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STABILITY OF DENSITIES FOR PERTURBED DIFFUSIONS

AND MARKOV CHAINS

V. KONAKOV, A. KOZHINA, AND S. MENOZZI

Abstract. We are interested in studying the sensitivity of diffusion processes
or their approximations by Markov Chains with respect to a perturbation of
the coefficients. As an important application, we give a first order expansion
for the difference of the densities of a diffusion with Hölder coefficients and its
approximation by the Euler scheme.

1. Introduction

1.1. Setting. For a fixed given deterministic final horizon T > 0, let us consider
the following multidimensional SDE:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [0, T ],(1.1)

where b : [0, T ]×R
d → R

d, σ : [0, T ]×R
d → R

d⊗R
d are bounded coefficients that

are measurable in time and Hölder continuous in space andW is a Brownian motion
on some filtered probability space (Ω,F , (Ft)t≥0,P). Also, a(t, x) := σσ∗(t, x) is
assumed to be uniformly elliptic. In particular those assumptions guarantee that
(1.1) admits a unique weak solution, see e.g. Bass and Perkins [BP09], [Men11]
from which the uniqueness to the martingale problem for the associated generator
can be derived under the current assumptions.

We now introduce a perturbed version of (1.1) with dynamics:

dX
(n)
t = bn(t,X

(n)
t )dt+ σn(t,X

(n)
t )dWt, t ∈ [0, T ],(1.2)

where bn : [0, T ]× R
d → R

d, σn : [0, T ]× R
d → R

d ⊗ R
d satisfy at least the same

assumptions as b, σ and are in some sense meant to be close to b, σ for large values
of n ∈ N.

It is known that, under the previous assumptions, the density of the processes

(Xt)t≥0, (X
(n)
t )t≥0 exists and satisfies some Gaussian bounds, see e.g Aronson

[Aro59], Sheu [She91] or [DM10] for extensions to some degenerate cases.
The first goal of this work is to investigate how the closeness of (bn, σn) and

(b, σ) is reflected on the respective densities of the associated processes. Important
applications include, for instance, the case of mollification by spatial convolution,
i.e. when bn(t, x) := b(t, .) ⋆ ρn(x), σn(t, x) := σ(t, .) ⋆ ρn(x), x ∈ R

d where ρn is
a smooth mollifying kernel, i.e. ρn : Rd → R

+, ρn ∈ C∞(Rd,R+),
∫
Rd ρn(x)dx =

1, |supp(ρn)| →
n

0. This specific kind of perturbation will be used to derive our

Date: June 30, 2015.
2000 Mathematics Subject Classification. Primary 60H10; Secondary 65C30.
Key words and phrases. Diffusion Processes, Parametrix, Hölder Coefficients, Euler Scheme,
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second main result which precisely quantifies the error between the densities of a
non-degenerate diffusion of type (1.1) with Hölder coefficients and its Euler scheme.

Other possible applications can be found in mathematical finance. If the dy-
namics of (1.1) models the evolution of the price of a financial asset, it is often
very useful to know how a perturbation of the volatility σ impacts the density, and
therefore the associated option prices. More generally, this situation can appear in
every applicative field for which the diffusion coefficient might be misspecified.

The previously mentioned Gaussian bounds on the density are derived through
the so-called parametrix expansion which will be the crux of our approach. Roughly
speaking, it consists in approximating the process by a proxy which has a known
density, here a Gaussian one, and then in investigating the difference through the
Kolmogorov equations. Various approaches to the parametrix expansion exist, see
e.g. Il’in et al. [IKO62], Friedman [Fri64] and McKean and Singer [MS67]. The
latter approach will be the one used in this work since it appears to be the most
adapted to handle coefficients with no a priori smoothness in time and can also be
directly extended to the discrete case for Markov chain approximations of equations
(1.1) and (1.2). Let us mention in this setting the works of Konakov et al. ([KM00],
[KM02]).

Our stability results will also apply to two Markov chains with respective dy-
namics:

Ytk+1
= Ytk + b(tk, Ytk)h+ σ(tk, Ytk)

√
hξk+1, Y0 = x,

Y
(n)
tk+1

= Y
(n)
tk + bn(tk, Y

(n)
tk )h+ σn(tk, Y

(n)
tk )

√
hξk+1, Y

(n)
0 = x,(1.3)

where h > 0 is a given time step, for which we denote for all k ≥ 0, tk := kh and
the (ξk)k≥1 are centered i.i.d. random variables satisfying some integrability condi-
tions. It is exactly the combination of the two stability Theorems, for diffusions and
Markov chains, that will give the error bound on the densities for the Euler scheme
of a non-degenerate diffusion in the weak setting of Hölder coefficients. There is a
huge literature concerning the weak error for smooth and/or non-degenerate coef-
ficients, from the seminal paper of Talay and Tubaro [TT90], to the extensions to
the hypoelliptic framework [BT96a], [BT96b] or for Markov Chain approximations
[KM00], [KM02], but the Hölder case has rarely been considered.

In this framework, let us mention the work of Mikulevičius and Platen [MP91]
who obtained bounds for the weak error, namely for the quantity d(f, x, T, h) :=
E[f(XT )] − E[f(Xh

T )] where X
h
T stands for the terminal value at time T of the

Euler scheme Xh with time step h = T/N, N ∈ N
∗ associated with X . They

managed to get a bound at rate hγ/2 where γ ∈ (0, 1) is the Hölder exponent of the
coefficients b, σ in (1.1) provided f ∈ C2+γ . This regularity is essential in that work
to apply Itô’s formula. Our approach permits to establish that this bound holds
true for the difference of the densities itself, which corresponds to the weak error
for a δ-function. We also mention the recent work of Mikulevičius et al. [Mik12],
[MZ15], concerning some extensions of [MP91] to jump-driven SDEs with Hölder
coefficients.

Finally, concerning numerical schemes for diffusions with non-regular coefficients,
we refer to the recent work of Kohatsu-Higa et al. [KHLY15] who investigate the
weak error for possibly discontinuous drifts and diffusion coefficients that are just
continuous.
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1.2. Assumptions and Main Results. Let us introduce the following assump-
tions.

(A1) (Boundedness of the coefficients). The components of the vector-valued
functions b(t, x), bn(t, x) and the matrix-functions σ(t, x), σn(t, x) are bounded mea-
surable. Specifically, there exist constants K1,K2 > 0 s.t.

sup
(t,x)∈[0,T ]×Rd

|b(t, x)|+ sup
(t,x)∈[0,T ]×Rd

|bn(t, x)| ≤ K1,

sup
(t,x)∈[0,T ]×Rd

|σ(t, x)| + sup
(t,x)∈[0,T ]×Rd

|σn(t, x)| ≤ K2.

(A2) (Uniform Ellipticity). The matrices a := σσ∗, an := σnσ
∗
n are uniformly

elliptic, i.e. there exists Λ ≥ 1, ∀(t, x, ξ) ∈ [0, T ]× (Rd)2,

Λ−1|ξ|2 ≤ 〈a(t, x)ξ, ξ〉 ≤ Λ|ξ|2
Λ−1|ξ|2 ≤ 〈an(t, x)ξ, ξ〉 ≤ Λ|ξ|2.

(A3) (Hölder continuity in space). For some γ ∈ (0, 1] , κ <∞ , N ∈ N for all
t ∈ R+, n ≥ N ,

|b(t, x)− b(t, y)|+ |bn(t, x)− bn(t, y)| ≤ κ |x− y|γ ;
|σ(t, x) − σ(t, y)|+ |σn(t, x)− σn(t, y)| ≤ κ |x− y|γ .

Observe that the last condition also readily gives, thanks to the boundedness of
σ, σn that a, an are also uniformly γ-Hölder continuous.

(A4) (Closeness of (bn, σn) and (b, σ)). Set for n ∈ N:

∆n,b := sup
(t,x)∈[0,T ]×Rd

{|b(t, x)− bn(t, x)|}.

Since σ, σn are both γ-Hölder continuous, see (A3) we also define

∆n,σ := sup
u∈[0,T ]

|σ(u, .)− σn(u, .)|γ ,

where |.|γ stands for the usual Hölder norm in space on Cγ
b (R

d,Rd ⊗R
d) (space of

Hölder continuous bounded functions, see e.g. Krylov [Kry96]) i.e. :

|f |γ := sup
x∈Rd

|f(x)|+ sup
x 6=y,(x,y)∈(Rd)2

|f(x)− f(y)|
|x− y|γ .

The previous control in particular implies for all (u, x, y) ∈ [0, T ]× (Rd)2:

|a(u, x)− a(u, y)− an(u, x) + an(u, y)| ≤ 2(K2 + κ)∆n,σ|x− y|γ ,
Setting ∆n := ∆n,σ +∆n,b we assume ∆n →

n
0.

We say that assumption (A) holds when conditions (A1)-(A4) are in force. We
will denote, from now on, by C a constant depending on the parameters appearing
in (A) and T . We reserve the notation c for constants that only depend on (A)
but not on T . The values of C, c may change from line to line

We are now in position to state our main results.

Theorem 1 (Stability Control for diffusions). Fix T > 0. Under (A) there exists
C ≥ 1, c ∈ (0, 1] s.t. for all 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2:

(1.4) pc(t− s, y − x)−1|(p− pn)(s, t, x, y)| ≤ C∆n,
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where p(s, t, x, .), pn(s, t, x, .) respectively stand for the transition densities at time
t of equations (1.1), (1.2) starting from x at time s. Also, we denote for a given

c > 0 and for all (u, z) ∈ R
+∗ × R

d, pc(u, z) :=
cd/2

(2πu)d/2
exp(−c |z|

2

2u ).

Before stating our results for Markov Chains we introduce two kinds of innova-
tions in (1.3). Namely:

(IG) The i.i.d. random variables (ξk)k≥1 are Gaussian, with law N (0, Id). In that
case the dynamics in (1.3) correspond to the Euler discretization of equations (1.1)
and (1.2).

(IP,M) For a given integerM > 2d+5+γ, the innovations (ξk)k≥1 are centered and
have C5 density fξ which has, together with its derivatives up to order 5, at most
polynomial decay of order M . Namely, for all z ∈ R

d and multi-index ν, |ν| ≤ 5:

(1.5) |Dνfξ(z)| ≤ CQM (z),

where we denote for all r > d, z ∈ R
d, Qr(z) := cr

1
(1+|z|)r ,

∫
Rd dzQr(z) = 1.

Theorem 2 (Stability Control for Markov Chains). Fix T > 0. For h = T/N, N ∈
N

∗, we set for i ∈ N, ti := ih. Under (A), assuming that either (IG) or (IP,M)
holds for M > 2d + 4, there exist C := C ≥ 1, c ∈ (0, 1] s.t. for all 0 ≤ ti < tj ≤
T, (x, y) ∈ (Rd)2:

(1.6) χc(tj − ti, y − x)−1|(ph − phn)(ti, tj , x, y)| ≤ C∆n,

where ph(ti, tj , x, .), p
h
n(ti, tj , x, .) respectively stand for the transition densities at

time tj of equations in (1.3) starting from x at time ti. Also:

- If (IG) holds:

χc(tj − ti, y − x) := pc(tj − ti, y − x),

with pc as in Theorem 1.
- If (IP,M) holds:

χc(tj − ti, y − x) :=
cd/2

(tj − ti)d/2
QM−(d+5+γ)

( |y − x|
{(tj − ti)}1/2/c

)
.

As an application of the previous results we also derive the following important
Theorem.

Theorem 3 (Error for the Euler scheme of a diffusion with Hölder coefficients).
Let T > 0 be fixed and consider a given time step h := T/N, N ∈ N

∗. Set
for i ∈ N, ti := ih. Under (A), if we additionally assume that the coefficients
a, b are γ/2-Hölder continuous in time, there exist C ≥ 1, c ∈ (0, 1] s.t. for all
0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2:

(1.7) pc(t− s, y − x)−1|(p− ph)(ti, tj , x, y)| ≤
C

(tj − ti)(1−γ/4)γ/2
h

γ
2 ,

where p, ph respectively stand for the densities of the diffusion X and its Euler
approximation Xh with time step h and pc is as in Theorem 1.

Observe here that the rate hγ/2 is quite natural. It corresponds to the typical
magnitude of the quantity E[|Wh|γ ] ≤ cγh

γ/2, which reflects the variations, on one
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time-step of length h, of the Euler scheme with Hölder coefficients. Indeed, for all
i ∈ [[0, N − 1]] :

E[ sup
u∈[ti,ti+1]

|σ(u,Xh
u )− σ(ti, X

h
ti)|] ≤ κ

{
hγ/2 + E[ sup

u∈[ti,ti+1]

|Xh
u −Xh

ti |γ ]
}

≤ κ

{
hγ/2 + E[{ sup

u∈[ti,ti+1]

|σ(ti, Xh
ti)(Wu −Wti)|+K1h}2]γ/2

}
≤ chγ/2,

supposing that the Hölder constant in time is as well κ. We also refer to the Lemma
in Section 6 of [MP91].

Remark 1. We point out that the previous result extends to the densities of the
processes involved the results from Mikulevičius and Platen [MP91], obtained for
the weak error. The framework they considered is similar to ours, and their
main results consists in controlling at rate hγ/2 the weak error d(f, x, T, h) :=
Ex[f(XT )] − Ex[f(X

h
T )] for a smooth function f ∈ C2+γ . The above theorem es-

tablishes that |d(f, x, T, h)| ≤ Chγ/2 as soon as f is measurable and satisfies the
following growth condition:

∃c0 < c,C0, ∀x ∈ R
d, |f(x)| ≤ C0(1 + exp(c0|x|2)),

where the c is the one of pc in (1.7). This point can be particularly relevant if
we think for instance about quantile estimation (that would involve functions of
the form f(x) = I|x|≤K or f(x) = I|x|≤K exp(c|x|)) that appear in many applica-
tions: default probabilities in mathematical finance, fatigue of structures in random
mechanics.

Remark 2. Even though we have considered γ ∈ (0, 1], our analysis should be
extendable in the framework of Hölder spaces to γ ∈ (1, 2]. On the other hand,
Theorem 3 specifies the time-singularity in small time. The result is again coherent
with the one obtained for smooth coefficients, see Gobet and Labart [GL08] for an
explicit bound, or [KM02] from which it can be derived that the time singularity
behaves as (tj − ti)

−1/2. This bound is obtained from (1.7) taking γ = 2 which is
the threshold that, as already observed in [MP91], gives the usual convergence rate
for the weak error.

The paper is organized as follows. We recall in Section 2 some basic facts about
parametrix expansions for the densities of diffusions and Markov Chains. We then
detail in Section 3 how to perform a stability analysis of the parametrix expansions
in order to derive the results of Theorems 1 and 2. Section 4 is eventually devoted to
the convergence analysis of the weak error for the Euler scheme of a non-degenerate
diffusion with Hölder coefficients. The proof combines two elements. We first apply
our previous sensitivity results of Theorems 1 and 2 to quantify the difference of
densities between the initial diffusion or scheme and a perturbation associated with
a mollification of coefficients. The next step consists in adapting the weak error
expansion for the densities in [KM02] for diffusions/schemes having coefficients with
explosive derivatives. The final result follows equilibrating the two error sources.
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2. Derivation of formal series expansion for densities

2.1. Parametrix Representation of the Density for Diffusions. In the fol-
lowing, for given (s, x) ∈ R

+ ×R
d, we use the standard Markov notation (Xs,x

t )t≥s

to denote the solution of (1.1) starting from x at time s.
Assume that (Xs,x

t )t≥s has for all t > s a smooth density p(s, t, x, .) (which is the
case if additionally to (A) the coefficients are smooth see e.g. Friedman [Fri64]).
We would like to estimate this density at a given point y ∈ R

d. To this end,
we introduce the following Gaussian inhomogeneous process with spatial variable
frozen at y. For all (s, x) ∈ [0, T ]× R

d, t ≥ s we set:

X̃y
t = x+

∫ t

s

b(u, y)du+

∫ t

s

σ(u, y)dWu.

Its density p̃y readily satisfies the Kolmogorov Backward equation:



∂up̃

y(u, t, z, y) + L̃y
up̃

y(u, t, z, y) = 0, s ≤ u < t, z ∈ R
d,

p̃y(u, t, ., y) →
u↑t

δy(.),
(2.1)

where for all ϕ ∈ C2
0 (R

d,R), z ∈ R
d:

L̃y
uϕ(z) =

1

2
Tr
(
σσ∗(u, y)D2

zϕ(z)
)
+ 〈b(u, y), Dzϕ(z)〉,

stands for the generator of X̃y at time u.
On the other hand, since we have assumed the density of X to be smooth, it

must satisfy the Kolmogorov forward equation (see e.g. Dynkin [Dyn65]). For a
given starting point x ∈ R

d at time s,



∂up(s, u, x, z) = L∗

up(s, u, x, z) = 0, s < u ≤ t, z ∈ R
d,

p(s, u, x, .) →
u↓s

δx(.),
(2.2)

where L∗
u stands for the formal adjoint (which is again well defined if the coefficients

in (1.1) are smooth) of the generator of (1.1) which for all ϕ ∈ C2
0 (R

d,R), z ∈ R
d

writes:

Luϕ(z) =
1

2
Tr
(
σσ∗(u, z)D2

zϕ(z)
)
+ 〈b(u, z), Dzϕ(z)〉.

Equations (2.1), (2.2) yield the formal expansion below which is initially due to
McKean and Singer [MS67].

(p− p̃y)(s, t, x, y) =

∫ t

s

du∂u

∫

Rd

dzp(s, u, x, z)p̃y(u, t, z, y)

=

∫ t

s

du

∫

Rd

dz (∂up(s, u, x, z)p̃
y(u, t, z, y) + p(s, u, x, z)∂up̃

y(u, t, z, y))

=

∫ t

s

du

∫

Rd

dz
(
L∗
up(s, u, x, z)p̃

y(u, t, z, y)− p(s, u, x, z)L̃y
up̃

y(u, t, z, y)
)

=

∫ t

s

du

∫

Rd

dzp(s, u, x, z)(Lu − L̃y
u)p̃

y(u, t, z, y),(2.3)

using the Dirac convergence for the first equality, equations (2.2) and (2.1) for the
second one. We eventually take the adjoint for the last equality. Note carefully
that the differentiation under the integral is also here formal since we would need
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to justify that it can actually be performed using some growth properties of the
density and its derivatives which we a priori do not know.

Let us now introduce the notation

f ⊗ g(s, t, x, y) =

∫ t

s

du

∫

Rd

dzf(s, u, x, z)g(u, t, z, y)

for the time-space convolution and let us define p̃(s, t, x, y) := p̃y(s, t, x, y), that is
in p̃(s, t, x, y) we consider the density of the frozen process at the final point and
observe it at that specific point. We now introduce the parametrix kernel:

(2.4) H(s, t, x, y) := (Ls − L̃s)p̃(s, t, x, y) := (Ls − L̃y
s)p̃

y(s, t, x, y).

With those notations equation (2.3) rewrites:

(p− p̃)(s, t, x, y) = p⊗H(s, t, x, y).

From this expression, the idea then consists in iterating this procedure for p(s, u, x, z)
in (2.3) introducing the density of a process with frozen characteristics in z which
is here the integration variable. This yields to iterated convolutions of the kernel
and leads to the formal expansion:

p(s, t, x, y) =

∞∑

r=0

p̃⊗H(r)(s, t, x, y),(2.5)

where p̃⊗H(0) = p̃, H(r) = H ⊗H(r−1), r ≥ 1. Obtaining estimates on p from the
formal expression (2.5) requires to have good controls on the right-hand side. The
remarkable property of this formal expansion is now that the right-hand-side of
(2.5) only involves controls on Gaussian densities which in particular will provide,
associated with our assumption (A) a smoothing in time property for the kernel
H .

Proposition 1. Under the sole assumption (A), for t > s, the density of Xx,s
t solving

(1.1) exists and can be written as in (2.5).

Proof. The proof can already be derived from a sensitivity argument. We first
introduce two parametrix series of the form (2.5). Namely,

(2.6) p(s, t, x, y) := p̃(s, t, x, y) +
∞∑

r=1

p̃⊗H(r)(s, t, x, y)

and

(2.7) pn(s, t, x, y) = p̃n(s, t, x, y) +

∞∑

r=1

p̃n ⊗H(r)
n (s, t, x, y).

Let us point out that, at this stage, p and pn are defined as sum of series. The pur-

pose is then to identify those sums with the densities of the processes Xs,x
t , X

(n),s,x
t

at point y.
The convergence of the series (2.6) and (2.7) is in some sense standard (see e.g.

[Men11] or Friedman [Fri64]) under (A). We recall for the sake of completeness the
key steps for (2.6).

Let us recall that there exist c1 ≥ 1, c ∈ (0, 1] s.t. for all T > 0 and all multi-index
α, |α| ≤ 4,

|Dα
z p̃(u, t, z, y)| ≤

c1 exp(c1K
2
1 (t− u))

(t− u)|α|/2
pc(t− u, y − z),(2.8)
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where we used that |z − y−
∫ t

u
b(v, y)dv|2 ≥ |z−y|2

2 −K2
1(t− u)2 with K1 being the

bound for the drift in Assumption (A1) and

pc(t− u, y − z) =
cd/2

(2π(t− u))d/2
exp

(
− c

2

|y − z|2
t− u

)
,

stands for the usual Gaussian density in R
d with 0 mean and covariance (t−u)c−1Id.

From (2.8) and the Hölder continuity in space of the diffusion matrix we readily
get that there exists c1 ≥ 1, c ∈ (0, 1],

(2.9) |H(u, t, z, y)| ≤ c1 exp(c1K
2
1 (t− u))

(t− u)1−γ/2
pc(t− u, z − y).

Now the key point is that the control (2.9) yields an integrable singularity giving
a smoothing effect in time once integrated in space in the time-space convolutions
appearing in (2.6) and (2.7). It follows by induction that:

|p̃⊗H(r)(s, t, x, y)|

≤ exp(c1K
2
1 (t− s))cr+1

1

r∏

i=1

B(
γ

2
, 1 + (i− 1)

γ

2
)pc(t− s, y − x)(t− s)

rγ
2

= exp(c1K
2
1 (t− s))

cr+1
1

[
Γ(γ2 )

]r

Γ(1 + r γ2 )
pc(t− s, y − x)(t− s)

rγ
2 .(2.10)

These bounds readily yield the convergence of the series as well as a Gaussian
upper-bound. Namely

p(s, t, x, y) ≤ c1 exp(c1[(t− s)γ/2 +K2
1(t− s)])pc(t− s, y − x).(2.11)

An important application of the stability of the perturbation consists in consid-
ering coefficients bn := b ⋆ ζn, σ := σ ⋆ ζn in (2.7), where ζn is a mollifier in time
and space. For mollified coefficients, the existence and smoothness of the density
pn for the associated process X(n) in (1.2) can be derived from [IKO62]. Observe
carefully that the previous Gaussian bounds also hold for pn uniformly in n and
independently of the mollifying procedure. This therefore gives that

(2.12) pn(s, t, x, y) →
n
p(s, t, x, y),

boundedly and uniformly. Thus, for every continuous bounded function f we derive
from the bounded convergence theorem and (2.11) that for all 0 ≤ s < t, x ∈ R

d:

Es,x[f(X
(n)
t )] =

∫

Rd

f(y)pn(s, t, x, y)dy →
n

∫

Rd

f(y)p(s, t, x, y)dy.

In particular, taking f = 1 gives that
∫
Rd p(s, t, x, y)dy = 1.

We now specify how we can derive that under (A) the sum p(s, t, x, y) of the
parametrix series can actually be identified with a density. Recall indeed, that the
uniform convergence in (2.12) gives that p(s, t, x, .) is non negative.

It can on the other hand be proved by Kolmogorov’s tightness criterion, see e.g.

[Bil99], that the sequence of measures (µn)n≥0 associated with (X
(n)
t )t≥0 on the

space of continuous functions is tight. By Prokhorov’s Theorem it is thus weakly
relatively compact. Now, for a given t > s ≥ 0, x ∈ R

d, we therefore deduce
that for any continuous bounded continuous f and any converging subsequence
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(µ
(nk),s,x
t )k≥0, denoting for all n ∈ N by µ

(n),s,x
t the law of X

(n),s,x
t , we have for

every continuous bounded function f :

µ
(nk),s,x
t (f) := Es,x[f(X

(nk)
t )] →

k

∫

Rd

f(y)p(s, x, t, y)dy.

This proves that the weak limit of (µ
(n),s,x
t )n≥0 (and even (µn)n≥0) exists and is

unique.
It can now be proved following the steps of Oleinik et al. [IKO62] that the

density p(s, t, x, .) is actually the unique fundamental solution of

(∂s + Ls)p(s, t, x, y) = 0, 0 ≤ s < t, (x, y) ∈ (Rd)2,

p(s, t, x, y)dy −→
t↓s

δx(dy).

We anyhow carefully mention that the freezing in the quoted paper is performed
w.r.t. the starting time and space variables. This approach leads to an extra Hölder
continuity in time assumption, see also Friedman [Fri64], which we do not need
here since we follow the McKean and Singer approach to the parametrix expansion
[MS67].

We can thus now conclude that the processesX,Xn in (1.1), (1.2) have transition
densities given by the sum of the series (2.6), (2.7).

�

2.2. Parametrix for Markov Chains. One of the main advantages of the formal
expansion in (2.5) is that it has a direct discrete counterpart in the Markov chain

setting. Indeed, denote by (Y ti,x
tj )j≥i the Markov chain with dynamics (1.3) starting

from x at time ti. Observe first that if the innovations (ξk)k≥1 have a density then
so does the chain at time tk.

Let us now introduce its generator at time ti, i.e. for all ϕ ∈ C2
0 (R

d,R), x ∈ R
d:

Lh
tiϕ(x) := h−1

E[ϕ(Y ti,x
ti+1

)− ϕ(x)].

In order to give a representation of the density of ph(ti, tj , x, y) of Y
ti,x
tj at point

y for j > i, we introduce similarly to the continuous case, the Markov chain (or
inhomogeneous random walk) with coefficients frozen in space at y. For given
(ti, x) ∈ [0, T ]× R

d, tj ≥ ti we set:

Ỹ ti,x,y
tj := x+

j−1∑

k=i

{
b(tk, y)h+ h1/2σ(tk, y)ξk+1

}
,

and denote its density p̃h,y(ti, tj , x, .). Its generator at time ti writes for all ϕ ∈
C2

0 (R
d,R), x ∈ R

d:

L̃h,y
ti ϕ(x) = h−1

E[ϕ(Ỹ ti,x,y
ti+1

)− ϕ(x)].

Using the notation p̃h(ti, tj , x, y) := p̃h,y(ti, tj , x, y), we introduce now for 0 ≤
i < j ≤ N the parametrix kernel:

Hh(ti, tj , x, y) := (Lh
ti − L̃h,y

ti )p̃h(ti + h, tj , x, y).

Analogously to Lemma 3.6 in [KM00], which follows from a direct algebraic manip-
ulation, we derive the following representation for the density which can be viewed
as the Markov chain analogue of Proposition 1.
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Proposition 2 (Parametrix Expansion for the Markov Chain). Assume (A) is in
force. Then, for 0 ≤ ti < tj ≤ T ,

ph(ti, tj , x, y) =

j−i∑

r=0

p̃h ⊗h H
h,(r)(ti, tj , x, y),

where the discrete time convolution type operator ⊗h is defined by

f ⊗h g(ti, tj, x, y) =

j−i−1∑

k=0

h

∫

Rd

f(ti, ti+k, x, z)g(ti+k, tj, z, y)dz.

Also g⊗hH
h,(0) = g and for all r ≥ 1, Hh,(r) := Hh ⊗hH

h,(r−1) denotes the r-fold
discrete convolution of the kernel Hh.

3. Stability of Parametrix Series.

We will now investigate more specifically the sensitivity of the density w.r.t. to
the coefficients through the difference of the series.

3.1. Stability for Diffusions: Proof of Theorem 1. Let us consider the differ-
ence between two parametrix expansions:

|p(s, t, x, y)− pn(s, t, x, y)| =

= |
∞∑

r=0

p̃⊗H(r)(s, t, x, y)−
∞∑

r=0

p̃n ⊗H(r)
n (s, t, x, y)| ≤

≤ |(p̃− p̃n)(s, t, x, y)|+ |
∞∑

r=1

p̃⊗H(r)(s, t, x, y)−
∞∑

r=1

p̃n ⊗H(r)
n (s, t, x, y)|.(3.1)

The strategy to study the above difference, using some well known properties of the
Gaussian kernels and their derivatives recalled in (2.8), consists in first studying
the difference of the main terms.

We have the following Lemma.

Lemma 1 (Difference of the first terms and their derivatives). There exist c1 ≥
1, c ∈ (0, 1] s.t. for all 0 ≤ s < t, (x, y) ∈ (Rd)2 and all multi-index α, |α| ≤ 4,

|Dα
x p̃(s, t, x, y)−Dα

x p̃n(s, t, x, y)| ≤
c1

(t− s)|α|/2
exp(c1K

2
1 (t− s))∆npc(t− s, y− x).

Proof. Let us first consider |α| = 0 and introduce some notations. Set:

b(s, t, y) :=

∫ t

s

b(u, y)du, bn(s, t, y) :=

∫ t

s

bn(u, y)du,

Σ(s, t, y) :=

∫ t

s

a(u, y)du, Σn(s, t, y) :=

∫ t

s

an(u, y)du.(3.2)

Let us now identify the columns of the matrices Σ(s, t, y),Σn(s, t, y) with d-dimensional
column vectors, i.e. for Σ(s, t, y):

Σ(s, t, y) =
(
Σ1 Σ2 · · · Σd

)
(s, t, y).
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Recall now that b(s, t, y), bn(s, t, y) are also viewed as d-dimensional column vectors,
we rewrite:

p̃(s, t, x, y) = fx,y(Θ(s, t, y)), Θ(s, t, y) = (b∗, (Σ1)∗, · · · , (Σd)∗)∗(s, t, y),

p̃n(s, t, x, y) = fx,y(Θn(s, t, y)), Θn(s, t, y) = (b∗n, (Σ
1
n)

∗, · · · , (Σd
n)

∗)∗(s, t, y),

with

fx,y : Rd(d+1) → R

Γ 7→ fx,y(Γ) =
1

(2π)d/2det(Γ2:(d+1))1/2

× exp

(
−1

2
〈(Γ2:(d+1))−1(y − x− Γ1), y − x− Γ1〉

)
,

(3.3)

where Γ :=




Γ1

Γ2

...
Γd+1


 and each (Γi)i∈[[1,d+1]] belongs to R

d. Also, we denote:

Γ2:(d+1) :=
(
Γ2 Γ3 · · · Γd+1

)
,

the d× d matrix formed with the entries (Γi)i∈[[2,d+1]], each entry being viewed as
a column.

The multidimensional Taylor expansion now gives:

|(p̃− p̃n)(s, t, x, y)| = |fx,y(Θ(s, t, y))− fx,y(Θn(s, t, y))|

=

∣∣∣∣
∑

|ν|=1

Dνfx,y(Θ(s, t, y)){(Θn −Θ)(s, t, y)}ν

+2
∑

|ν|=2

{(Θn −Θ)(s, t, y)}ν
ν!

∫ 1

0

(1 − δ)Dνfx,y([Θ + δ(Θn −Θ)](s, t, y))dδ

∣∣∣∣,

(3.4)

where for a multi-index ν := (ν1, · · · , νd(d+1)) ∈ N
d(d+1), we denote by |ν| :=∑d(d+1)

i=1 νi the length of the multi-index, ν! =
∏d(d+1)

i=1 νi! and for h ∈ R
d(d+1),

hν :=
∏d(d+1)

i=1 hνii (with the convention that 00 = 1). With these notations, from
(3.2), (3.3), (3.4) and Assumption (A4) we get:

|fx,y(Θ(s, t, y))− fx,y(Θn(s, t, y))|

≤ c

{ ∑

|ν|=1

|Dνfx,y(Θ(s, t, y))|∆n(t− s)

+ ∆2
n(t− s)2 max

δ∈[0,1]

∑

|ν|=2

|Dνfx,y([Θ + δ(Θn −Θ)](s, t, y))|
}
.(3.5)

For our computations we need to separate the coordinates associated with drift
contributions and those that correspond to an entry of the diffusion matrix. To
this end, for a multi-index ν ∈ N

d(d+1) we write ν = (ν1, ν2:(d+1)) where ν1 :=

(ν11 , · · · , νd1 ) ∈ N
d is associated with the drift, and ν2:(d+1) := (ν12:(d+1), · · · , νd

2

2:(d+1)) ∈
N

d2

with the diffusion matrix.
For ν = (ν1, ν2:(d+1)), since fx,y in (3.3) is a Gaussian density in the parameters

x, y, the following properties hold:
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- If |ν1| = 1, ∀Γ ∈ R
d(d+1), Dν1fx,y(Γ) =

∏d
i=1

(
∂

∂xi

)νi
1

fx,y(Γ),

- If |ν2:(d+1)| = 1, we recall from Cramer ad Leadbetter [CL04] (see eq. (2.10.3)

therein), that for all Γ ∈ R
d(d+1):

Dν2:(d+1)fx,y(Γ) =
1

2




d2∏

i=1

(
∂2

∂x
⌊ i−1

d
⌋+1
∂x

i−⌊ i−1
d

⌋d

)ν
i
2:(d+1)fx,y(Γ)


 ,

where ⌊·⌋ stands for the integer part.
- If |ν1| = 1, |ν2:(d+1)| = 1 one combines the previous controls to derive that for all

Γ ∈ R
d(d+1):

Dν1,ν2:(d+1)fx,y(Γ) =

d∏

i=1

(
∂

∂xi

)νi
1 1

2




d2∏

i=1

(
∂2

∂x
⌊ i−1

d
⌋+1
∂x

i−⌊ i−1
d

⌋d

)ν
i
2:(d+1)


 fx,y(Γ).

This gives that the associated singularity is homogeneous to the one induced by a
third spatial derivative of the Gaussian density. We thus have:

|Dν1,ν2:(d+1)fx,y(Γ)| ≤ c̄1

d∏

i=1

|{(Γ2:(d+1))−1(x− y − Γ1)}i|ν
i
1

d2∏

i=1

|{(Γ2:(d+1))−1(x− y − Γ1)}⌊ i−1
d ⌋+1{(Γ2:(d+1))−1(x− y − Γ1)}i−⌊ i−1

d ⌋d|ν
i
2:(d+1)

×fx,y(Γ).
Hence, taking from (3.5), for all δ ∈ [0, 1], Γn,δ(s, t, y) = [Θ + δ(Θn − Θ)](s, t, y)
yields, thanks to the non-degeneracy conditions:

|Dν1,ν2:(d+1)fx,y(Γn,δ(s, t, y))| ≤ c̄1
(t− s)3/2

fx,y
(
Γn,δ(s, t, y)

)

≤ c̄1
(t− s)3/2

exp(c̄1K
2
1 (t− s))pc̄(t− s, y − x),

for some c̄1 ≥ 1, c̄ ∈ (0, 1]. Observe now that similar computations actually give
that:
(3.6)

∀ν, |ν| = i, i ∈ {1, 2}, |Dνfx,y(Γn,δ(s, t, y))| ≤
c̄1

(t− s)i
exp(c̄1K

2
1(t−s))pc̄(t−s, y−x),

where in the above equation, for |ν| = i, i ∈ {1, 2}, we consider the worst singularity
which is in small time associated with the multi-indexes ν s.t. |ν| = |ν2:(d+1)|. If
t− s ≥ 1, the exponential factor in (3.6) would absorb the remaining contributions
in time.

Thus, from (3.3), (3.4), equations (3.5) and (3.6) give:

|p̃(s, t, x, y)− p̃n(s, t, x, y)| ≤ c̄1∆n exp(c̄1K
2
1 (t− s))pc̄(s, t, x, y).

Up to a modification of c̄1, c̄ or c1, c in (2.8) we can assume that the statement
of the lemma and (2.8) hold with the same constants c1, c. The bounds for the
derivatives are established similarly using the controls of (2.8). This concludes the
proof. �
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The previous lemma quantifies how close are the main parts of the expansions.
To proceed we need to consider the difference between the one-step convolutions.
Combining the estimates of Lemmas 1 and 2 below will yield by induction the result
stated in Theorem 1.

Lemma 2 (Control of the one-step convolution). For all 0 ≤ s < t, (x, y) ∈ (Rd)2:

|p̃⊗H(1)(s, t, x, y)− p̃n ⊗H(1)
n (s, t, x, y)|

≤ 2c21 exp(c1K
2
1 (t− s))∆npc(s, t, x, y)B(1,

γ

2
)(t− s)

γ
2 ,

(3.7)

where c1, c are as in Lemma 1.

Proof. Let us write:

|p̃⊗H(1)(s, t, x, y)− p̃n ⊗H(1)
n (s, t, x, y)| ≤

|(p̃− p̃n)⊗H(s, t, x, y)|+ |p̃n(s, u, x, z)⊗
(
H −Hn

)
(s, t, x, y)| := I + II.(3.8)

From Lemma 1 and (2.9) we readily get:

(3.9) |(p̃−p̃n)⊗H(s, t, x, y)| ≤ c21 exp(c1K
2
1 (t−s))∆npc(t−s, y−x)B(1,

γ

2
)(t−s) γ

2 .

Now we will establish that for all 0 ≤ u < t ≤ T, (z, y) ∈ (Rd)2:

(3.10) (H −Hn)(u, t, z, y) ≤ ∆n
c1 exp(c1K

2
1(t− u))

(t− u)1−
γ
2

pc(t− u, y − z).

Equations (3.10) and (2.8) give that II can be handled as I which yields the result.
It therefore remains to prove (3.10). Let us write with the notations of (3.3):

(H −Hn)(u, t, z, y) :=

[
1

2
Tr

(
(a(u, z)− a(u, y))D2

zfz,y
(
Θ(u, t, y)

))

+〈b(u, z)− b(u, y), Dzfz,y
(
Θ(u, t, y)

)
〉
]

−
[
1

2
Tr

(
(an(u, z)− an(u, y))D

2
zfz,y

(
Θn(u, t, y)

))

+〈bn(u, z)− bn(u, y), Dzfz,y
(
Θn(u, t, y)

)
〉
]
.

Thus,

(H −Hn)(u, t, z, y)

=
1

2

[
Tr

(
(a(u, z)− a(u, y)){D2

zfz,y
(
Θ(u, t, y)

)
−D2

zfz,y
(
Θn(u, t, y)

)
}
)

−Tr

(
[(an(u, z)− an(u, y)− (a(u, z)− a(u, y))]D2

zfz,y
(
Θn(u, t, y)

))]

+

[
〈b(u, z)− b(u, y), {Dzfz,y

(
Θ(u, t, y)

)
−Dzfz,y

(
Θn(u, t, y)

)
}〉

−〈[(bn(u, z)− bn(u, y))− (b(u, z)− b(u, y))], Dzfz,y
(
Θn(u, t, y)

)]
.
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Observe now that, similarly to (3.6) one has for all i ∈ {1, 2}:

|Di
zfz,y

(
Θ(u, t, y)

)
|+ |Di

zfz,y
(
Θn(u, t, y)

)
| ≤ c̃1 exp(c̃1K

2
1 (t− u))

(t− u)i/2
pc̃(t− u, y − z),

|Di
zfz,y

(
Θ(u, t, y)

)
−Di

zfz,y
(
Θn(u, t, y)

)
| ≤ c̃1∆n exp(c̃1K

2
1 (t− s))

(t− u)i/2
pc̃(t− u, y − z).

Thus, provided that c1, c have been chosen large and small enough respectively in
Lemma 1, the Hölder continuity assumption in (A4) gives:

|(H −Hn)(u, t, z, y)| ≤
c1∆n exp(c1K

2
1(t− u))

(t− u)1−γ/2
pc(t− u, y − z).

This establishes (3.10). �

The following Lemma associated with Lemmas 1 and 2 allows to complete the
proof of Theorem 1.

Lemma 3 (Difference of the iterated kernels). For all 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2

and for all r ∈ N:

|(p̃⊗H(r) − p̃n ⊗H(r)
n )(s, t, x, y)|

≤ (r + 1) exp(c1K
2
1(t− s))∆n

cr+1
1

[
Γ(γ2 )

]r

Γ(1 + r γ2 )
pc(t− s, y − x)(t− s)

rγ
2 .

(3.11)

where c, c1 are as in Lemma 1.

Proof. Observe that Lemmas 1 and 2 respectively give (3.11) for r = 0 and r = 1.
Let us assume that it holds for a given r ∈ N

∗ and let us prove it for r + 1.

Let us denote for all r ≥ 1, ηr(s, t, x, y) := |(p̃ ⊗ H(r) − p̃n ⊗ H
(r)
n )(s, t, x, y)|.

Write

ηr+1(s, t, x, y) ≤ |[p̃⊗H(r) − p̃n ⊗H(r)
n ]⊗H(s, t, x, y)|

+ |p̃n ⊗H(r)
n ⊗ (H −Hn)(s, t, x, y)|

≤ ηr ⊗ |H |(s, t, x, y) + |p̃n ⊗H(r)
n | ⊗ |(H −Hn)|(s, t, x, y).

Recall now that under (A), the terms |H |(s, t, x, y) and |p̃n ⊗H
(r)
n | satisfy respec-

tively and uniformly in n the controls of equations (2.9), (2.10). Thus thanks to
(3.10) and the induction hypothesis we get the result. �

Theorem 1 now simply follows from the controls of Lemma 3, the parametrix
expansions (2.6) and (2.7) of the densities p, pn and the asymptotics of the Γ func-
tion.

3.2. Stability for Markov Chains. In this Section we prove Theorem 2. The
strategy is rather similar to the one of Section 3.1 thanks to the series representation
of the densities of the chains given in Proposition 2.

Recall first from Section 2.2 that we have the following representations for the
density ph, phn of the Markov chains Y, Y (n) in (1.3). For all 0 ≤ ti < tj ≤ T, (x, y) ∈
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(Rd)2:

ph(ti, tj, x, y) =

j−i∑

r=0

p̃h ⊗h H
h,(r)(ti, tj , x, y),

phn(ti, tj , x, y) =

j−i∑

r=0

p̃hn ⊗h H
h,(r)
n (ti, tj , x, y).

3.2.1. Comparison of the frozen densities. The first key point for the analysis with
Markov chains is the following Lemma.

Lemma 4 (Controls and Comparison of the densities and their derivatives). There
exist c, c1 s.t. for all 0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2 and for all multi-index
α, |α| ≤ 4:

|Dα
x p̃

h(ti, tj , x, y)|+ |Dα
x p̃

h
n(ti, tj , x, y)| ≤

1

(tj − ti)|α|/2
ψc,c1(tj − ti, y − x),

|Dα
x p̃

h(ti, tj , x, y)−Dα
x p̃

h
n(ti, tj , x, y)| ≤

∆n

(tj − ti)|α|/2
ψc,c1(tj − ti, y − x),

where

- Under (IG):

ψc,c1(tj − ti, y − x) := c1 exp(c1K
2
1(tj − ti))pc(tj − ti, y − x),

- Under (IP,M):

ψc,c1(tj − ti, y − x) :=
c1(1 ∨ (tj − ti)

1/2)

(tj − ti)d/2
QM−d−5

( |y − x|
(tj − ti)1/2

)
.

Proof. Note first that under (IG) the statement has already been proved in Lemma
1. We thus assume that (IP,M) holds. Introduce first the random vectors with zero
mean:

Z̃y
k,j :=

1

(tj − tk)1/2

j−1∑

l=k

σ(tl, y)
√
hξl+1,

Z̃
y,(n)
k,j :=

1

(tj − tk)1/2

j−1∑

l=k

σn(tl, y)
√
hξl+1.

Denoting by qj−k, qj−k,n their respective densities, one has:

Dα
x p̃

h(tk, tj , x, y) =
1

(tj − tk)(d+|α|)/2
(−1)|α|Dα

z qj−k(z)|
z=

y−x−h
∑j−1

l=k
b(tl,y)

(tj−tk)1/2

,

Dα
x p̃

h
n(tk, tj , x, y) =

1

(tj − tk)(d+|α|)/2
(−1)|α|Dα

z qj−k,n(z)|
z=

y−x−h
∑j−1

l=k
bn(tl,y)

(tj−tk)1/2

.

(3.12)

From the Edgeworth expansion of Theorem 19.3 in Bhattacharya and Rao [BR76],
for qj−k, qj−k,n, one readily derives under (A), for |α| = 0 that there exists c1 s.t.
for all 0 ≤ tk < tj ≤ T, (x, y) ∈ (Rd)2,

(3.13) p̃h(tk, tj , x, y) + p̃hn(tk, tj , x, y) ≤
c1

(tj − tk)d/2
1(

1 + |x−y|
(tj−tk)1/2

)m ,
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for all integer m < M − d, where we recall that M stands for the initial decay of
the density fξ of the innovations bounded by QM (see equation (1.5)).

We can as well derive similarly to the proof of Theorem 19.3 in [BR76], see also
Lemma 3.7 in [KM00], that for all α, |α| ≤ 4:
(3.14)

|Dα
x p̃

h(tk, tj , x, y)|+ |Dα
x p̃

h
n(tk, tj , x, y)| ≤

c1
(tj − tk)(d+|α|)/2

1(
1 + |x−y|

(tj−tk)1/2

)m ,

for all m < M − d− 4. Note indeed that differentiating in Dα
x the density and the

terms of the Edgeworth expansion corresponds to a multiplication of the Fourier
transforms involved by ζα, ζ standing for the Fourier variable. Hence, from our
smoothness assumptions in (IP,M), after obvious modifications, the estimates of
Theorem 9.11 and Lemma 14.3 from [BR76] apply for these derivatives. With
these bounds, one then simply has to copy the proof of Theorem 19.3. Roughly
speaking, taking derivatives deteriorates the concentration of the initial control in
(3.13) up to the derivation order. On the other hand, the bound in (3.13) is itself
deteriorated w.r.t. the initial concentration condition in (1.5). The key point is that
the techniques of Theorem 19.3 in [BR76] actually provide concentration bounds
for inhomogeneous sums of random variables with concentration as in (1.5) in terms
of the moments of the innovations. To explain the bound in (3.13) let us observe
that the mth moment of ξ is finite for m < M − d.

Equations (3.13) and (3.14) give the first part of the lemma. Still from the proof
of Theorem 19.3 in [BR76], one gets, under (A), that there exists C > 0 s.t. for all
multi-indexes ᾱ, |ᾱ| ≤ 4, β̄, |β̄| ≤ m ≤M − d− 5 for all j > k:

(3.15)

∫

Rd

|ζᾱ|
{
|Dβ̄

ζ q̂j−k(ζ)| + |Dβ̄
ζ q̂j−k,n(ζ)|

}
dζ ≤ C,

where q̂j−k(ζ), q̂j−k,n(ζ) stand for the respective characteristic functions of the ran-

dom variables Z̃y
k,j , Z̃

y,(n)
k,j at point ζ.

To investigate the quantity |Dα
x p̃

h(tk, tj , x, y)−Dα
x p̃

h
n(tk, tj , x, y)| thanks to (3.12)

define now for all α, |α| ≤ 4, β, |β| ≤ m ≤M − d− 5:

∀z ∈ R
d, Θj−k,n(z) := zβDα

z (qj−k(z)− qj−k,n(z)) ,

∀ζ ∈ R
d, Θ̂j−k,n(ζ) := (−i)|α|+|β|Dβ

ζ (ζα {q̂j−k(ζ) − q̂j−k,n(ζ)}) .(3.16)

Let us now estimate the difference between the characteristic functions. From
the Taylor formula, we are led to investigate for all multi-indexes β̄, ᾱ, |β̄| ≤ |β|,
|ᾱ| ≤ |α| quantities of the form:

(iβ̄)−1ζᾱ(Dβ̄
ζ q̂j−k(ζ)−Dβ̄

ζ q̂j−k,n(ζ))

= ζᾱE
[
(Z̃y

k,j)
β̄ exp[iζ · Z̃y

k,j ]− (Z̃
y,(n)
k,j )β̄ exp[iζ · Z̃y,(n)

k,j ]
]
.
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Assume first that j > k + 1. In that case, set now Z̃y
k,j,1 := Z̃y

k,⌈(j+k)/2⌉, Z̃
y
k,j,2 :=

Z̃y
k,j − Z̃y

k,j,1. Using similar notations for the perturbed process, we get:

(iβ̄)−1ζᾱ(Dβ̄
ζ q̂j−k(ζ)−Dβ̄

ζ q̂j−k,n(ζ)) =

ζᾱE
[
(Z̃y

k,j,1 + Z̃y
k,j,2)

β̄ exp[iζ · Z̃y
k,j,1] exp[iζ · Z̃

y
k,j,2]

]
−

E

[
(Z̃

y,(n)
k,j,1 + Z̃

y,(n)
k,j,2 )

β̄ exp[iζ · Z̃y,(n)
k,j,1 ] exp[iζ · Z̃

y,(n)
k,j,2 ]

]
=

ζᾱ

{
∑

l,|l|≤|β̄|

Cl
β̄E

[
(Z̃y

k,j,1)
l exp[iζ · Z̃y

k,j,1]
]
E

[
(Z̃y

k,j,2)
β̄−l exp[iζ · Z̃y

k,j,2]
]
−

∑

l,|l|≤|β̄|

Cl
β̄E

[
(Z̃

y,(n)
k,j,1 )

l exp[iζ · Z̃y,(n)
k,j,1 ]

]
E

[
(Z̃

y,(n)
k,j,2 )

β̄−l exp[iζ · Z̃y,(n)
k,j,2 ]

]}
=

ζᾱ

{
∑

l,|l|≤|β̄|

Cl
β̄

{[
E

[
(Z̃y

k,j,1)
l exp[iζ · Z̃y

k,j,1]
]
− E

[
(Z̃

y,(n)
k,j,1 )

l exp[iζ · Z̃y,(n)
k,j,1 ]

]]

× E

[
(Z̃y

k,j,2)
β̄−l exp[iζ · Z̃y

k,j,2]
]
+ E

[
(Z̃

y,(n)
k,j,1 )

l exp[iζ · Z̃y,(n)
k,j,1 ]

]

×
[
E

[
(Z̃y

k,j,2)
β̄−l exp[iζ · Z̃y

k,j,2]
]
− E

[
(Z̃

y,(n)
k,j,2 )

β̄−l exp[iζ · Z̃y,(n)
k,j,2

]]}}
,

where in the above expression we considered the binomial expansion for multi-

indexes denoting by Cl
β̄
:= β̄!

(β̄−l)!l!
with the corresponding definitions for factorials

(see the proof of Lemma 1). Introduce now, for a multi-index l, |l| ∈ [[0, |β̄|]], the
functions:

Ψᾱ,β̄−l
1 (ζ) := ζᾱE

[
(Z̃y

k,j,2)
β̄−l exp[iζ · Z̃y

k,j,2]
]
,

Ψᾱ,l
2 (ζ) := ζᾱE

[
(Z̃

y,(n)
k,j,1 )

l exp[iζ · Z̃y,(n)
k,j,1 ]

]
,

and

E1,l(ζ) :=
[
E

[
(Z̃y

k,j,1)
l exp[iζ · Z̃y

k,j,1]
]
− E

[
(Z̃

y,(n)
k,j,1 )

l exp[iζ · Z̃y,(n)
k,j,1 ]

]]
,

E2,β̄−l(ζ) :=
[
E

[
(Z̃y

k,j,2)
β̄−l exp[iζ · Z̃y

k,j,2]
]
− E

[
(Z̃

y,(n)
k,j,2 )

β̄−l exp[iζ · Z̃y,(n)
k,j,2

]]
.

Thus, we can rewrite from the previous computations:
(3.17)

(iβ̄)−1ζᾱ(Dβ̄
ζ q̂j−k(ζ)−Dβ̄

ζ q̂j−k,n(ζ)) =
∑

l,|l|≤|β̄|

Cl
β̄

{
(E1,lΨᾱ,β̄−l

1 )(ζ) + (E2,β̄−lΨ
ᾱ,l
2 )(ζ)

}
.

Recall from (3.15) that we already have integrability for the contributions Ψᾱ,β̄−l
1 (ζ)

and Ψᾱ,l
2 (ζ). Let us thus start with the control of E1,l(ζ), E2,β̄−l(ζ). We only give

details for E1,l(ζ), the contribution E2,β̄−l can be handled similarly. Write:

|E1,l(ζ)| ≤
E[|(Z̃y

k,j,1)
l − (Z̃y,n

k,j,1)
l|] + E[|(Z̃y,n

k,j,1)
l|| exp(iζ · Z̃y

k,j,1)− exp(iζ · Z̃y,n
k,j,1)|]

≤ C
{
E[|Z̃y

k,j,1 − Z̃y,n
k,j,1|(|Z̃

y
k,j,1||l|−1 + |Z̃y,n

k,j,1||l|−1] + E[|Z̃y,n
k,j,1||l||ζ||Z̃

y
k,j,1 − Z̃y,n

k,j,1|]
}
.
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Apply now Hölder’s inequality with p1 = |l|, q1 = |l|/(|l| − 1) for the first term
and p2 = |l| + 1, q2 = (|l| + 1)/|l| for the second one so that all the contribution
appear with the same power (in order to equilibrate the constraints concerning the
intregrability conditions). One gets:

|E1,l(ζ)| ≤
C
{
E[|Z̃y

k,j,1 − Z̃y,n
k,j,1||l|]1/|l|{E[|Z̃

y
k,j,1||l|](|l|−1)/|l| + E[|Z̃y,n

k,j,1||l|](|l|−1)/|l|}+

|ζ|E[|Z̃y,n
k,j,1||l|+1]|l|/(|l|+1)

E[|Z̃y
k,j,1 − Z̃y,n

k,j,1||l|+1]1/(|l|+1)
}
.(3.18)

The point is now to prove, since we have assumed m ≤ M − d − 5 ⇐⇒ m+ 1 ≤
M − d− 4, that there exists c s.t. for all r ≤ m+ 1,

(3.19) E[|Z̃y
k,j,1 − Z̃y,n

k,j,1|r]1/r ≤ c∆n, E[|Z̃y
k,j,1|r]1/r + E[|Z̃y,n

k,j,1|r]1/r ≤ c.

Let us establish the point for the difference, the other bounds can be derived sim-

ilarly. Define for all i ∈ [[k, j]], M̃i :=
√
h
∑i−1

r=k(σ − σn)(tr, y)ξr+1. The pro-

cess (M̃i)i∈[[k,j]] is a square integrable martingale (in discrete time, w.r.t. Fi :=

σ(ξr, r ≤ i)). Its quadratic variation writes [M̃ ]i = h
∑i−1

r=k |(σ − σn)(tr , y)|2|ξr+1|2
and the Burkholder-Davies-Gundy inequalities, see e.g. Shiryaev [Shi96], give for
all r ≤M − d− 4:

(3.20) E[ sup
i∈[[k,j]]

|M̃i|r] ≤ crE[[M̃ ]
r/2
j ] = crh

r/2
E[(

j−1∑

i=k

|(σ − σn)(ti, y)|2|ξi+1|2)r/2].

If r = 2 one readily gets:

E[|Z̃y
k,j,1 − Z̃y,n

k,j,1|2] ≤
c2

(tj − tk)
E[ sup

i∈[[k,j]]

|M̃i|2] ≤
c2h

(tj − tk)
∆2

n

j−1∑

i=k

E[|ξi+1|2] ≤ c̄2∆
2
n.

Let us thus assume r > 2 and derive from (3.20)

E[|Z̃y
k,j,1 − Z̃y,n

k,j,1|r] ≤
cr

(tj − tk)r/2
E[ sup

i∈[[k,j]]

|M̃i|r]

≤ crh
r/2

(tj − tk)r/2
E[(

j−1∑

i=k

|(σ − σn)(ti, y)|r|ξi+1|r)(
j−1∑

i=k

1)r/2(1−2/r)],

applying Hölder’s inequality with p = r/2, q = r/(r − 2) for the last inequality.
This finally gives:

E[|Z̃y
k,j,1 − Z̃y,n

k,j,1|r] ≤
crh

r/2

(tj − tk)r/2
(j − k)r/2−1∆r

n

j−1∑

i=k

E[|ξi+1|r] ≤ c̄r∆
r
n.

Since we have assumed r ≤ m+1 ≤M −d− 4, this gives the first control in (3.19).
The other one readily follows replacing σ − σn by σ or σn.

From equations (3.18), (3.19) and similar controls for E2,β̄−l(ζ) we finally derive:

|E1,l(ζ)|+ |E1,β̄−l(ζ)| ≤ C1∆n(1 + |ζ|).
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As a result we have from (3.16) and (3.17):

|Dβ
ζ (ζ

α(q̂j−k(ζ) −Dβ
ζ q̂j−k,n(ζ)))|

≤ C∆n

{
∑

β̄, |β̄| ≤ |β|
ᾱ = α − (β − β̄).

∑

l,|l|≤|β̄|

(|Ψᾱ,β̄−l
1 (ζ)|+ |Ψᾱ,l

2 (ζ)|)(1 + |ζ|)
}
.

We finally derive from (3.16) and (3.15) (which thanks to the smoothness as-
sumption on QM in (IP,M) holds as well for a multi-index ᾱ, |ᾱ| = 5):

(3.21) |Θj−k,n(z)| ≤
1

(2π)d

∫

Rd

|Θ̂j−k,n(ζ)|dζ ≤ c∆n.

From (3.12) this concludes the proof for j > k + 1 and b = bn = 0. To han-

dle the drift, write now setting z := y−x
(tj−tk)1/2

, bj−k :=
h
∑j−1

i=k b(ti,y)

(tj−tk)1/2
, bj−k,n :=

h
∑j−1

i=k bn(ti,y)

(tj−tk)1/2
:

Dα
z qj−k(z − b)−Dα

z qj−k,n(z − bn) = {Dα
z qj−k −Dα

z qj−k,n}(z − b)

+{Dα
z qj−k,n(z − b)−Dα

z qj−k,n(z − bn)} =: Q1
j−k,n(z, b) +Q2

j−k,n(z, b, bn).

From (3.16) and (3.21) we get |Q1
j−k,n(z, b)| ≤ c ∆n

(1+|z|)m . Now,

|Q2
j−k,n(z, b, bn)| ≤ sup

θ∈[0,1]

|DDα
z qj−k,n(z − (θb+ (1 − θ)bn)||b − bn|

≤ c∆n(tj − tk)
1/2

(1 + |z|)m ,

exploiting again (3.15) for a multi-index ᾱ, |ᾱ| = 5. This concludes the proof if
j > k + 1. If j = k + 1 the previous arguments can be simplified and lead to the
same results. �

3.2.2. Comparison of the parametrix kernels. This step is crucial and actually the
key to the result for the Markov chains. We actually have the following Lemma.

Lemma 5 (Difference of the Discrete Kernels.). There exists c1, c s.t. for 0 ≤ tk <
tj ≤ T, (z, y) ∈ (Rd)2:

|(Hh −Hh
n)(tk, tj , z, y)| ≤

∆n

(tj − tk)1−γ/2
Φc,c1(tj − tk, z − y),

with

- Φc,c1(tj − tk, z − y) = ψc,c1(tj − tk, z − y) under (IG).

- Φc,c1(tj − tk, z − y) = ψc,c1(tj − tk, z − y)
(
1 + |z−y|

(tj−tk)1/2

)γ
, under (IP,M),

where ψc,c1 is defined according to the assumptions on the innovations in Lemma
4.

Proof. The case k = j + 1 involves directly differences of densities and could be
treated more directly than the case k > j+1. We thus focus on the latter. Introduce
for k ∈ [[0, N ]], (x,w) ∈ (Rd)2 the one step transitions:
(3.22)

T h(tk, x, w) := b(tk, x)h+h
1/2σ(tk, x)w, T

h
n (tk, x, w) := bn(tk, x)h+h

1/2σn(tk, x)w.
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From the definition of Hh, Hh
n , recalling that fξ stands for the density of the inno-

vation, the difference of the kernels writes:

(Hh −Hh
n)(tk, tj , z, y)

= h−1

∫

Rd

dwfξ(w)

[{
p̃h(tk+1, tj , z + T h(tk, z, w), y)− p̃h(tk+1, tj , z + T h(tk, y, w), y)

}

−
{
p̃hn(tk+1, tj , z + T h

n (tk, z, w), y)− p̃hn(tk+1, tj , z + T h
n (tk, y, w), y)

}]
.(3.23)

Let us now perform a Taylor expansion at order 2 with integral rest. To this end,
let us first introduce for λ ∈ [0, 1] the mappings:

ϕh
λ : R

d × R
d −→ R

(T1, T2) 7−→ Tr
(
D2

z p̃
h(tk+1, tj , z + λT1, y)[T2T

∗
2 ]
)
,

ϕh
λ,n : R

d × R
d −→ R

(T1, T2) 7−→ Tr
(
D2

z p̃
h
n(tk+1, tj , z + λT1, y)[T2T

∗
2 ]
)
.

(3.24)

Recalling as well that ξ is centered we get:

∆Hh,n(tk, tj , z, y) := (Hh −Hh
n)(tk, tj, z, y)

=

[{
Dz p̃

h(tk+1, tj , z, y) · (b(tk, z)− b(tk, y))
}

−
{
Dz p̃

h
n(tk+1, tj, z, y) · (bn(tk, z)− bn(tk, y))

}]

+h−1

∫

Rd

dwfξ(w)

∫ 1

0

dλ(1 − λ)

×
[{
ϕh
λ(T

h(tk, z, w), T
h(tk, z, w))− ϕh

λ(T
h(tk, y, w), T

h(tk, y, w))
}

−
{
ϕh
λ,n(T

h
n (tk, z, w), T

h
n (tk, z, w))− ϕh

λ,n(T
h
n (tk, y, w), T

h
n (tk, y, w))

}]

=: (∆1H
h,n +∆2H

h,n)(tk, tj , z, y),(3.25)

where for i ∈ {1, 2}, ∆iH
h,n is associated with the terms of order i. The idea is

now to make ∆n appear explicitly. The term ∆1H
h,n is the easiest to handle. We

can indeed readily write:

∆1H
h,n(tk, tj , z, y)

=

[{
Dz p̃

h(tk+1, tj , z, y) · [(b(tk, z)− b(tk, y))− (bn(tk, z)− bn(tk, y))]
}

−
{
(Dz p̃

h
n −Dz p̃

h)(tk+1, tj , z, y) · (bn(tk, z)− bn(tk, y))
}]
.

From Assumptions (A3), (A4) and Lemma 4 we derive:

(3.26) |∆1H
h,n(tk, tj , z, y)| ≤

∆n{1 + κ|z − y|γ}
(tj − tk)1/2

ψc,c1(tj − tk, y − z).
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The term ∆2H
h,n is trickier to handle. Define to this end:

∆ϕh,n
λ (tk, z, y, w) :={

ϕh
λ(T

h(tk, z, w), T
h(tk, z, w))− ϕh

λ(T
h(tk, y, w), T

h(tk, y, w))
}

−
{
ϕh
λ,n(T

h
n (tk, z, w), T

h
n (tk, z, w))− ϕh

λ,n(T
h
n (tk, y, w), T

h
n (tk, y, w))

}
.

Let us then decompose:

∆ϕh,n
λ (tk, z, y, w)

:=

[{
ϕh
λ(T

h(tk, z, w), T
h(tk, z, w))− ϕh

λ(T
h(tk, z, w), T

h(tk, y, w))
}

−
{
ϕh
λ,n(T

h
n (tk, z, w), T

h
n (tk, z, w))− ϕh

λ,n(T
h
n (tk, z, w), T

h
n (tk, y, w))

}]

+

[{
ϕh
λ(T

h(tk, z, w), T
h(tk, y, w))− ϕh

λ(T
h(tk, y, w), T

h(tk, y, w))
}

+
{
ϕh
λ,n(T

h
n (tk, y, w), T

h
n (tk, y, w))− ϕh

λ,n(T
h
n (tk, z, w), T

h
n (tk, y, w))

}]

:= (∆1ϕ
h,n
λ +∆2ϕ

h,n
λ )(tk, z, y, w),(3.27)

and write from (3.25):

∆2H
h,n(tk, tj , z, y) = h−1

∫

Rd

dwfξ(w)

∫ 1

0

dλ(1 − λ)(∆1ϕ
h,n
λ +∆2ϕ

h,n
λ )(tk, z, y, w)

=: (∆21H
h,n +∆22H

h,n)(tk, tj, z, y),(3.28)

for the associated contributions in ∆2H
h,n. Again, we have to consider these two

terms separately.
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Term ∆21H
h,n. We first write from (3.27):

∆1ϕ
h,n
λ (tk, z, y, w)

=

[{
ϕh
λ(T

h(tk, z, w), T
h(tk, z, w))− ϕh

λ(T
h(tk, z, w), T

h(tk, y, w))
}
−

{
ϕh
λ(T

h(tk, z, w), T
h
n (tk, z, w))− ϕh

λ(T
h(tk, z, w), T

h
n (tk, y, w))

}]

+

[{
ϕh
λ(T

h(tk, z, w), T
h
n (tk, z, w))− ϕh

λ(T
h(tk, z, w), T

h
n (tk, y, w))

}

−
{
ϕh
λ(T

h
n (tk, z, w), T

h
n (tk, z, w))− ϕh

λ(T
h
n (tk, z, w), T

h
n (tk, y, w))

}]

−
[{
ϕh
λ,n(T

h
n (tk, z, w), T

h
n (tk, z, w))− ϕh

λ,n(T
h
n (tk, z, w), T

h
n (tk, y, w))

}

−
{
ϕh
λ(T

h
n (tk, z, w), T

h
n (tk, z, w))− ϕh

λ(T
h
n (tk, z, w), T

h
n (tk, y, w))

}]

=:

3∑

i=1

∆1iϕ
h,n
λ (tk, z, y, w).(3.29)

We now state some useful controls for the analysis. Namely, setting:

D(tk, z, y, w) := T h(tk, z, w)T
h(tk, z, w)

∗ − T h(tk, y, w)T
h(tk, y, w)

∗,

Dn(tk, z, y, w) := T h
n (tk, z, w)T

h
n (tk, z, w)

∗ − T h
n (tk, y, w)T

h
n (tk, y, w)

∗,

we have from (A3), (A4):

(|D|+ |Dn|)(tk, z, y, w) ≤ c̄(h2 + h3/2|w|+ h(1 ∧ |z − y|)γ |w|2),
|D −Dn|(tk, z, y, w) ≤ c̄∆n(h

2 + h3/2|w| + h(1 ∧ |z − y|)γ |w|2).(3.30)

From the definition of ϕh
λ in (3.24), equation (3.27) and the control (3.30), we

get:

|∆11ϕ
h,n
λ |(tk, z, y, w)

≤ c̄∆n
ψc,c1(tj − tk, y − (z + λT h(tk, z, w)))

(tj − tk)
(h2 + h3/2|w|+ h(1 ∧ |z − y|)γ |w|2).

(3.31)
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We would similarly get from Lemma 4 and (3.30):

|∆13ϕ
h,n
λ |(tk, z, y, w)

≤ c̄∆n
ψc,c1(tj − tk, y − (z + λT h

n (tk, z, w)))

(tj − tk)
(h2 + h3/2|w|+ h(1 ∧ |z − y|)γ |w|2),

|∆12ϕ
h,n
λ |(tk, z, y, w)

≤ ψc,c1(tj − tk, y − (z + θλT h(tk, z, w) + (1− θ)λT h
n (tk, z, w)))

(tj − tk)3/2

×|(T h − T h
n )(tk, z, w)||Dn|

≤ c̄∆n
ψc,c1(tj − tk, y − (z + θλT h(tk, z, w) + (1− θ)λT h

n (tk, z, w)))

(tj − tk)3/2

×(h2 + h3/2|w|+ h(1 ∧ |z − y|)γ |w|2)(h+ h1/2|w|),(3.32)

for some θ ∈ (0, 1). The point is now to get rid of the transitions appearing in the
function ψc,c1. We separate here the two assumptions at hand.

- Under (IG), it suffices to remark that by a convexity inequality, for all Θ ∈ R
d:

ψc,c1(tj − tk, y − z −Θ)

≤ c1 exp(c1K
2
1 (tj − tk))

cd/2

(2π(tj − tk))d/2
exp

(
− c

2

|z − y|2
tj − tk

)
exp

(
c

|Θ|2
tj − tk

)
.

Now, if Θ is one of the above transitions or linear combination of transitions, we
get from (3.22):

ψc,c1(tj − tk, y − z −Θ)(3.33)

≤ c1 exp(c1K
2
1 (tj − tk))

cd/2

(2π(tj − tk))d/2
exp

(
− c

2

|z − y|2
tj − tk

)
exp(cK2

2 |w|2),

up to a modification of c1 observing that h/(tj−tk) ≤ 1. Since c can be chosen small
enough in the previous controls, up to deteriorating the concentration properties
in Lemma 4, the last term can be integrated by the standard Gaussian density fξ
appearing in (3.28). We thus derive, from (3.33), (3.31), (3.32) and the definition
in (3.29), up to modifications of c, c1:

|∆1ϕ
h,n
λ |(tk, z, y, w) ≤

∆nhc̄ψc,c1(tj − tk, z − y) exp(c|w|2)
{
1 +

|w|
(tj − tk)1/2

+
|z − y|γ |w|2
tj − tk

}
,

which plugged into (3.28) yields up to modifications of c, c1:

(3.34) |∆Hh,n
21 (tk, tj , z, y)| ≤

∆nψc,c1(tj − tk, z − y)

(tj − tk)1−γ/2
.

- Under (IP,M), in the off diagonal regime |z − y| ≥ c(tj − tk)
1/2 we have to discuss

according to the position of w w.r.t. y − z. With the notations of (A3), introduce
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D := {w̄ ∈ R
d : Λh1/2|w̄| ≤ |z − y|/2}. If w ∈ D, then, still from (3.31), (3.32),

(|∆11ϕ
h,n
λ |+ |∆13ϕ

h,n
λ |)(tk, z, y, w)

≤ c̄∆n
ψc,c1(tj − tk, y − z)

(tj − tk)
(h2 + h3/2|w| + h(1 ∧ |z − y|)γ |w|2),

|∆12ϕ
h,n
λ |(tk, z, y, w)

≤ c∆n
ψc,c1(tj − tk, y − z)

(tj − tk)3/2
(h2 + h3/2|w| + h(1 ∧ |z − y|)γ |w|2)(h+ h1/2|w|).

On the other hand, when w 6∈ D we use fξ to make the off-diagonal bound of
ψc,c1(tj − tk, y − z) appear. Namely, we can write:

fξ(w) ≤ c
1

(1 + |w|)M ≤ c
1

(1 + |z−y|

h1/2 )M−(d+4)

1

(1 + |w|)d+4

≤ c
1

(1 + |z−y|
(tj−tk)1/2

)M−(d+4)

1

(1 + |w|)d+4
,(3.35)

where the last splitting is performed in order to integrate the contribution in |w|3
coming from the upper bound for |∆12ϕ

h,n
λ | in (3.32). Plugging the above controls

in (3.28) yields:

(3.36) |∆Hh,n
21 (tk, tj , z, y)| ≤

∆nΦc,c1(tj − tk, z − y)

(tj − tk)1−γ/2
.

We emphasize that in the case of innovations with polynomial decays, the control
on the difference of the kernels again induces a loss of concentration of order γ in
order to equilibrate the time singularity.

Term ∆22H
h,n. This term can be handled with the same arguments as ∆21H

h,n.
For the sake of completeness we anyhow specify how the different contributions
appear. Namely, with the notations of (3.27) and (3.28):

∆2ϕ
h,n
λ (tk, z, y, w) =

∫ 1

0

dλ
{
DT1ϕ

h
λ(T

h(tk, y, w) + λ(T h(tk, z, w)− T h(tk, y, w)), T
h(tk, y, w))

·(T h(tk, z, w)− T h(tk, y, w))−
DT1ϕ

h
λ,n(T

h
n (tk, y, w) + λ(T h

n (tk, z, w)− T h
n (tk, y, w)), T

h
n (tk, y, w))

·(T h
n (tk, z, w)− T h

n (tk, y, w))
}

=
{∫ 1

0

dλ
{
DT1ϕ

h
λ(T

h(tk, y, w) + λ(T h(tk, z, w)− T h(tk, y, w)), T
h(tk, y, w))

·[(T h(tk, z, w)− T h(tk, y, w))− (T h
n (tk, z, w)− T h

n (tk, y, w))]
}

−
{∫ 1

0

dλ
[
DT1ϕ

h
λ,n(T

h
n (tk, y, w) + λ(T h

n (tk, z, w)− T h
n (tk, y, w)), T

h
n (tk, y, w))

−DT1ϕ
h
λ(T

h(tk, y, w) + λ(T h(tk, z, w)− T h(tk, y, w)), T
h(tk, y, w))

]

·(T h
n (tk, z, w)− T h

n (tk, y, w))
}

=: (∆21ϕ
h,n
λ +∆22ϕ

h,n
λ )(tk, z, y, w).
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In ∆21ϕ
h,n
λ we have sensitivities of order 3 for the density, giving time singularities

in (tj − tk)
−3/2, which are again equilibrated by the the multiplicative factor:

|T h(tk, y, w)[T
h(tk, y, w)]

∗|
×|(T h(tk, z, w)− T h(tk, y, w))− (T h

n (tk, z, w)− T h
n (tk, y, w))|

≤ c̄(h2 + h3/2|w|+ h|w|2)∆n(h+ h1/2(1 ∧ |z − y|)γ |w|),
where the last inequality is obtained similarly to (3.30) using as well (A4). The

same kind of controls can be established for ∆22ϕ
h,n
λ . Anyhow, the analysis of

this term leads to investigate the difference of third order derivatives, which finally
yields contributions involving derivatives of order four. This is what induces the
final concentration loss under (IP,M), i.e. we need to integrate a term in |w|4 (see
also equation (3.35) in which we performed the splitting of fξ on the off-diagonal

region to integrate a contribution in |w|3).
We can thus claim that

|∆Hh,n
22 (tk, tj , z, y)| ≤

∆nΦc,c1(tj − tk, z − y)

(tj − tk)1−γ/2
.

Plugging the above control and (3.36) (or (3.34) under (IG)) into (3.28) we derive:

|∆Hh,n
2 (tk, tj , z, y)| ≤

∆nΦc,c1(tj − tk, z − y)

(tj − tk)1−γ/2
,

which together with (3.26) and the decomposition (3.25) completes the proof. �

From Lemmas 4 and 5 the proof of Theorem 2 is achieved following the steps of
Lemmas 2 and 3. The point is that we get want to justify the following inequality:

|(p̃h ⊗h H
h,(r) − p̃hn ⊗h H

h,(r)
n )(ti, tj , x, y)|(3.37)

≤ (r + 1)∆n

(1 ∨ T )cr+1
1

[
Γ(γ2 )

]r

Γ(1 + r γ2 )

cd/2

(tj − ti)d/2
QM−(d+5+γ)

(
y − x

(tj − ti)1/2/c

)
(tj − ti)

rγ
2 .

The only delicate point, w.r.t. the analysis performed for diffusions, consists in
controlling the convolutions of the densities with polynomial decay. To this end,
we can adapt a technique used by Kolokoltsov [Kol00] to investigate convolutions
of “stable like” densities. Set m := M − (d + 5 + γ) and denote for all 0 ≤ i <

j ≤ N, x ∈ R
d by qm(tj − ti, x) :=

cd/2

(tj−ti)d/2
QM−(d+5+γ)

(
x

(tj−ti)1/2/c

)
the density

with polynomial decay appearing in Lemmas 4 and 5. Let us consider for fixed
i < k < j, (x, y) ∈ (Rd)2 the convolution:

(3.38) I1tk(ti, tj , x, y) :=

∫

Rd

dzqm(tk − ti, z − x)qm(tj − tk, y − z).

- If |x−y| ≤ c(tj − ti)1/2 (diagonal regime for the parabolic scaling), it is easily seen
that one of the two densities in the integral (3.38) is homogeneous to qm(tj−ti, y−x).
Namely, if (tk − ti) ≥ (tj − ti)/2, qm(tk − ti, z − x) ≤ cd/2cm

(tk−ti)d/2
≤ (2c)d/2cm

(tj−ti)d/2
≤

c̃qm(tj − ti, y − x). Thus,

I1tk(ti, tj , x, y) ≤ c̃qm(tj − ti, y − x)

∫

Rd

dzqm(tj − tk, y − z) = c̃qm(tj − ti, y − x).

If (tk−ti) < (tj−ti)/2, the same operation can be performed taking qm(tj−tk, y−z)
out of the integral.
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- If |x − y| > c(tj − ti)
1/2 (off-diagonal regime), we introduce A1 := {z ∈ R

d :
|x − z| ≥ 1

2 |x − y|}, A2 := {z ∈ R
d : |z − y| ≥ 1

2 |x − y|}. Every z ∈ R
d belongs

at least to one of the {Ai}i∈{1,2}. Let us assume w.l.o.g. that z ∈ A2. Then

|z − y| ≥ c
2 (tj − ti)

1/2 ≥ c
2 (tj − tk)

1/2 so that the density qm(tj − tk, y− z) is itself
in the off-diagonal regime. Write:

∫

A2

dzqm(tk − ti, z − x)qm(tj − tk, y − z)

≤
∫

A2

dzqm(tk − ti, z − x)
cm(tk − ti)

(m−d)/2

|z − y|m

≤ cm2m(tj − ti)
(m−d)/2

|x− y|m
∫

A2

dzqm(tk − ti, z − x) ≤ c̄qm(ti, tj, x, y),

recalling that, under (IP,M), m > d for the last but one inequality. The same
operation could be performed on A1.

We have thus established that, there exist c̄ > 1 s.t. for all 0 ≤ i < k < j, (x, y) ∈
(Rd)2 :

I1tk(ti, tj , x, y) ≤ c̄qm(tj − ti, y − x).

From the controls of Lemma 5 and following the strategy of Lemma 3, we will be
led to consider convolutions of the previous type involving Γ functions. The above
strategy thus yields (3.37) by induction.

4. Euler scheme with Hölder Coefficients

This section is devoted to the proof of Theorem 3.

4.1. Strategy. Fix a given time step h := T/N,N ∈ N
∗ and define tj := jh, j ∈ N.

For a given i ∈ [[0, N), let (Xti,x
t )t∈[ti,T ] stand for the diffusion (1.1) starting from

x at time ti, with coefficients b, σ satisfying (A) and the additional γ/2-Hölder

continuity in time. Denote by (Xti,x,h
tj )j≥i the associated Euler scheme which we

will from now on view as a Markov Chain with dynamics of the form (1.3). It
has been established in Section 2 that for all (i, j) ∈ [[0, N ]]2, j > i, the respective

densities of Xti,x
tj , Xti,x,h

tj , denoted by p(ti, tj , x, ·), ph(ti, tj , x, ·), exist.
To investigate the weak error p(ti, tj , x, .)−ph(ti, tj, x, .), the idea is now to intro-

duce perturbed processes (X
ti,x,(n)
t )t≥ti , (X

ti,x,h,(n)
tj )tj≥ti with dynamics (1.2) and

(1.3) respectively, which also have densities, denoted by pn(ti, tj , x, .), p
h
n(ti, tj , x, .)

at time tj and s.t. for all y ∈ R
d, the difference:

pn(ti, tj , x, y)− phn(ti, tj, x, y)

can be explicitly investigated. Now, if the coefficients of (X
ti,x,(n)
t )t≥ti , (X

ti,x,h,(n)
tj )tj≥ti

satisfy (A), the γ/2-Hölder continuity in time, and are smooth, Theorem 1.1 in
[KM02] extends to the inhomogeneous case and precisely gives an error expansion
for the quantity pn − phn in terms of increasing powers of h. This is why a nat-
ural choice consists in considering a mollification procedure of the coefficients as
perturbation.

We thus decompose the global error as:

(p− ph)(ti, tj , x, y)

= (p− pn)(ti, tj , x, y) + (pn − phn)(ti, tj , x, y) + (phn − ph)(ti, tj , x, y).
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The idea is then to control the differences p − pn, p
h − phn thanks to Theorems 1

and 2 respectively and to exploit the error expansion in [KM02] for pn − phn. We
point out that two error sources will need to be equilibrated. On the one hand,
if the mollified coefficients tend to the initial ones, then phn − ph and pn − p go to
zero. On the other hand, the constants in the error expansion pn − phn will depend
on the derivatives of the mollified coefficients, which explode when the mollifying
parameter goes to zero.

4.2. Mollified Coefficients. Let us now introduce the mollified coefficients de-
fined for all (t, x) ∈ [0, T ]×R

d by bn(t, x) := b(t, ·)∗ρn(x), σn(t, x) := σ(t, ·)∗ρn(x)
where ρn is a spatial mollifier, i.e. for all n ∈ N, x ∈ R

d,

ρn(x) := ndρ(nx), ρ ∈ C∞(Rd,R+),

∫

Rd

ρ(y)dy = 1, |supp(ρ)| ⊂ K,

for some compact set K ⊂ R
d.

Write now for all (t, x) ∈ [0, T ]× R
d:

b(t, x)− bn(t, x) :=

∫

Rd

{b(t, x)− b(t, y)}ρn(x− y)dy

=

∫

Rd

{b(t, x)− b(t, x− z

n
)}ρ(z)dz.

From the Hölder continuity of b assumed in (A3) and the above equation, we
deduce that bn satisfies (A3) as well and that:

∆n,b ≤ Cn−γ , C := κ

∫

K

|z|γρ(z)dz.

The same analysis can be performed for σn, so that |σ(t, .)−σn(t, .)|∞ ≤ Cn−γ . We
anyhow need to control the Hölder norm as well. Precisely, for all t ∈ R

+, (x, y) ∈
(Rd)2:

[σ(t, x) − σn(t, x)]− [σ(t, y)− σn(t, y)]

=

∫

Rd

[σ(t, x) − σ(t, x− z

n
)]− [σ(t, y)− σ(t, y − z

n
)]ρ(z)dz.

It readily follows from the γ-Hölder continuity of σ that one has the following
controls:

|[σ(t, x) − σn(t, x)] − [σ(t, y)− σn(t, y)]| ≤ 2(κ ∨ C)(|x − y|γ ∧ n−γ).(4.1)

4.2.1. Theorems 1 and 2 for Mollified coefficients. From (4.1) one easily derives,
observing that one of the two terms is greater or equal than the other one, that:

(4.2) |σ − σn|εn ≤ Cn−(γ−εn), ∀εn ∈ (0, 1), ∀n ∈ N
∗,

and where εn is meant to tend to 0 with n. We now want to exploit the results
from Theorems 1 and 2 taking ∆n := Cn−(γ−εn). This choice induces to consider
εn as Hölder index in (A3). The difficulty, w.r.t. the previous proofs is to thor-
oughly specify how the small Hölder regularity, here in εn, affects the constants in
the expansions. From Section 3 (especially Lemma 3), we have to investigate the
convergence of the series:

ST (εn) :=
∑

r≥0

(r + 1)cr+1
1

Γ( εn2 )r

Γ(1 + r εn2 )
T

rεn
2 .
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We can assume w.l.o.g. that T ≤ 1, so that ST (εn) ≤ S1(εn). Set r0 := ⌈ 2
εn
⌉ and

write:

S1(εn) ≤ c
∑

k∈N

(k + 1)r0
∑

kr0≤r<(k+1)r0

{c1Γ( εn2 )}r
Γ(1 + k)

≤ c
∑

k∈N

(k + 1)r0
Γ(k + 1)

∑

kr0≤r<(k+1)r0

{c1(2ε−1
n + exp(−1))}r

≤ cr20
∑

k∈N

(k + 1)

Γ(k + 1)
[c1(2ε

−1
n + exp(−1))r0 ]k+1

≤ C exp(c(2ε−1
n + 1)2ε

−1
n +1).(4.3)

With the notations introduced in Section 4.1, we derive from (4.3), following the
proofs of Theorems 1 and 2 (under (IG)) that there exist constants C, c s.t. for all
(j, x, y) ∈ (i, N ]]× (Rd)2:

|p− pn|(ti, tj , x, y) + |ph − phn|(ti, tj , x, y)
≤ Cn−γ+εn exp(c(2ε−1

n + 1)2ε
−1
n +1)pc(ti, tj , x, y).

(4.4)

4.2.2. Auxiliary Results for Mollifiers. Finally, let us give some useful controls on
the derivatives of the mollified coefficients that will be needed for the analysis below.
These results will be crucial to analyze the weak error between the diffusion with
mollified coefficients and the Euler scheme.

For all multi-index α, |α| ∈ [[1, 4]] and (t, x) ∈ [0, T ]× R
d write:

Dα
xσn(t, x) =

∫

Rd

σ(t, z)Dα
xρn(x − z)dz

=

∫

Rd

[σ(t, z)− σ(t, x)]Dα
xρn(x − z)dz.

Indeed, setting for all x ∈ R
d, gn(x) :=

∫
Rd ρn(x − z)dz = 1 we have Dα

x gn(x) :=∫
Rd D

α
xρn(x − z)dz = 0. Thus, since |Dα

xρn(x − z)| ≤ cn|α|+d|Dα
wρ(w)||w=n(x−z),

we derive:

|Dα
xσn(t, x)| ≤ c

∫

Rd

|σ(t, z)− σ(t, x)|nd+|α||Dα
wρ(w)|w=n(x−z)dz

≤ cκn|α|−γ

∫

Rd

(n|z − x|)γnd|Dα
wρ(w)|w=n(x−z)dz ≤ cn|α|−γ ,

exploiting the Hölder continuity assumption (A3) for σ in the last but one in-
equality and the assumptions on ρ for the last one. Similarly, we derive for all
(t, x, y) ∈ [0, T ]× (Rd)2:

|Dα
xσn(t, x)−Dα

xσn(t, y)| ≤
∫

Rd

|σ(t, x− z)− σ(t, y − z)|nd+|α||Dα
xρ(w)|w=nzdz

≤ κn|α||x− y|γ .

The same bounds hold for bn as well. We can summarize those controls as follows:

|Dα
x bn|∞ + |Dα

xσn|∞ ≤ cn|α|−γ , |Dα
xσn|γ ≤ cn|α|.(4.5)
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4.3. Error Analysis Through Stability. With the notations of Section 4.1 write
now for all 0 ≤ i < j ≤ N, (x, y) ∈ (Rd)2 from (4.4):

|p(ti, tj , x, y)− ph(ti, tj , x, y)| ≤
|p− pn|(ti, tj , x, y) + |(pn − phn)|(ti, tj , x, y) + |phn − ph|(ti, tj , x, y)

≤ Cn−γ+εn exp(c(2ε−1
n + 1)2ε

−1
n +1)pc(tj − ti, y − x) + |(pn − phn)|(ti, tj , x, y).

(4.6)

Our goal is now to choose a suitable sequence (εn)n≥1 to make the contribution

nεn exp(c(2ε−1
n + 1)2ε

−1
n +1) go rather slowly to infinity, so that we can hope to get

an equilibrium with the error coming from the Euler discretization in (4.6) and
analyzed below.

Let us consider a specific sequence εn := 2 log3(n)
log2(n)

, where we denote for k ∈
N, by logk(x) the kth iterated logarithm of x. Setting bn := nεn and an :=

exp
(
c(2ε−1

n + 1)2ε
−1
n +1

)
, we get that:

log2(bn) = log(εn log(n)) = log(2) + log4(n)− log3(n) + log2(n),

log2(an) = log(c(2ε−1
n + 1)2ε

−1
n +1) = log(c) + (2ε−1

n + 1) log(2ε−1
n + 1)

= log(c) + (
log2(n)

log3(n)
+ 1) log(2ε−1

n (1 +
εn
2
))

= log(c) + (
log2(n)

log3(n)
+ 1){log(2ε−1

n ) + log(1 +
εn
2
))}

= log(c) + (
log2(n)

log3(n)
+ 1){log3(n)− log4(n) + log(1 +

εn
2
)}

= log2(n)−
log2(n) log4(n)

log3(n)
+ log3(n)− log4(n) +Rn,

Rn := log(c) + log(1 +
log3(n)

log2(n)
)

{
log2(n)

log3(n)
+ 1

}
.

It is easily seen that there exists a finite constant c̄ > 0 s.t. for all n large enough,
Rn ≤ c̄ and that log2(bn) ≥ log2(an) − c̄. By monotonicity of the exponential we
thus derive that there exists c := c(c̄) > 0 s.t. for all n ≥ 0:

(4.7) bnan = nεn exp(c(2ε−1
n + 1)2ε

−1
n +1) ≤ c(bn)

2 = cn2εn .

To analyze the last contribution in equation (4.6), we recall that since the den-
sities pn, p

h
n are now respectively associated with a diffusion process and its Euler

scheme with smooth coefficients, they can be compared thanks to the results in
[KM02] adapted to the current inhomogeneous setting. The only delicate, but cru-
cial, point is that we must here specify the dependence on the derivatives of the
coefficients, which here explode when n goes to infinity. Precisely, from Theorem
1.1, Theorem 2.1 and their proofs in [KM02] we have:

(pn − phn)(ti, tj , x, y) =

(pn − pdn)(ti, tj , x, y) +
h

2

{
pdn ⊗h (L̃n

.,∗ − L̃.∗,n)2phn(ti, tj , x, y)
}

+h2Rn(ti, tj , x, y),

(4.8)
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where we denote for k ∈ {1, 2}, t ∈ (ti, tj), (L̃
n
t,∗)

kφ(x, y) := (Ln
t,ξ)

kφ(x, y))|ξ=x,

(L̃∗,n
t )kφ(x, y) := (Ln

t,ξ)
kφ(x, y))|ξ=y for

Ln
t,ξφ(x, y) = 〈bn(t, ξ), Dxφ(x, y)〉 +

1

2
Tr(an(t, ξ)D

2
xφ(x, y)).

Observe that Ln
t φ(x) = Ln

t,∗φ(x), but more generally the operators do not coin-

cide anymore when iterated. The notations L̃n
.,∗, L̃.

∗,n in (4.8) are used to empha-
size the time dependence of the operators in the discrete convolution ⊗h. Also

pdn(ti, tj , x, y) :=
∑

r∈N
p̃n ⊗h H

(r)
n (ti, tj , x, y) is the expression obtained from the

parametrix expansion of the diffusion density (2.5) replacing the continuous time by
the discrete time convolution. Again, the subscript n is meant to explicitly express
the dependence on the mollified coefficients. Also, even though pdn(ti, tj, x, .) is not
a priori a density, we will call it so with a slight abuse of terminology. We mention
carefully that for the second contribution in the previous expansion the smoothness
in time of the coefficients is not needed. On the other hand, it is clearly required to
derive some convergence rates, since we investigate the difference between integrals
and Riemann sums to control pn − pdn (see Proposition 4 and its proof below).

The contribution h2Rn(ti, tj , x, y) can be seen as a remainder. It involves iterated
differences of generators up to order 3. When coefficients are smooth, this term is
negligible w.r.t. to the other ones in (4.8). Observe anyhow that, since it involves
derivatives of the heat kernel up to order 6 (whereas the first term only up to order
4), and that the derivatives of our coefficients explode with n (see equation (4.5)),
this term will actually dominate in the previous expansion.

The key elements are now the following Propositions. The first one gives bounds
for the derivatives of the densities involved in the parametrix series. The second one
controls the difference between the discrete and continuous convolutions in (4.8).

Proposition 3 (Controls for the derivatives of the densities). Let α, |α| ≤ 6 be a
multi-derivation index. There exist constants C, c s.t. for all 0 ≤ s < t ≤ T, (x, y) ∈
(Rd)2:

|Dα
x p̄n(s, t, x, y)| ≤

C

(t− s)|α|/2
pc(t− s, y − x), |α| ≤ 2,

|Dα
x p̄n(s, t, x, y)| ≤

C

(t− s)|α|/2
pc(t− s, y − x)(1 + n|α|−2(t− s)γ/4), |α| ≥ 3,

|Dα
y p̄n(s, t, x, y)| ≤

Cn|α|−γ

(t− s)|α|/2
pc(t− s, y − x).

(4.9)

where in the above expression p̄n can be any of the densities pn, p
d
n, p

h
n. For p

d
n, p

h
n,

s, t are taken on the time grid.

Remark 3. We point out that the previous controls for p̄n = pn improve in some
sense those of [IKO62], since we do not exploit any smoothness in time of the
coefficients and we get the same pointwise controls for the derivatives of the non
degenerate heat-kernel with Hölder coefficients in space up to order 2.

Proposition 4 (Bounds for the difference between continuous and discrete time
convolutions). There exists C, c s.t. for all 0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2:

(4.10) |(pn − pdn)(ti, tj , x, y)| ≤ C

{
h(γ−εn)/2 +

n2−γh

(tj − ti)1−γ/2

}
pc(tj − ti, y − x).
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We postpone the proof of Propositions 3 and 4 for clarity. It now remains to
exploit Propositions 3, 4 and (4.8) to specifically control how the weak error for the
densities depends on the explosive norms of the mollified coefficients.

Observe from Proposition 3 that, for all k ∈ [[1, j − 1]], (z, y) ∈ (Rd)2:

|(L̃n
tk,∗ − L̃∗,n

tk )phn(tk, tj , z, y)| ≤
C

(tj − tk)1−γ/2
pc(tj − tk, y − z).

We analyze the contribution pdn ⊗h (L̃n
.,∗ − L̃∗,n

. )2phn](ti, tj , x, y) in (4.8) thanks
to Proposition 3 as follows:

|[pdn ⊗h (L̃n
.,∗ − L̃∗,n

. )2phn](ti, tj , x, y)| ≤ Ch
{ ∑

k∈[[i+1,⌈(i+j)/2⌉]]

∫

Rd

n1−γ

(tk − ti)1/2
pc(tk − ti, z − x)[

n(tj − tk)
γ/4

(tj − tk)3/2
]pc(tj − tk, y − z)dz

+
∑

k∈[[⌈(i+j)/2⌉+1,j−1]]

∫

Rd

n2−γ

(tk − ti)
pc(tk − ti, z − x)

1

(tj − tk)1−γ/2
pc(tj − tk, y − z)dz

}
,

where we perform one integration by part w.r.t. z for the first integral and two for
the second one (taking once the adjoints). We thus get:

(4.11) |[pdn ⊗h (L̃n
.,∗ − L̃∗,n

. )2phn](ti, tj , x, y)| ≤
C

(tj − ti)1−γ/4
n2−γpc(tj − ti, y − x).

For the remainder Rn(ti, tj , x, y) in (4.8), since it involves differential operators of
order six, the idea would be to proceed as above doing 1 integration by parts for
k ∈ [[i+1, ⌈(i+j)/2⌉]] and 4 if k ∈ [[⌈(i+j)/2⌉+1, j−1]]. In any case this would yield
an explosive constant in n4−γ . Indeed, for k ∈ [[i+1, ⌈(i+j)/2⌉]], the most explosive
term corresponds to the product of the constants associated with a first derivative
of the densities w.r.t the frozen coefficient (of order n1−γ from Proposition 3) and
the 5th derivatives of one of the densities w.r.t. to the backward (or unfrozen)
variable in Proposition 3 (of order n3). For k ∈ [[⌈(i + j)/2⌉ + 1, j − 1]], taking
twice the adjoints yields to consider derivatives up to order 4 of the coefficients or
the densities in the frozen coefficients. This still yields a bound in n4−γ (see again
Proposition 3 and (4.5)).

We thus finally derive from (4.8), (4.10) and (4.11):

|(pn − phn)(ti, tj , x, y)|

≤ C
{
h(γ−εn)/2nεn +

hn2−γ

(tj − ti)1−γ/4
+

h2n4−γ

(tj − ti)2−γ/4

}
pc(tj − ti, y − x),

which together with (4.6) and (4.7) yields:

|(p− ph)(ti, tj, x, y)|

≤ C
{
h(γ−εn)/2nεn +

1

nγ−2εn
+

hn2−γ

(tj − ti)1−γ/4
+

h2n4−γ

(tj − ti)2−γ/4

}
pc(tj − ti, y − x).

Equilibrating the two error sources, taking 1
nγ−2εn = h2n4−γ

(tj−ti)2−γ/4 ≥ hn2−γ

(tj−ti)1−γ/4 ,

leads to

|(p− ph)(ti, tj , x, y)| ≤ C(
h

(tj − ti)1−γ/4
)

γ−2εn
2−εn pc(tj − ti, y − x).
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We complete the proof of Theorem 3 letting n go to infinity in the previous expres-
sion (recall that εn →

n
0).

4.4. Proof of Proposition the Technical Results.

4.4.1. Proof of Proposition 3.

Proof. Let us establish the result for pn. We start from the parametrix representa-
tion pn discussed in Section 2. Namely, for all 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2:

pn(s, t, x, y) = p̃n(s, t, x, y) +
∑

i≥1

p̃n ⊗H(i)
n (s, t, x, y).

In all cases, we can readily derive from (2.8) and (4.5) that for the main term in
the expansion:

|Dα
x p̃n(s, t, x, y)| ≤

C

(t− s)|α|/2
pc(t− s, y − x),

|Dα
y p̃n(s, t, x, y)| ≤

Cn|α|−γ

(t− s)|α|/2
pc(t− s, y − x).

Let us now concentrate on the remainder term:

Rn(s, t, x, y) :=
∑

i≥1

p̃n ⊗H(i)
n (s, t, x, y) = p̃n ⊗ Φn(s, t, x, y),

Φn(s, t, x, y) :=
∑

i≥1

H(i)
n (s, t, x, y).

We focus on the first two inequalities in (4.9), the last one can be proved similarly.
The ideas are close to those in [IKO62], but we need to adapt them since they
considered the “forward” version of the parametrix expansions. The key point is
that, for Hölder coefficients we have bounded controls for the derivatives of the
remainder in the backward variable up to order two. It is first easily seen for the
first derivatives, since the first order derivation gives an integrable singularity in
time in the previous expansions. Indeed, from (2.8) and (2.10), one readily gets
the statement if |α| = 1. The case |α| ≥ 2 is much more subtle and needs to be
discussed thoroughly. Write indeed:

Dα
xRn(s, t, x, y) = lim

ε→0

∫ (t+s)/2

s+ε

du

∫

Rd

Dα
x p̃n(s, u, x, z)Φn(u, t, z, y)dy +

∫ t

(t+s)/2

du

∫

Rd

Dα
x p̃n(s, u, x, z)Φn(u, t, z, y)dy

:= lim
ε→0

Dα
xR

ε
n(s, t, x, y) +Dα

xR
f
n(s, t, x, y).(4.12)

The contribution Dα
xR

f
n(s, t, x, y) does not exhibit time singularities in the integral,

since on the considered integration set u−s ≥ 1
2 (t−s). Thus, still from (2.8), (2.10):

(4.13) |Dα
xR

f
n(s, t, x, y)| ≤

C

(t− s)|α|/2
pc(t− s, y − x).

The delicate contribution is indeed Dα
xR

ε
n(s, t, x, y) for which we need to be more

careful. If |α| = 2 we exploit some cancellation properties of the derivatives of the
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Gaussian kernels. Recall now that for an arbitrary w ∈ R
d, setting

p̃wn (s, u, x, z) =
1

(2π)d/2det(Σn(s, u, w))1/2

× exp

(
− 1

2
〈Σn(s, u, w)

−1(z − x− bn(s, u, w)), z − x− bn(s, u, w)〉
)
,

D2
xixj

p̃wn (s, u, x, z) =
{
(Σ−1

n (s, u, w)(z − x− bn(s, u, w))i(Σ
−1
n (s, u, w)(z − x− b(s, u, w))j

−δij(Σ−1
n (s, u, w))ii

}
p̃wn (s, u, x, z), ∀(i, j) ∈ [[1, d]]2,

(4.14)

so that

(4.15)

∫

Rd

D2
xixj

p̃w(s, u, x, z)dz = 0.

Introducing the centering function cαn(s, u, x, z) := (Dα
x p̃

w
n (s, u, x, z)) |w=x, we rewrite:

Dα
xR

ε
n(s, t, x, y) =

∫ (s+t)/2

s+ε

du

∫

Rd

(Dα
x p̃n − cαn)(s, u, x, z)Φn(u, t, z, y)dz

+

∫ (s+t)/2

s+ε

du

∫

Rd

cαn(s, u, x, z)(Φn(u, t, z, y)− Φn(u, t, x, y))dz

:= (Rε,1
n +Rε,2

n )(s, t, x, y),(4.16)

exploiting the centering condition (4.15) to introduce the last term of the first
equality. On the one hand, the terms Dα

x p̃n(s, u, x, z), c
α
n(s, u, x, z) only differ in

their frozen coefficients (respectively at point z and x). Exploiting the Hölder
property in space of the mollified coefficients, it is then easily seen that:

|(Dα
x p̃n − cαn)(s, u, x, z)| ≤ C|x− z|γ

(u− s)
pc(u− s, z − x)

≤ C

(u− s)1−γ/2
pc(u− s, z − x),

yielding an integrable singularity in time so that:

(4.17) |Rε,1
n (s, t, x, y)| ≤ C

(t− s)1−γ/2
pc(t− s, y − x).

Let us now control the other contribution. The key idea is now to exploit the
smoothing property of the kernel Φn. Assume indeed that for A := {z ∈ R

d :
|x− z| ≤ c(t− s)1/2} (recall as well that u ∈ [ s+t

2 , t]) one has:

(4.18) |Φn(u, t, x, y)− Φn(u, t, z, y)| ≤ C
|x− z|γ/2
(t− u)1−β

pc(t− u, y − z), β > 0.

Then, we can derive from (2.8), (4.16) and (4.18):

|Rε,2
n (s, t, x, y)|

≤ C2

∫ (s+t)/2

s+ε

du

∫

A

|x− z|γ/2
(u− s)

pc(u − s, z − x)
1

(t − u)1−β
pc(t− u, y − z)dz

+
C

(t− s)γ/2

∫ (s+t)/2

s+ε

du

∫

AC

|x− z|γ
(u− s)

pc(u − s, z − x){|Φn(u, t, z, y)|+ |Φn(u, t, x, y)|}dz.
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Since equation (2.9) for Hn yields

|H(r)
n (s, t, x, y)|

≤ exp(c1K
2
1 (t− s))cr1

r−1∏

i=1

B(
γ

2
, 1 + (i− 1)

γ

2
)pc(t− s, y − x)(t− s)−1+ rγ

2 ,
(4.19)

with the convention
∏0

i=1 = 1, we derive |Φn(u, t, z, y)| ≤ C
(t−u)1−γ/2 pc(t− u, y− z)

and |Φn(u, t, x, y)| ≤ C
(t−u)1−γ/2 pc(t − u, y − x). We finally get on the considered

time set:

|Rε,2
n (s, t, x, y)| ≤ C

t− s
pc(t− s, y − x),

which together with (4.17), (4.16), (4.13) and (4.12) gives the statement. It remains
to establish (4.18). From the definition of Φn and the smoothing effect of the kernel
Hn in (4.19), it suffices to prove that on the set Ā := {z ∈ R

d : |z−x| ≤ c(u′−u)1/2}:

(4.20) |Hn(u, u
′, x, w) −Hn(u, u

′, z, w)| ≤ C
|x− z|γ/2
(u′ − u)1−β

pc(u
′ − u,w − z), β > 0,

for u′ ∈ (u, t], u ∈ [s, (s + t)/2]. Observe that Ā ⊂ A. Indeed, recalling that we
want to establish (4.18) on A if z 6∈ Ā, we get from (4.19):

∫ t

u

du′
∫

Āc

|Hn(u, u
′, x, w)−Hn(u, u

′, z, w)||(
∑

i≥1

H(i)
n )(u′, t, w, y)|dw

≤
∫ t

u

du′
∫

Āc

C

(u′ − u)1−γ/2
(pc(u

′ − u,w − x) + pc(u
′ − u,w − z))

× |x− z|γ/2
(u′ − u)γ/4

C

(t− u′)1−γ/2
pc(t− u′, y − w)dw ≤ C

|x− z|γ/2
(t− u)1−γ/4

pc(t− u, y − z),

exploiting that z ∈ A, t−u ≥ 1
2 (t− s), and the usual convexity inequality |y−x|2

t−u ≥
|y−z|2

2(t−u) −
|z−x|2

t−u for the last inequality. On the other hand, on Ā we get (4.18) from

(4.20) and (4.19).
Let us turn to the proof of (4.20). We concentrate on the second derivatives in

Hn which yield the most singular contributions:

Tr((an(u, x)− an(u,w))D
2
xp̃n(u, u

′, x, w)) − Tr((an(u, z)− an(u,w))D
2
xp̃n(u, u

′, z, w))

= Tr((an(u, x)− an(u, z))D
2
xp̃n(u, u

′, x, w))

−Tr((an(u, z)− an(u,w))(D
2
xp̃n(u, u

′, z, w)−D2
xp̃n(u, u

′, x, w)))

=: I + II.

Then, from (2.8),

|I| ≤ C
|x− z|γ
(u− u′)

pc(u
′ − u,w − x) ≤ C|x− z|γ/2

(u − u′)1−γ/4
pc(u

′ − u,w − x)

≤ C|x− z|γ/2
(u− u′)1−γ/4

pc(u
′ − u,w − z),

using that z ∈ Ā for the second inequality, again combined with the convexity

inequality |x−w|2

u′−u ≥ |z−w|2

2(u′−u) −
|x−z|2

u′−u for the last one. Now, from the explicit ex-

pression of the second order derivatives in (4.14), (A2) and usual computations we
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also derive:

|II| ≤ C|z − w|γ
(u′ − u)

|z − x|γ/2
(u′ − u)γ/4

pc(u
′ − u, z − w) ≤ C|z − x|γ/2

(u′ − u)1−γ/4
pc(u

′ − u,w − z).

This gives (4.20) and completes the proof for |α| ≤ 2.
Let us now turn to |α| ≥ 3. In those cases the singularities induced by the

derivatives are not integrable in short time, even if we exploit cancellations. We
are thus led to perform integration by parts, deteriorating the bounds since these
operations make the derivatives of the mollified coefficients appear.

Recalling α ∈ N
d, denote by l a multi-index s.t. |l| = 2 and α− l ≥ 0 (where the

inequality is to be understood componentwise). From equations (4.12), (4.13), we
only have to consider the contribution Dα

xR
ε
n(s, t, x, y). Write:

Dα
xR

ε
n(s, t, x, y)

= Dα−l
x

∫ (t+s)/2

s+ε

du

∫

Rd

Dl
xp̃n(s, u, x, z)Φn(u, t, z, y)dz

= Dα−l
x

∫ (t+s)/2

s+ε

du

∫

Rd

gl,n(s, u, x, z)Φn(u, t, z, y)dz,(4.21)

where gl,n(s, u, x, z) := Dl
xp̃n(s, u, x, z). Let us write introducing the cancellation

term cln:

Dα
xR

ε
n(s, t, x, y) = Dα−l

x

∫ (s+t)/2

s+ε

du

∫

Rd

(gl,n − cln)(s, u, x, z)Φn(u, t, z, y)dz

+Dα−l
x

∫ (s+t)/2

s+ε

du

∫

Rd

cln(s, u, x, z)(Φn(u, t, z, y)− Φn(u, t, x, y))dz

= Dα−l
x

∫ (s+t)/2

s+ε

du

∫

Rd

(gl,n − cln)(s, u, x, x + z)Φn(u, t, x+ z, y)dz

+Dα−l
x

∫ (s+t)/2

s+ε

du

∫

Rd

cln(s, u, x, x+ z)(Φn(u, t, x+ z, y)− Φn(u, t, x, y))dz.

(4.22)

The purpose of that change of variable, already performed in [KM02], is that we
get integrable time singularities in the contributions Dα−l

x (gl,n − cln)(s, u, x, x +
z). Anyhow, the mollified coefficients bn, σn have explosive derivatives. From the
definition of gl,n and (4.5) one easily gets that there exists c, C s.t. for all α, |α| ≤ 6:

|Dα−l
x (gl,n − cln)(s, u, x, x+ z)| ≤ Cn|α−l|

(u− s)1−γ/2
pc(u − s, z),

|Dα−l
x cln(s, u, x, x+ z)| ≤ Cn|α−l|−γ

(u− s)
pc(u − s, z).

(4.23)

From (4.22) and (4.23) it thus remains to control the terms Dα−l
x Φn(u, t, z +

x, y), Dα−l
x (Φn(u, t, x + z, y) − Φn(u, t, x, y)) which are the most singular ones in

Dα
xR

ε
n(s, t, x, y). To this end, we will establish by induction that the following
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control holds:

∃c, C, ∀0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2, ∀β, |β| ≤ 5, |Dβ
xH

(i)
n (s, t, x, y)| ≤

Cin|β|

(t− s)|β|/2
(t− s)−1+iγ/2

i−1∏

j=1

B(γ/2, jγ/2)pc(t− s, y − x).(4.24)

Observe first that for |β| = 0 (no derivation), estimate (4.24) readily follows from
(2.9). Let us now suppose |β| > 0. Observe from the definition of Hn that (4.24) is
satisfied for i = 1. Let us assume it holds for a given i and let us prove it for i+ 1.
Write again:

Dβ
xH

(i+1)
n (s, t, x, y) =

∫ t

(s+t)/2

du

∫

Rd

Dβ
xHn(s, u, x, z)H

(i)
n (u, t, z, y)dz

+Dβ
x

∫ (s+t)/2

s

du

∫

Rd

Hn(s, u, x, x+ z)H(i)
n (u, t, x+ z, y)dz =: (Ri,β

1 +Ri,β
2 )(s, t, x, y).

The term Ri,β
1 is easily controlled by (4.24) for β = 0 and the induction hypothesis.

Observe also that, similarly to (4.23), one has:

|Dβ
xHn(s, u, x, x+ z)| ≤ Cn|β|

(u− s)1−γ/2
pc(u− s, z).

Together with the induction hypothesis and Leibniz’s rule for differentiation, this

allows to control Ri,β
2 . The controls on {Ri,β

j }j∈{1,2} give (4.24) for i + 1. We

eventually derive (reminding that |l| = 2):

(4.25) |Dα−l
x Φn(u, t, x+ z, y)| ≤ C

(t− u)(|α|−2)/2

n|α|−2

(t− u)1−γ/2
pc(t−u, y− (x+ z)).

The spatial Hölder continuity of the derivatives of the kernel Φn could be checked
following the previous steps performed respectively to get the spatial Hölder conti-
nuity of the kernel and the controls on its derivatives. One gets, on |z| ≤ c(t−u)1/2:

|Dα−l
x Φn(u, t, x+ z, y)−Dα−l

x Φn(u, t, x, y)|

≤ C|z|γ/2
(t− u)(|α|−2)/2

n|α|−2

(t− u)1−γ/4
pc(t− u, y − (x+ z)),

which together with (4.25), (4.23), (4.22) gives (proceeding as above for |z| ≥
c(t− u)1/2):

|Dα
xR

ε
n(s, t, x, y)| ≤

Cn|α|−2(t− s)γ/4

(t− s)|α|/2
pc(t− s, y − x).

The second equation of (4.9) follows for p̄n = pn from the above control and (4.13),
(4.12). Observe that the control for the derivative w.r.t. y has additional singularity
in n. This is clear since we directly differentiate the frozen mollified coefficients.
Now the statements readily hold for pdn, since the integration in time played no
role in the previous computations. For phn, the only point that should be totally
justified is the smoothing property and Hölder continuity of the discrete Kernel

Φh
n(ti, tj , x, y) :=

∑j−i
r=1H

h,(r)
n (ti, tj , x, y). The smoothing property, equivalent of

(4.24), has been investigated in [LM10]. The spatial Hölder continuity can be
derived as above. �
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4.4.2. Proof of Proposition 4. Write similarly to the proof of Theorem 2.1 in [KM02]:

(pn − pdn)(ti, tj , x, y) = (pn ⊗Hn − pn ⊗h Hn)(ti, tj , x, y) + (pn − pdn)⊗h Hn(ti, tj, x, y)

=
∑

r≥0

(pn ⊗Hn − pn ⊗h Hn)⊗h H
(r)
n (ti, tj, x, y),(4.26)

where we apply iteratively the first equality to get the second one. From (4.19),
the key point is thus to control pn ⊗Hn − pn ⊗h Hn. Write:

(pn ⊗Hn − pn ⊗h Hn)(ti, tj , x, y)

=

j−i−1∑

k=0

∫ ti+(k+1)h

ti+kh

du

∫

Rd

dz{pn(ti, u, x, z)Hn(u, tj , z, y)(4.27)

−pn(ti, ti+k, x, z)Hn(ti+k, tj , z, y)}

=

j−i−1∑

k=0

{∫ ti+(k+1)h

ti+kh

du

∫

Rd

dz{[pn(ti, u, x, z)− pn(ti, ti+k, x, z)]Hn(u, tj, z, y)}

+

∫ ti+(k+1)h

ti+kh

du

∫

Rd

dz{pn(ti, ti+k, x, z)[Hn(u, tj , z, y)−Hn(ti+k, tj , z, y)]}
}

=: (Dd,1
n +Dd,2

n )(ti, tj, x, y).(4.28)

For the term Dd,1
n we first write:

pn(ti, u, x, z)− pn(ti, ti+k, x, z) = (u− ti+k)

∫ 1

0

∂upn(ti, ti+k + λ(u − ti+k), x, z)dλ

= (u − ti+k)

∫ 1

0

L∗
u+λ(u−ti+k)

pn(ti, u+ λ(ti+k − u), x, z)dλ.

Reproducing the integration by parts strategy that led to (4.11), we then derive:

(4.29) |Dd,1
n |(ti, tj , x, y) ≤ C

hn2−γ

(tj − ti)1−γ/2
pc(tj − ti, y − x).

On the other hand introduce:

(D̄d,21
n + D̄d,22

n )(ti, tj , ti+k, u, x, y) :=

C

∫

Rd

pc(ti+k − ti, z − x)|an(u, z)− an(u, y)− (an(ti+k, z)− an(ti+k, y))|

× 1

tj − ti+k
pc(tj − ti+k, y − z)dz

+|
∫

Rd

pn(ti, ti+k, x, z)(an(u, z)− an(u, y))[D
2
z p̃n(u, tj , z, y)−D2

z p̃n(ti+k, tj , z, y)]|,

that correspond to the most singular contributions in Dd,2
n . For D̄d,22

n we can again
perform Taylor expansion in time, use the Kolmogorov equations and integrate by
parts as above to derive:
(4.30)
j−i−1∑

k=0

∫ ti+(k+1)h

ti+kh

du|D̄d,22
n |(ti, tj , ti+k, u, x, y) ≤ C

hn2−γ

(tj − ti)1−γ/2
pc(tj − ti, y − x).
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On the other hand, using the γ/2-Hölder continuity in time, we get:

|D̄d,21
n (ti, tj , ti+k, u, x, y)|

≤ C

∫

Rd

pc(ti+k − ti, z − x)|u− ti+k|γ/2
1

tj − ti+k
pc(tj − ti+k, y − z)dz

≤ Ch(γ−εn)/2pc(tj − ti, y − x)(tj − ti+k)
−1+εn/2.

Plugging now the above control, (4.30), (4.29) in (4.28) we derive the result from
(4.19) and (4.26).
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