total variables for OSM when considering also the
velocity).

Two global quantities are also considered since they are important for practical appli-
cations: the total number density ∑N

k=1 nk and the total mass density ∑N
k=1 mk. The errors

on these two variables, divided by their initial values, are plotted in Figure 6 for the reg-
ular initial distribution. First, one observes that KS is at least second order accurate with
TSM and first order accurate with OSM. For the total mass density, it is even third or-
der accurate. This is due to a compensation of fluxes between the sections, since their
is no mass flux corresponding to disappearing droplets (i.e. no mass flux at zero size).
It means that the mass density transferred to the gaseous phase is accurately described.
Using TSM with the piecewise affine reconstruction, the QKS induces a loss of accuracy
for the first section only visible on the total number density when more than 256 sections
are used. The SQKS is second order accurate for the total mass density but only first or-
der accurate for the total number density. However, the error induced by this scheme is
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Figure 6: Purely evaporating case with the regular initial distribution: maximal value of the error, depending
on the section width, on the total number (left) and on total mass (right) divided by their initial values. Lines
of slope 1, 2 (left and right) and 3 (right) are represented by black dashed lines.

smaller than 1% as soon as at least 3 sections are used.
Finally, with the QKS, the affine TSM is more than two times faster than the expo-

nentiel TSM with a better accuracy (results of QKS with the exponentiel TSM are not
represented here, for the sake of clarity).

4.2 Case with evaporation and drag

4.2.1 Quadrature kinetic scheme (QKS) for evaporation and drag

In the following, we use the QKS with the affine reconstruction for their accuracy, their
simplicity, and their reasonable cost. The drag force is solved together with the evapora-
tion in the following way . First, the quadrature points (wi)i=1,2, (σ0

i )i=1,2 and (w̃i)i=1,2,
(σ̃0

i )i=1,2 are defined as in section 4.1.2 by (4.9). Then, the evolution of the abscissae dur-
ing the time step is given by solving the systems:

dtσi(t)=−K,
σi(0)=σ0

i ,

dtvi(t)=
ug−vi(t)
Aσi(t)

,

vi(0)=χk(σ
0
i ),


dtσ̃i(t)=−K,
σ̃i(0)= σ̃0

i ,

dtṽi(t)=
ug− ṽi(t)
Aσ̃i(t)

,

ṽi(0)=χk+1(σ̃
0
i ).

Let us also notice that we can provide an analytical solution if the gas velocity ug is
constant. As an example for the first one, the analytical solution reads:

σi(t)=σ0
i −Kt vi(t)=ug+(uk−ug)

(
1−Kt

σ0
i

) 1
KA

.
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The updated moment values are then:

nn+1
k =

2

∑
i=1

wi+
2

∑
i=1

w̃i

mn+1
k =

2

∑
i=1

wi(σi(∆t))3/2+
2

∑
i=1

w̃i(σ̃i(∆t))3/2

mkun+1
k+1 =

2

∑
i=1

wi(σi(∆t))3/2vi(∆t)+
2

∑
i=1

w̃i(σ̃i(∆t))3/2ṽi(∆t)

Let us remark that this scheme still corresponds to a quadrature approximation of a ki-
netic scheme, using the analytical solution of the kinetic equation for evaporation and
drag. Moreover, the same strategy can be used to solve the drag force together with the
SQKS for the evaporation.

4.2.2 Result for evaporation and drag

Let us consider a test case with evaporation and drag, with 1
KA=9.89. As in section 4.1.4,

we use the dimensionless evaporation rate K=1 and the regular PDF f0, defined in sec-
tion 4.1.4, as initial dimensionless size distributions. The mono-kinetic assumption is
used for the initial condition, so that the initial NDF is:

f (0,S,u)= f0(S)δ(u−u0(S)), u0(S)=ug

(
1+2S2− 4

3
S3+

S4

4

)
, (4.10)

where ug = 1 is the gas velocity, assumed to be constant. The initial velocity profile u0,
represented in Figure 8-right (solid line with circles), is typical of the velocity of a spray
having evolved in a decelerating gas velocity field. The analytical solution is then:

f (t,S,u)= f0(S−Kt)δ(u−ud(t,S)), ud(t,S)=ug+
[
u0(S+Kt)−ug

](
1+
Kt
S

)− 1
KA

.

Resolution of system (4.1-4.3) is conducted using the QKS described above for OSM
and for the affine TSM, with constant or affine reconstruction of the velocity. The same
discretizations as in section 4.1.4 are used and only the accuracy on momentum is studied
here, since the other variables were already considered in section 4.1.4.

The error on the mean velocity of the spray (∑mkuk/∑mk) and on the momentum,
divided by the initial value of these quantities, are given in Figure 7. All methods involv-
ing a constant velocity reconstruction in each section are first order accurate. However,
the error of TSM is much lower than the one of OSM for the momentum but similar for
the mean velocity due to error compensations in this case. The affine reconstruction of
the velocity does not improve the error of OSM: it is the same for the momentum and
it is even worse for the mean velocity. For the affine TSM, it increases the accuracy: the
method is second order accurate, with a much smaller error for all the discretizations.



28

-3 -2 -1 0
logarithm of the section width

-9

-8

-7

-6

-5

-4

-3

-2

lo
ga

rit
hm

 o
f t

he
 e

rr
or

OSM
OSM - affine in u
TSM
TSM - affine in u

-3 -2 -1 0
logarithm of the section width

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
ga

rit
hm

 o
f t

he
 e

rr
or

OSM
OSM - affine in u
TSM
TSM - affine in u

Figure 7: Case with evaporation and drag for the regular initial distribution: maximal value of the error,
depending on the section width, on the mean velocity (left) and on the momentum (right), divided by their
initial values. Lines of slope 1 and 2 are represented by black dashed lines.

5 Scheme for coalescence

The model for the purely coalescing problem is written:

dt

 nk
mk
mkuk

=− 1
Kn

N

∑
i=1

N

∑
j=1

 Q1
kij

Q2∗
kij

Q3∗
kij

+
1

Kn

N

∑
i=1

N

∑
j=1


1
2 Q1

ijk
Q2∗

ijk
Q3∗

ijk

. (5.1)

Both cases of a constant and a linear reconstruction of the velocity in each section are
considered here, in such a way that the terms Q1

ijk, Q2∗
ijk and Q3∗

ijk are given by (3.12) and
Q3∗

ijk =Q2∗
ijkui or by (2.11). The complete convergence analysis of this problem, when the

size width tends to zero, is out of the scope of this paper. But it will be numerically tested,
after giving a numerical ODE solver able to ensure the realizability.

5.1 Numerical scheme

Let us first consider an explicit Euler method for this ODE system.

Proposition 5.1 (Realizability for the explicit Euler method on the coalescing problem).
From a set (nn

k ,mn
k )k=1,...,N of realizable moments and from (un

k )k=1,...,N , one step of the ex-
plicit Euler scheme on ODE system (5.1) leads to realizable moments (nn+1

k ,mn+1
k )k=1,...,N

if
∆t≤ 1

maxj,k |un
k−un

j |maxk
∫

r∗>0 β(rk,r∗) fa(r∗2)2r∗dr∗
(5.2)

where fa(S)=∑N
k=1κn

k (S)1[Sk−1,Sk ](S) is the reconstructed distribution from the moments
(nn

k ,mn
k )k∈{1,...,N}.
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Proof. Let us define an
k = mn

k−Vk−1nn
k and bn

k = Vknn
k−mn

k . These variables are positive.
Moreover, with the change of variable V=S3/2 and f v(V)dV= fa(S)dS:

an+1
k = an

k +
∆t
2

∫ Vk

Vk−1

(v−Vk−1)
∫

v∗∈[0,v]
f v(v−v∗) f v(v∗)β(v−v∗,v∗)|ud(v∗)−ud(v−v∗)|dv∗dv

−∆t
∫ Vk

Vk−1

(v−Vk−1) f v(v)
∫

v∗≥0
f v(v∗)β(v,v∗)|ud(v∗)−ud(v)|dv∗dv.

Since the velocity reconstruction ud does not introduce values bigger of smaller than the
(un

k )k∈{1,...,N}, one can write:

an+1
k ≥ an

k−∆tmax
j,k
|un

k−un
j |
∫ Vk

Vk−1

(v−Vk−1) f v(v)
∫

v∗≥0
f v(v∗)β(v,v∗)dv∗dv

≥ an
k

[
1−∆tmax

j,k
|un

k−un
j |
∫

v∗≥0
f v(v∗)β(Vk,v∗)dv∗

]
This quantity is then positive if ∆t is limited as in (5.2). In the same way, we prove that
bn+1

k is positive in this case, which concludes the proof.

Then any SSP method can be applied to solve the ODE system (5.1), as soon as the
time step is limited as in (5.2). We use here the third order three stage Runge-Kutta SSP
method, with the same limitation (5.2) on the time step as for the explicit Euler method
(see for example [16]). Let us notice that a sufficient limitation is given by

∆t≤ 1

maxj,k |un
k−un

j |π
[
V2/3

k nn
tot+2V1/3

k (nn
tot)

2/3(mn
tot)

1/3+(nn
tot)

1/3(mn
tot)

2/3
]

where nn
tot =∑N

k=1 nn
k (which decreases with time) and mn

tot =∑N
k=1 mn

k (which is constant).
This limitation is used for our computations.

Moreover, one has also to compute the terms Q1
ijk, Q2∗

ijk and Q3∗
ijk. To compute them

analytically, an algorithm was given for OSM in [25], allowing a pre-calculation of part of
them. It could be generalized for the affine TSM, when the velocity is considered constant
in the sections, and the pre-calculation could also be done for the sections in case [C.2],
i.e. for most of the sections. But when an affine reconstruction of the velocity is used in
the section, this cannot be done so easily. Moreover, analytical formulas for the integrals
are no more valid when realistic collision efficiencies are considered. So, here, these in-
tegrals are numerically approximated by the use of quadrature. The previous proof can
still be done with these approximations, as soon as the chosen quadrature gives the exact
value of integrals of fa(S)dS and S3/2 fa(S)dS on the sections. One can remark that this
condition is not rigorously satisfied by the quadrature used till now for the exponential
TSM: neither Gauss-Legendre quadrature nor adapted quadrature (corresponding to the
measure κk(S)dS) [9]. Realizability at the computational level is then still an open ques-
tion in this case. For the affine TSM, a Gauss-Legendre quadrature in the R variable is
used, with at least 4 quadrature points, ensuring then the realizability of the scheme.
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5.2 Results on the purely coalescing case

In order to test the accuracy of the method for the description of coalescence, let us con-
sider a fictitious homogeneous configuration with a spray constituted of droplets initially
at a velocity depending on their size, in such a way that coalescence will occur. More pre-
cisely, the Knudsen number is Kn=0.0273 and the initial distribution is given by (4.10),
similarly to the test case on evaporation and drag (section 4.2.2), where f0 is the lognor-
mal PDF defined in section 3.1.5.
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Figure 8: Size distribution (left) and velocity profile (right) for the pure coalescence test case with the lognormal
initial distribution at t=0 (solid line with circles), at t=0.5 (dashed line) and at t=1, 2, 3, 4, 5 (solid lines).

Computations are done with the OSM and the affine TSM models, with a constant
and an affine reconstruction of the velocity inside the sections. For OSM with a constant
reconstruction of the velocity, the coalescence source terms are computed thanks to the
analytical formulae given in [25], whereas for the other methods, a 5 or 10 point Gauss-
Legendre quadrature is used to compute the terms Q1

ijk, Q2∗
ijk and Q3∗

ijk. The sections are
equidistributed for S∈ [0,Smax] with Smax=4 and the last section is [Smax,+∞[. This value
of Smax is large enough so that the mass of the last section will be small during all the
computation (0.036% of the mass corresponds to droplets of surface bigger than Smax at
the end of the computation). The sections width can vary but the time step is constant
equal to 10−2 s, for a time varying between 0 and 5. Indeed, the objective here is not to
evaluate the well known ODE solver but to evaluate the model: the error induced by this
choice is less than 3.10−6 for the reference solution on all the variables we will look at, as
checked thanks to a computation with a ten times smaller time step. Moreover, the time
step limitation (5.2) does not directly depend on the section width and we check during
the computation that this limitation is always enforced for the chosen time step.

Since there is no analytical solution, the comparison will be done with a reference
computation. This reference is given by a computation using OSM with a constant ve-
locity reconstruction in the section. Moreover, the discretization involves 5121 sections
for Smax = 5, i.e. with an 8 times smaller width of the sections than the most refined of
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the other computations. The evolution of the size distribution as well as of the velocity
profile is represented in Figure 8, using this solution.
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Figure 9: Coalescence test case with the lognormal initial distribution: L1 norm of the error, depending on he
section width, on the total number (left) and Sauter mean diameter (right) divided by their initial value. The
straight lines of slope 2 and 3 are represented by black dashed lines.

The global mass and the momentum are conserved by construction of the scheme.
To evaluate the accuracy of the different methods, we look first at the evolution of some
other global variables: the total number density and the Sauter mean radius, defined by∫ +∞

0 S3/2 f (S)dS∫ +∞
0 S f (S)dS

. The L1 norm of the error on these quantities (normalized by their initial

value) as a function of the section width divided by S0 is plotted in Figure 9. A 5 point
Gauss-Legendre quadrature is used to compute the coalescence terms, here. But when
using 10 point Gauss-Legendre quadratures, almost the same results are obtained. One
can see that the accuracy of TSM with an affine velocity reconstruction in the section is
much higher than for all the other methods, with a numerical order of accuracy almost
equal to 3 and an accuracy better than the other methods with a two times smaller section
width, for most of the discretizations. With this method, 17 sections are enough so that
the error on the total number is less than 1%. One can also remark that the TSM method
with a constant reconstruction of the velocity in the section is less accurate for the eval-
uation of the mean Sauter radius than OSM. This is due to the fact that, in a section (for
an increasing velocity profile, like here), the velocity is underestimated for the largest
droplets whereas it is overestimated for the smallest ones. If the coalescence is dominant
with the biggest droplets, it means that the coalescence is underestimated for the largest
droplets whereas it is overestimated for the smallest ones and this effect is reinforced by
the affine representation of the distribution in the section.

We also look at the repartition of mass and momentum in the section by evaluating
the L1 norm of the errors on the number, mass and momentum:

1
Nt

Nt

∑
n=1

N

∑
k=1
|nn

k−n̂n
k |

1
Nt

Nt

∑
n=1

N

∑
k=1
|mn

k−m̂n
k |

1
Nt

Nt

∑
n=1

N

∑
k=1
|mn

k un
k−m̂n

k ûn
k |
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Figure 10: Coalescence test case with the lognormal initial distribution: L1 norm of the error, depending on the
section width, on the mass (left) and on the momentum (right). The straight line of slope two is represented
in black dashed line.

where n̄n
k , m̄n

k , m̄n
k ūn

k are the number, mass and momentum given by the reference solution
and corresponding to section k of the computation. Here, the results are shown for com-
putations using a 10 point Gauss-Legendre quadrature for the coalescence terms, except
for TSM with the affine velocity reconstruction were both kinds of quadratures are used
to see their effects. One still observe the better accuracy of TSM with the affine velocity
reconstruction compared to the other methods. A saturation of the error is observed: it is
due to the use of the quadrature for the computation of the coalescence source terms. This
saturation occurs at a level that depends indeed on the number of quadrature points: the
error on the computation of the coalescence source terms becomes then significant com-
pared to the error due to the size discretization.

Finally, the results of the exponential TSM are not presented here, but it was tested
with the adapted quadrature [9] using two or three nodes. This quadrature points needs
to be computed for each reconstruction and for each domainDijk. Analytical formula can
be used with only two nodes but the error of this approximation becomes significant as
soon as more than 30 sections are used. Then, for similar accuracy, the cost of this model
is three times till twenty times larger than the affine TSM using 5 quadrature nodes.

6 Validation on an academic nozzle configuration featuring size-
velocity coupling

The models and the corresponding schemes have been evaluated separately for each of
the evaporation, drag and coalescence processes. Let us then compare them in a config-
uration coupling all these phenomena. In non-uniform flows the evolution of velocities
depends on sizes through the drag process while the evolution of sizes depends on the
size-conditioned velocity differences through evaporation and coalescence. A decelerat-
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ing nozzle is considered as a baseline non-uniform flow since it exhibits the above cou-
pling. By assessing how efficiently this case is rendered with the various strategies, we
prove the ability of our moment method to tackle the difficulties that occur in industrial
cases such as Diesel sprays [21] and particle phases in solid rocket motors [9].

6.1 Description of the configuration

Let us consider the decelerating nozzle test case with an unsteady injection of droplets
defined in [25]. The OSM and affine TSM methods are compared on this test case where
evaporation and coalescence significantly occur. Only essential characteristics of the con-
figuration are given here, in a dimensionless way‡. A spray, transported by an incom-
pressible gas flow, is injected in a 2D axi-symmetrical diverging conical nozzle. The
streamlines of the gas as well as the trajectories of the droplets are assumed to be straight
lines, so that only the dependance in the axial coordinate z has to be considered. More-
over the effect of the droplets on the gaseous phase is not taken into account (see [25] for a
discussion of the validity of the assumptions). Then, the gaseous velocity is characterized

by its axial component uz(z)=
( z0

z

)2
, where z0=3.1 is the coordinate of the nozzle inlet.

The droplets slow down because of the deceleration of the gas flow, at a rate depending
on their size and inertia, inducing velocity differences and therefore coalescence.

The NDF of the spray at the inlet is given by:

f (t,z0,S,u)= f0(S)[1+0.9sin(2πt)]δ(u−uz(z0)).

The injected droplet distribution f0 was constant as a function of radius on the interval
R ∈ [1/2,1] and zero elsewhere in [25]. But in this case, the accuracy is limited by the
singularity of the distribution. To avoid that, a quite similar but regular distribution is
used: the beta PDF defined in section 3.1.5. The Knudsen number is Kn = 0.0471, the
evaporation rate is K=0.283 and the Stokes number is characterized by A= St(S)

S =0.357.
The spatial domain is [z0,2z0] so that only a few droplets go out of this domain, most

of them being completely evaporated before they could go through the domain. The com-
putations are done for a time corresponding to 9 periods of the injected mass oscillations,
since after 8 periods, the solution becomes periodic in the whole domain.

6.2 Numerical strategy and results

Concerning the numerical strategy used for the computations with OSM or TSM, a Strang
splitting is used between the transport in the physical space and the transport in the
phase space (source terms of evaporation, drag and coalescence). All numerical schemes

‡Compared to the case described in [25], dimensionless variables are defined thanks to the use of typical
values for the time (T≡0.01611s, the period of the oscillations at the injection), for the droplet surface (S0 =
4πR2

0 with R0 =30µm), for the velocity (uz(z0)=4ms−1, the velocity at the nozzle inlet) and for the droplet
number density (n0 =2.9 1010m−3). The Knudsen number is then defined by Kn=1/(Tuz(z0)S0n0).
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have to preserve the non-negativity of the mass densities of the sections and also the
realizability conditions for TSM. For the transport in the physical space, a second order
kinetic scheme is used, based on the one given in [4] but specifically adapted to the nozzle
configuration. This scheme is described in Appendix C. Let us highlight in the particular
case of the model considering an affine reconstruction of the velocity in the section, that
the velocity is assumed to be constant in the sections for this transport operator, since it
is not the aim of this paper to develop a transport scheme for this model in the nozzle
configuration. Moreover, a scheme adapted to this model can be found in [38] for more
classical configurations, with cartesian meshes. For the transport in phase space, a split-
ting is done between drag/evaporation and coalescence. The scheme for evaporation
and drag is given in section 4.2.1 and the scheme for coalescence is given in section 5.
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Figure 11: Results for the nozzle test case with OSM and affine TSM with a constant or an affine reconstruction
of the velocity in the section: total mass density (top left), mean velocity minus gas velocity (top right), Sauter
mean radius (bottom).

A 600-point uniform discretization of the spatial domain is used. The splitting time
step is equal to 0.0025 in such a way that the convective CFL is about 0.48. This choice
leads to small errors due to the time and space discretizations compared to the error
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due to the size discretization. A reference solution is obtained by using OSM with 1024
sections equidistributed in surface between 0 and Smax =7.111, plus the last section. The
choice of Smax allows to obtain a completely negligible mass in the last section, this section
being badly represented by OSM. For the other computations, sections with a constant
width ∆S=0.25 are considered in [0,Smax], plus a last section [Smax,+∞[, with a maximal
value of the surface then depending on the number N of sections: Smax = (N−1)∆S.
Considering OSM, a total of 20 sections are used, whereas only 12 sections are used for
TSM, with a constant or an affine reconstruction of the velocity. Indeed, adding more
sections only leads to a slight accuracy improvement for this method, which is able to
describe correctly the last section. The profiles at t = 8.44 (in the ninth period) of the
total mass density, the mass averaged velocity and the Sauter mean radius are plotted
in Figure 11. One can see the accuracy of TSM compared to OSM even with a smaller
number of sections. Moreover, with the affine reconstruction of the velocity in the section,
TSM leads to even better results, very close to the reference solution.

7 Conclusion

In this paper, we have provided a very robust affine closure for the Two Size Moment
method for polydisperse spray simulations, which allows to reduce the overall cost and
increase accuracy and stability compared to previous approaches. In the pursuance of
high order coupled methods, the velocity reconstruction has also been improved. The
new method allows an easy computation of the source terms. Moreover, robust and ac-
curate schemes were developed for simplified source terms, ensuring the realizability
of the moments and easily extendable to more complex physical models, thanks to the
flexibility of the present strategy. The verification of the method has been done on var-
ious cases, with evaporation, drag and coalescence, and especially on an unsteady 2D
case. The high order of the reconstruction and of the schemes have then been shown
in the asymptotics of a large number of sections. Also the accuracy of the method was
exhibited when a reduced number of sections is used. So the description of the spray, of
its size polydispersity, of its size-conditioned velocities, and of their evolution through
drag, evaporation, coalescence etc., can be suitably achieved with a Two Size Moment
method based on the present affine reconstruction with a low number of sections (be-
low 10). It is important for industrial applications such as spray combustion, spray in
solid rocket motors and many other industrial needs, since the numerical cost is a cru-
cial issue. In our point of view, the present strategy is a good trade-off between com-
plexity/accuracy and flexibility/cost without renouncing to robustness, which is a key
feature of numerical simulation. In addition, this method is a good candidate for being
coupled to the Anisotropic Gaussian velocity closure introduced to treat particle trajec-
tory crossings [37]. This combination is expected to describe both the size polydispersion
and also the velocity dispersion induced by some droplet trajectory crossing especially
occurring in turbulent flows [12, 13].
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A Affine reconstruction in volume variable

When considering the volume variables, mass and number densities in the section are
then integer moments of the NDF: nk =

∫ Vk
Vk−1

nV(V)dV and mk =
∫ Vk

Vk−1
VnV(V)dV. The

same kind of reconstruction as in section 3.1.2 can then be considered:

f v
a (V)=


0 si Vk−1≤V≤V(k)

a

αk+(βk−αk)
V−V(k)

a

V(k)
b −V(k)

a
si V(k)

a ≤V≤V(k)
b

0 si V(k)
b ≤V≤Vk

(A.1)

with the same three cases as for the affine in S reconstruction, meaning that f v
a is contin-

uous inside the section. One can then easily prove the following proposition:

Proposition A.1 (Affine reconstruction from integer moments). Let nk>0 and mk∈]Vk−1nk,Vknk[,
for some k∈{1,2,.. .,N}. Then, their exists on ]Vk−1,Vk[ a unique non-negative continuous
function f v

a given by (3.4) and such that∫ Vk

Vk−1

f v
a (V)dV=nk,

∫ Vk

Vk−1

V f v
a (V)dV=mk. (A.2)

Its parameters are given by:

• If Vk−1<
mk

nk
<

Vk+2Vk−1

3
, then V(k)

a =Vk−1, βk =0 and

V(k)
b =3

mk

nk
−2Vk−1, αk =

2n2
k

3(mk−Vk−1nk)
. (A.3)

• If
Vk+2Vk−1

3
≤ mk

nk
≤ 2Vk+Vk−1

3
, then V(k)

a =Vk−1, V(k)
b =Vk and

αk =
2

(∆Vk)2 [(2Vk+Vk−1)nk−3mk], βk =
2

(∆Vk)2 [3mk−(Vk+2Vk−1)nk]. (A.4)

• If
2Vk+Vk−1

3
<

mk

nk
<Vk, then V(k)

b =Vk, αk =0 and

V(k)
a =3

mk

nk
−2Vk, βk =

2n2
k

3(Vknk−mk)
. (A.5)

The same kind of analysis as in sections 3.1.3 and 3.1.4 could be done for this recon-

struction. For example, one can show that, in case 2: ‖ f− f v
a ‖L∞(Vk−1,Vk)≤

17
12

∆V2‖ f ′′‖L∞(0,1).
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But the evaporation with a constant rate K=KS generates NDFs f S that are non-
necessarily zero at S=0, since the solution is shift of the initial NDF. Let us then consider
such kind of function (in fact, the gamma and regular functions defined in section 3.1.5)
and let us do its piecewise affine reconstruction f v

a from its moments. The corresponding
function f S(S)= 3

2

√
S f v

a
(
S3/2) is plotted in Figure 12 for 4 or 16 sections. When the initial

distribution if zero at S = 0, as the gamma one, the reconstruction is good. But when
it is not the case, the accuracy is affected, especially close to zero and the evaporation
fluxes will not be accurately evaluated. This shows that this kind of reconstruction is not
adapted to an accurate resolution of the evaporation.
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Figure 12: Distributions as a function of S corresponding to a linear reconstruction in V with 4 (red curve) and
16 (blue curve) sections of the gamma function (left) and of the regular one (right).

B Backward Euler scheme for evaporation and realizability

Let us evidence the realizability problems with the use of an explicit Euler scheme di-
rectly on the purely evaporating system (4.1,4.2):

nn+1
k =nn

k +∆t[Kκk+1(t,Sk)−Kκk(t,Sk−1)],

mn+1
k =mn

k +∆t
[
KS3/2

k κk+1(t,Sk)−KS3/2
k−1κk(t,Sk−1)−

3
2

∫ Sk

Sk−1

S1/2Kκk(t,S)dS
]

.

then, the new moment vector (nn+1
k ,mn+1

k ) satisfies the realizability condition (2.6) if and
only if

K∆t
3
2

∫ Sk

Sk−1

S1/2 [κk(S)−κk+1(Sk)]dS≤
∫ Sk

Sk−1

[
S3/2−S3/2

k−1

]
κk(S)dS

K∆t
3
2

∫ Sk

Sk−1

S1/2 [κk(Sk−1)−κk(S)]dS≤
∫ Sk

Sk−1

[
S3/2

k −S3/2
]

κk(S)dS
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Let us consider, for example κk+1(Sk)=0, the first constraint is written

K∆t≤
2
∫ Sk

Sk−1

[
S3/2−S3/2

k−1

]
κk(S)dS

3
∫ Sk

Sk−1
S1/2κk(S)dS

and, if mn
k /nn

k tends to zero (which corresponds to case 1 of the reconstruction, where S(k)
b

tends to Sk−1), then the right-hand side term is equivalent to
2(S(k)

b

3/2
)−S3/2

k−1

3
√

S(k)
b

, which tends to

zero. So, in this case of an emptying section, the time step has eventually to become very
small to ensure the realizability condition (2.6). This shows that this ODE solver, as well
as any explicit SSP Runge-Kutta method, may introduce some realizability failures and
will then not be robust.

C Transport scheme for the nozzle test case

In order to discretize the transport part of the multi-fluid system (2.8-2.10), that is, the
left-hand side of the system of conservation equations for unsteady configurations, we
consider a second-order finite volume kinetic scheme similar to the one introduced by
Bouchut et al. for pressureless gas dynamics equations [4] and already adapted for OSM
in the nozzle configuration in [25]. For the sake of simplicity, the variables of each section
k are denoted ρ for the mass density mk, n for the number density nk and u for the axial
velocity uk. Moreover, the momentum is denoted q= ρu. In the axisymetrical configu-
ration, there are no azimuthal velocity and thanks to the similarity assumption the axial
velocity only depends on the axial coordinates z and the reduced radial velocity ur/r is
u/z. The equations then reduce to the following 1D unsteady system:

∂t

 n
ρ
q

+2
u
z

 n
ρ
q

+∂z(u

 n
ρ
q

)=0.

As in [4,25], a correspondance is done with a kinetic equation, adapted here to our config-
uration. Indeed, starting at time tn with the functions ρn(z), nn(z)=ρn(z)µn(z) and un(z),
the functions at time tn+1 can be obtained by solving the transport equation derived from
the similarity assumption:

∂t f +2
ξ

z
f +ξ∂z f =0, (C.1)

f (z,ξ,ζ;tn)= f n(z,ξ,ζ)=M(ρn(z),µn(z),un(z),ξ,ζ),

where the Maxwellian M is defined for any ρ > 0, (µ,u,ξ,ζ) ∈ R4 by M(ρ,µ,u,ξ,ζ) =
ρδ((ξ,ζ)−(u,µ)) and by projecting the obtained distributions in order to get their new
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moments. The analytical solution of the problem at the kinetic level is:

f (z,ξ,ζ;t)=
(

z−ξ(t−tn)

z

)2

f n(z−ξ(t−tn),ξ,ζ) (C.2)

The new moments are then obtained by projecting the exact solution: ρn+1(z)
nn+1(z)
qn+1(z)

=ρn+1(z)

 1
µn+1(z)
un+1(z)

=
∫

R2

 1
ζ
ξ

 f (z,ξ,ζ;tn+1)dξdζ

Let us notice here that the variable ζ is just added here to be able to write the equation
on the number n. It represents the ratio n/ρ, ie nk/mk and it then belongs to the interval]

1
S3/2

k
, 1

S3/2
k−1

[
.

Here, a finite volume is used with a uniform spatial discretization, the size of the cells
being denoted ∆z and the averaged values of ρn(z), nn(z) and qn(z) on the cell j defined
by [zj− 1

2
,zj+ 1

2
] and denoted ρn

j , nn
j =ρn

j µn
j and qn

j =ρn
j un

j . The scheme is then: ρn+1
j

nn+1
j

qn+1
j

=

 ρn
j

nn
j

qn
j

−2
∆t
∆z

Gn
j −

∆t
∆z

[
Fn

j+ 1
2
−Fn

j− 1
2

]
,

where the fluxes are given by

Fn
j+ 1

2
=

1
∆t

∫ tn+1

tn

∫
R2

ξ

 1
ζ
ξ

 f (z,ξ,ζ;t)dξdζdt

Gn
j =

1
∆t∆x

∫ tn+1

tn

∫ z
j+ 1

2

z
j− 1

2

∫
R2

ξ

z

 1
ζ
ξ

 f (z,ξ,ζ;t)dξdζdtdz

The obtained fluxes rely, through (C.2), on the knowledge of functions ρn(z), µn(z)
and un(z), which have to be determined from the discrete values ρn

j , nn
j and qn

j . We
use piecewise constant over half-cells, as for the simplified second-order kinetic scheme
defined in [4]. If we do not write, on purpose for the sake of legibility, the n exponent,
the moments take the form

ρ(z)=ρR
j− 1

2
µ(z)=µR

j− 1
2

u(z)=uR
j− 1

2
zj− 1

2
< z< zj,

ρ(z)=ρL
j+ 1

2
µ(z)=µL

j+ 1
2

u(z)=uL
j+ 1

2
zj < z< zj+ 1

2
,

the values in each half cells being computed in the same way as in [4, 25]. Let us denote

αR
j− 1

2
=

uR
j− 1

2
∆t

zj− 1
2

, αL
j+ 1

2
=

uL
j+ 1

2
∆t

zj+ 1
2

, βR
j− 1

2
=

uR
j− 1

2
∆t

zj
, βL

j+ 1
2
=

uL
j+ 1

2
∆t

zj
.
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Under the CFL-like condition ∆t
∆z supz |un(z)|≤ 1

2 , and assuming that all velocities are pos-
itive, the fluxes can be written:

Fn
j+ 1

2
=ρL

j+ 1
2
uL

j+ 1
2

 1
µL

j+ 1
2

uL
j+ 1

2

[1−αL
j+ 1

2
+

1
3
(αL

j+ 1
2
)2
]

Gn
j =ρL

j− 1
2
uL

j− 1
2

 1
µL

j− 1
2

uL
j− 1

2


log(1+αL

j− 1
2
)−αL

j− 1
2

1−
αL

j− 1
2

6

+
αL

j− 1
2

2(1+αL
j− 1

2
)



+ρR
j− 1

2
uR

j− 1
2

 1
µR

j− 1
2

uR
j− 1

2


log

(
zj

zj− 1
2

)
+log

1+βR
j− 1

2

1+αR
j− 1

2

− αR
j− 1

2

2(1+αR
j− 1

2
)
+

βR
j− 1

2

2(1+βR
j− 1

2
)



+ρL
j+ 1

2
uL

j+ 1
2

 1
µL

j+ 1
2

uL
j+ 1

2


log

( zj+ 1
2

zj

)
−log

(
1+βL

j+ 1
2

)
+αL

j+ 1
2

1−
αL

j+ 1
2

6

− βL
j+ 1

2

2(1+βL
j+ 1

2
)

,
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