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Analysis of the Maximum-likelihood Channel
Estimator for OFDM Systems with Unknown

Interference
Azzouz Dermoune1, Eric Pierre Simon2

Abstract—In this paper, a comprehensive theoretical analysis
of the maximum-likelihood (ML) channel estimator for OFDM
systems with unknown interference is presented. The uniqueness
of the solution is analytically demonstrated when the number
of transmitted OFDM symbols is strictly greater than one. This
solution is derived from the iterative conditional ML (CML)
algorithm. It is shown that the channel estimate can be described
as an algebraic function whose inputs are the initial value and
the means and variances of the received samples. It is also
theoretically demonstrated that the channel estimator is not
biased, and that the second moment exists as long as the number
of transmitted OFDM symbols is strictly greater than three.
Furthermore, this is confirmed by numerical results.

Index Terms—OFDM, interference, channel, estimation,
cognitive-radio.

I. INTRODUCTION

The narrow band interference (NBI) arises in OFDM sys-
tems for a number of transmission scenarios, such as Wi-Fi
communications [1] or cognitive radio where different types
of wireless services may use the same frequency band. The
NBI can affect several subcarriers. It is well known that it
strongly degrades the performance of the receiver if it is
not treated [2] [3]. When the transmission is NBI-free, the
noise consists only of thermal noise, yielding a uniform noise
variance for all subcarriers, resulting in the estimation of a
single scalar parameter. However, in the presence of NBI,
the noise originates from both thermal noise and interference.
Due to the nature of the NBI, neither the number of affected
subcarriers nor their location in the spectrum is known. This
prompts the need for estimating the noise variance for each
subcarrier, yielding a vector estimation, denoted σ2, rather
than a scalar. The objective in the presence of NBI is therefore
to estimate the set of parameters

{
h,σ2

}
, where h is the

vector containing the taps of the channel impulse response.
Several articles have been proposed to estimate the channel

in the presence of NBI. In [4], the authors proposed an
estimator employing a specific pilot structure which consists
of two types of pilot symbols with different pilot density. More
recently, in [5] the authors proposed a channel estimator based
on a robust least-square approach. However, the proposed
method imposes a number of pilots greater than twice the
channel order defined as the number of taps.
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In [6] and [7], the NBI is assumed to be Gaussian distributed
in the frequency domain with zero-mean and unknown power.

Following the same assumption, Morelli and Moretti inves-
tigate the channel estimation with NBI in their seminal paper
[8]. They also consider the case where any possible correlation
between the interference over adjacent subcarriers is neglected.
This case can be considered as the worst case since the
correlation is an additional information that could be used
to improve the estimation performance. After formulating the
maximum likelihood (ML) algorithm for the joint estimation
of
{
h,σ2

}
, they show that the solution is non-unique when

the channel order (noted L) is greater than the number of
transmitted OFDM symbols (noted K), leading to ambiguous
channel estimates. This constraint is very restrictive since
K < L is a very common scenario in practice. For this reason,
they suggest resorting to another algorithm, the expectation
maximization (EM) algorithm with the complete data set{
X,σ2

}
, where X contains the received signal. This amounts

to treating the noise variances as a nuisance random vector.
The drawback of this approach is that it imposes the selection
of a distribution for the random vector, the inverse gamma,
and then the fixing of the distribution parameter through
simulations. This can be a limitation for practical use.

In this paper, we first demonstrate that the ambiguities only
appear when K = 1 and not K < L, which is much less
restrictive. Hence if K > 1, the joint ML approach can be
followed and there is no need to use the EM algorithm. But
even the case K = 1 can be handled with a specific approach
briefly outlined in this paper. Thus, these results open a wider
field of application for the joint ML approach.

For the case K > 1, the likelihood equations are solved
with the conditional ML (CML) algorithm ( [9], [10]). Then,
we develop a new theoretical framework for the CML by
using an original formulation based on oblique projections.
Precisely, within this framework, we are able to obtain the
following novel results. It is proved that the channel estimator
is unbiased. It is also shown that the second moment exists as
long as K > 3. These results are of importance, in particular,
for deriving the Cramer-Rao bound of this channel estimation
problem. Moreover, the channel estimate is proved to be an
algebraic function whose inputs are the initial value and the
means and variances of the received samples.

Note that the authors of [11] also perform EM, but with the
complete data set {X,C} where C is the set of data symbols.
Here, as in [8], we focus on channel estimation based only
on pilots, but we stick to the original joint ML estimation of
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{
h,σ2

}
, i.e. it is not assumed an a priori distribution for σ2.

To sum up, our contributions are as follows:
• we prove that the joint ML estimation of

{
h,σ2

}
gives

a unique solution as long as the number of transmitted
OFDM symbols is strictly greater than one,

• we prove that the joint ML of
{
h,σ2

}
is an algebraic

function with the initial value, the sample means and the
sample variances as inputs,

• we prove that the CML algorithm yields an unbiased
channel estimator, and that the second moment exists
as long as the number of transmitted OFDM symbols
is strictly greater than three.

The paper is organized as follows. Section II describes
the system model. In Section III we discuss the joint ML
estimation of

{
h,σ2

}
and the question of the uniqueness of

the solution. Then, Section IV introduces the CML algorithm
to find the solution. A theoretical study of the CML is provided
in Section V. The Cramer Rao bound is derived in Section VI
and simulation results are presented in Section VII.

Notations: The field of complex numbers is denoted C. Ma-
trices [vectors] are denoted with upper [lower] case boldface
letters (e.g. A, or a). The complex number ai,j indicates the
(i, j)th entry of matrix A ; ai indicates the ith entry of vector
a. Vector ai is the ith row vector of matrix A. The N × N
identity matrix is denoted by IN and 0M,N is the M × N
matrix of zeros. The matrix D(x) is a diagonal matrix with
vector x on its main diagonal. The superscripts (·)T , (·)H ,
(·)∗, (·)R and (·)I stand respectively for transpose, Hermitian,
complex conjugate, real part and imaginary part operators.
The mathematical expectation is denoted E[·]. The multivariate
complex normal distribution of a P-dimensional random vector
is denoted as CN (µ,Σ) where µ is the P-dimensional mean
vector and Σ the P × P covariance matrix. The chi-square
distribution with k degrees of freedom is denoted as χ2

k. The
notations R(A) and N (A) indicate respectively the range
space and the null space of A.

II. SYSTEM MODEL

Let us consider an OFDM system with N subcarriers,
and a cyclic prefix length Ng . We assume that the channel
between the transmitter and the receiver is modelled as a
frequency-selective fading channel with a channel impulse
response (CIR) vector h of order L, h = [h1, . . . , hL]T . The
CIR h is assumed to be static over the transmission of K
OFDM symbols. To estimate the channel, P pilot symbols
with constant energy are inserted into the N sub-carriers at
the positions P = {np, p = 1, . . . , P}. In our work, we do not
consider a particular pilot scheme P , and all our derivations
could be applied to any P . The only constraint is that L < P .
The received frequency-domain pilot sample of the kth OFDM
symbol at the np subcarrier is:

xp,k = cp,kHp + wp,k, (1)

where cp,k is the pilot symbol with normalized power trans-
mitted on the npth subcarrier and wp,k is the disturbance term
that takes into account the background noise plus any possible
interference. The random complex number wp,k is assumed

to be Gaussian distributed with zero mean and unknown
variance σ2

p = σ2
TN +σ2

NBI,p, where σ2
TN is the thermal noise

contribution and σ2
NBI,p is the average NBI power assumed

constant over the transmission period. The channel frequency
response Hp at the npth subcarrier is given by:

Hp =

L∑
l=1

hl exp(−j 2π np(l − 1)

N
), p = 1, . . . , P. (2)

This yields the model for the P pilot subcarriers of the kth
received OFDM block:

xk = CkFh + wk, k = 1, . . . ,K, (3)

with xk = [x1,k, . . . , xP,k]T , wk = [w1,k, . . . , wP,k]T , Ck =
D([c1,k, . . . , cP,k]) where D(u) is the diagonal matrix with
the entries of vector u on its diagonal, and F is the P ×L ma-
trix with the (p, l)th entry defined as exp(−j 2π np(l−1)

N ), p =
1, . . . , P, l = 1, . . . , L.

ML estimation of the set of unknown parameters {h,σ2}
is desired, where σ2 = [σ2

1 , . . . , σ
2
P ]T , based on the set of

received samples {yk = C−1k xk, k = 1, . . . ,K}.
Let us now define the sample means and the sample

variances of the received samples, which will be used in
the rest of the paper. The sample mean vector is denoted as
ȳ = [ȳ1, . . . , ȳP ]T , where for p = 1, . . . , P ,

ȳp =
1

K

K∑
k=1

yp,k. (4)

The sample variance vector is denoted as s2(y) =
[s21(y), . . . , s2P (y)]T , where for p = 1, . . . , P ,

s2p(y) =
1

K

K∑
k=1

|yp,k − ȳp|2. (5)

III. MAXIMUM LIKELIHOOD ESTIMATION

In this section, the ML estimate of {h,σ2} will be
investigated by following the approach presented in [8].
However, il will be shown that the ambiguities mentioned in
[8] appear only when K = 1. Hence, when K ≥ 2, it will
be possible to get the ML solution without ambiguities. The
estimates when K ≥ 2 will be derived through the conditional
ML and their properties studied in the next section.

Recall that the K independent observations y1, . . . ,yK are
drawn from the following p-variate normal regression model

CN (Fh,D(σ2)). (6)

Then, the negative log-likehood function `(h,σ2) is given by
[8]:

`(h,σ2) = K

P∑
p=1

ln(πσ2
p) +

K∑
k=1

P∑
p=1

|yp,k − fph|2

σ2
p

. (7)

Here, fp denotes the pth row of the matrix F.
The approach to derive the ML solution is summed up

below. The variances which minimize (7) for a given h are
first calculated:

σ2
p(h) =

1

K

K∑
k=1

|yp,k − fph|2. (8)
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Then, substituting σ2
p(h) for σ2

p in (7) yields:

Λ(h) := `(h,σ2(h)) = K

P∑
p=1

ln(πσ2
p(h)) +KP. (9)

Finally, the ML estimate of the CIR vector h is the one
that minimizes Λ(h). Special treatment is required due to
the presence of the logarithm function in (9). Indeed, the
values of h for which σ2

p(h) = 0 make Λ(h) tend to
−∞. The consequences on the uniqueness of the solution are
explained in more detail in [8] where the authors show that the
minimization leads to ambiguous channel estimates if K < L.
Let us show that their assertion is true when K = 1, but is
too restrictive when 2 ≤ K ≤ L. To understand why, it can be
observed that the equation σ2

p(h) = 0 (8) for a given p yields
a linear system of K equations with L unknowns:

Ah = [yp,1, . . . , yp,K ]
T
, (10)

where the K×L matrix A is built by stacking the row vectors
fp. If K = 1, then the system (10) is underdetermined (one
equation and L unknowns), yielding an infinite number of
solutions. However, for K > 1, the specific structure of matrix
A has to be taken into account when solving the system.
Thus, it is found that (10) has no solution because on the one
hand the samples yp,1, . . . , yp,K are all different since they are
Gaussian and independent and on the other hand the rows of
A are all identical. Then it becomes obvious that for K > 1,
σ2
p(h) > 0 for all p and for all h. Therefore, the ML estimate

of the CIR vector h is well defined for K > 1.
This ambiguity issue appears more clearly with the formu-

lation of σ2
p(h) based on the sample means and variances:

σ2
p(h) = s2p(y) + |ȳp − fph|2, (11)

and when noticing that if K = 1, the sample variances
s2p(y) = 0 for all p. However, if K > 1, s2p(y) 6= 0 for
all p, making it impossible to set σ2

p(h) to zero.
This article is concerned with the case K > 1. However,

it is worth mentioning that the case of K = 1 can still be
handled with the following approach. It has been shown that
it is meaningless to search the ML of σ2 in the domain
(0,+∞)P . A possible solution is to restrict the parameter
space by imposing a priori lower bounds of the form [12]

0 < δ2p ≤ σ2
p (12)

on the variances σ2
p. Let us define the vector δ2 =

[δ21 , · · · , δ2P ]T . The variances σ2 ∈
∏P
p=1[δ2p,+∞) which

minimize (7) for given h are given by

σ2
p(h, δ2p) = |yp − fph|2, if |yp − fph|2 ≥ δ2p, (13)

σ2
p(h, δ2p) = δ2p, if |yp − fph|2 < δ2p. (14)

The vector σ2(h, δ2) is substituted for σ2 in `(h,σ2) to
obtain

Λ(h, δ2) =

P∑
p=1

(ln(πσ2
p(h, δ2p)) +

|yp − fph|2

σ2
p(h, δ2p)

), (15)

and then the CIR estimate is the one that minimizes Λ(h, δ2).

As previously stated, this article will focus on K > 1. As
there is no closed-form solution for the minimization of Λ(h),
we suggest using the conditional ML in the next section to find
an iterative solution and study the properties of this solution.

IV. CONDITIONAL ML (CML)

The CML is the result of two nested minimizations. First,
(7) is minimized given the channel h, yielding the estimation
of σ2 given by (8) or (11):

σ2(h) = s2(y) + |ȳ − Fh|2, (16)

where the vector |ȳ−Fh|2 := [|ȳ1−f1h|2, . . . , |ȳP−fPh|2]T .
Conversely, (7) is minimized given σ2, yielding the estimation
of h:

h(σ2) =
(
FHD−1(σ2)F

)−1
FHD−1(σ2)ȳ, (17)

Hence the CML algorithm: from an initial estimate σ2(i) of
σ2, the estimate of h is

h(i+1) = (FHD−1(σ2(i))F)−1FHD−1(σ2(i))ȳ, (18)

yielding

σ2(i+1)
= s2(y) + |ȳ − Fh(i+1)|2. (19)

This algorithm is known as the scoring method [9] [10] or the
conditional maximum likelihood algorithm (CML) [13]. The
CML’s important properties, which will be used in appendix
B-C, include:

1) Given σ2(i), the vector h(i+1) maximizes the likelihood.
Given h(i), the vector σ2(i+1) maximizes the likelihood.

2) The logarithmic means 1
P

∑P
p=1 ln(σ2

p
(i)

), for i =
0, 1, . . . is non-increasing. In other words, for all i,

P∑
p=1

ln(σ2
p
(i+1)

) ≤
P∑
p=1

ln(σ2
p
(i)

). (20)

And
∑P
p=1 ln(σ2

p
(i)

) converges to some constant ln(c∗) ≥∑P
p=1 ln(s2p(y)).
In this section, the CML algorithm has been presented with

some of its well known properties. However, to our knowledge,
no work has been carried out about the moments of the CML
solution in this particular context. The next section will address
this topic.

V. CML ALGORITHM AND OBLIQUE PROJECTIONS

In this section, the first and the second moments of the
estimators are investigated. To do so, an original formulation
of the CML based on oblique projections is established. It
will be shown that the CML algorithm can be viewed as a
succession of oblique projections.

First, let us recall a few preliminaries about projections.
For any invertible matrix Σ, observe that the matrix Π(Σ) :=
F(FHΣF)−1FHΣ splits the space CP on two subspaces: the
range space R(Π(Σ)) = Π(Σ)(CP ) of Π(Σ) and its nullspace
N (Π(Σ)) = [I − Π(Σ)](CP ). Note that the range of Π(Σ)
is the range of F. The linear operator defined by Π(Σ) is
known as an oblique projection on R(F). If Σ = I, then
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Fig. 1. First iteration of the CML algorithm : orthogonal projection

Fig. 2. Iteration i of the CML algorithm : oblique projection

Π(I) = F(FHF)−1FH is the orthogonal projection on R(F).
For simplicity of notation, Π(I) is now denoted Π.

Now, let us go back to the CML algorithm. If the initial-
ization σ2

p
(0)

= 1 for all p, then the first iteration of CML
algorithm is given from (18) by:

h(1) = (FHF)−1FH ȳ. (21)

Note that h(1) is the ordinary least square estimate of h.
The orthogonal projection Π splits the sample mean in the
following two components (see Fig. 1 for a geometrical
interpretation):

Fh(1) = Πȳ, b(1) := (I−Π)ȳ.

The vector b(1) is the orthogonal projection of ȳ on N (Π).
Given h(1), the ML of the variance vector is given by

σ2(1) = s2(y) + |b(1)|2,

where the column vector |b(1)|2 =
[
|b(1)1 |2, . . . , |b

(1)
P |2

]T
. We

have at the i+ 1-th iterations

h(i+1) = (FHD−1(s2(y) + |b(i)|2)F)−1

FHD−1(s2(y) + |b(i)|2)ȳ.

The oblique projection Π(D−1(s2(y) + |b(i)|2)) splits the
sample mean in the following two components (see Fig. 2):

Fh(i+1) = Π(D−1(s2(y) + |b(i)|2))ȳ,

b(i+1) = ȳ − Fh(i+1)

= (I−Π(D−1(s2(y) + |b(i)|2)))ȳ.

Given h(i+1), the ML of the variance vector is given by

σ2(i+1)
= s2(y) + |b(i+1)|2.

From this discussion, it can be concluded that the solution of
the CML algorithm can be searched either in Fh(i) or in the
variable b(i) = ȳ − Fh(i). In the perspective of calculating
the bias, it will be more convenient to consider b(i) (see (26)
and (27)), which yields the equivalent algorithm for solving
the CML:

b(i+1) = (I−Π(D−1(s2(y) + |b(i)|2))ȳ. (22)

A. Properties of algorithm (22)
First, let us define z = (I − Π)ȳ, the projection of ȳ on

N (Π) (see Fig. 2). Unlike ȳ, z is zero-mean, which will be
used for the calculation of the bias. We also define function
ϕ from (22) as follows:

ϕ(ȳ, s2(y),b(i)) := (I−Π(D−1(s2(y) + |b(i)|2))ȳ, (23)

and let Π = [πij : i, j = 1, . . . , P ] be the entries of the matrix
Π and cljp = πplπlj for l, j, p = 1, . . . , P .

Now, the following proprieties of algorithm (22) are derived
in order to subsequently calculate the bias.

Proposition 5.1:
1) For i ≥ 0,

b(i+1) = ϕ(z, s2(y),b(i)). (24)

2) The map ϕ from CP to CP is rational. More precisely,
for p = 1, . . . , P , the component ϕp of ϕ

b ∈ CP → ϕp(z, s
2(y),b) = zp −

P∑
l=1

cllpzl

−
P∑

l=1,j=1,l 6=j

cljpzj
s2l (y) + |bl|2

s2j (y) + |bj |2

=

∑P
j=1 zjfp,j(s

2(y) + |b|2)∏P
l=1(s2l (y) + |bl|2)

, (25)

where fp,j are polynomials of degree P .
3) For p = 1, . . . , P ,

b(i+1) = [ϕ(z, s2(y), ·) ◦ · · · ◦ ϕ(z, s2(y), ·)](b(1))

: = ϕ(i)(z, s2(y),b(1))

=

∑P
j=1 zjf

(i)
p,j(z, s

2(y), |b(1)|2)

g
(i)
p (z, s2(y), |b(1)|2)

,

where f (i)p,j , g
(i)
p are polynomials, even with respect to z and

g
(i)
p > 0.

The proofs are given in appendix A. Note that proposition 5.1
1) is straightforward with the geometrical interpretation of Fig.
2, where it can be observed that the projections of z and ȳ on
N
(
Π
(
D−1(s2(y) + |b(i)|2)

))
are the same.
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B. Asymptotic Properties of algorithm (22)

Proposition 5.2: 1) Any limit (say) ω(z, s2(y),b(1)) of the
sequence b(i+1) is a root of the rational map

b− ϕ(z, s2(y),b).

2) The map (z, s2(y),b(1)) → ω(z, s2(y),b(1))
is an algebraic function, i.e. for p = 1, . . . , P ,
there exist polynomial functions Qp such that
Qp(z, s

2(y), ω(z, s2(y),b(1))) = 0.

The proofs are a consequence of Proposition 5.1.

C. Mean and variance of CML estimator

At this stage, it is important to recall that our objective
is now to calculate the bias of the CML solution. At the
convergence of the algorithm, we obtain ĥ, b̂ and σ̂2. From
Fĥ = ȳ − b̂ and (37), we have:

E[ĥ] = h− (FHF)−1FHE[b̂]. (26)

From σ̂2 = s2(y) + |b̂|2 and (38), we have:

E[σ̂2] =
K − 1

K
σ2 + E[|b̂|2], (27)

using the property that the mean of a chi-square random
variable of n degrees of freedom is n. Now, from Proposition
(5.1), the following can be shown (see Appendix B for the
proof).

Corollary 5.3:
1) Given s2(y), and if b(1) = (I − Π)ȳ, then the vector

b(i+1) is zero-mean, i.e.

E[b(i+1) | s2(y)] = 0.

Therefore, from (26), ĥ is an unbiased estimator.
2) If b(1) = (I − Π)ȳ, and the sample size K ≥ 4, then,

for i ≥ 1, b(i) and its limit b̂ have a second moment.

VI. CRAMER-RAO BOUND

Let us define the 2L+ P × 1 vector of the real parameters
to be estimated:

θ = [hR1 , . . . , h
R
L , h

I
1, . . . , h

I
L, σ

2
1 , . . . , σ

2
P ]T , (28)

where hRl , h
I
l are respectively the real and imaginary parts of

hl.
The Cramer-Rao bound (CRB) states that the covariance

matrix of θ̂ satisfies

cov(θ̂) ≥ ∂ψ(θ)

∂θ
J−1

∂ψ(θ)

∂θ

T

, (29)

where
ψ(θ) = E[θ̂] (30)

and ∂ψ(θ)
∂θ is the Jacobian matrix whose (n,m)th element

is given by ∂ψn(θ)
∂θm

. Matrix J is the 2L + P × 2L + P
Fisher information matrix. Its (m,n)th entry is defined as
E
[

∂2

∂θn∂θm
`(h,σ2)

]
, where `(h,σ2) is the negative log like-

lihood defined in (7).

Therefore, it is seen from (30) that knowing the moments
of the estimator is required in order to calculate the CRB. The
results of Section V-C will be exploited to do so.

The results of the calculation of J are given below, and the
details are in appendix C. Matrix J can be written as:

J =

[
Jh 02L,P

0P,2L Jσ2

]
(31)

where Jσ2 = KD
(

1
σ4
1
, . . . , 1

σ4
P

)
and where the entries of Jh

are defined by (43), (44) and (45). To compute the CRB, the
calculation of the inverse of J is required. Since the inverse
of a block diagonal matrix is the block diagonal matrix of the
inverses, as long as the submatrices are invertible, we have

J−1 =

[
J−1h 02L,P

0P,2L J−1σ2

]
. (32)

From (26), (27) and corollary 5.3 we express ψ(θ) as a
function of h and σ2 and we calculate the derivative:

∂ψ(θ)

∂θ
=

[
I2L 02L×P

0P×2L M

]
(33)

where the (p1, p2)th entry of M is defined as K−1
K δp2p1 +

E
[
∂|b̂p1 |

2

∂σ2
p2

]
. Therefore, we have:

∂ψ(θ)

∂θ
J−1

∂ψ(θ)

∂θ

T

=

[
J−1h 02L×P

0P×2L MJ−1σ2 MT

]
. (34)

Note that the calculation of E
[
∂|b̂p1 |

2

∂σ2
p2

]
is not feasible since

there is no analytical expression for b̂. Therefore, the bound
for the variance estimation can not be found. However, the
bound for the channel estimation is given from (28) and (34)
by:

cov
([
ĥR1 , . . . , ĥ

R
L , ĥ

I
1, . . . , ĥ

I
L

]T)
≥ J−1h . (35)

Recall that this bound has been derived by using the result of
corollary 5.3 showing that ĥ was unbiased.

VII. SIMULATION RESULTS

In order to validate the results, computer simulations were
carried out in accordance with the IEEE 802.11g standard
with a carrier frequency equal to 2.4 GHz as in [8]. System
parameters used for the simulation are as follows: N = 64,
a bandwidth of 20 MHz and a cyclic prefix of length 16.
The discrete-time channel is assumed to have L = 6 channel
taps modelled with a Rayleigh channel with an exponentially
decaying power such that: E[|hl|2] = σ2

h · exp(−l) with
l = 1, 2, · · · , L = 6. The constant σ2

h is chosen to normalize
the channel power to one. For the simulation, the pilots are
evenly inserted every 8 subcarriers, yielding P = 8. A frame
of K = 4 OFDM symbols is considered.

It is also assumed that 2 contiguous pilot sub-carriers
are affected by NBI by adding a Gaussian disturbance of
variance σ2

I . The signal-to-noise ratio (SNR) is defined as
10 log 1

σ2
w

where the power of the signal is normalized to
one, and the signal-to interference ratio (SIR) is defined as
10 log 1

σ2
I

. The accuracy of the channel estimates is measured
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Fig. 3. Performance of the CML estimator as a function of the SNR for SIR
= -5 dB

in terms of mean square error (MSE) which is defined as
1
LE
[
(ĥ− h)H(ĥ− h)

]
where the expectation is estimated

via monte-carlo simulations in the following.
Fig. 3 shows the MSE as a function of the SNR when

the SIR is fixed to -5 dB. Four iterations are considered. Let
us recall that the first iteration is the ordinary least square
estimate (OLSE) (see (21)). For reference, the CRB calculated
in section VI is added. It is seen that the algorithm converges
after four iterations, and nearly attains the CRB, whereas the
MSE for the OLSE has a floor at 2.5× 10−2.

Then, the SIR is fixed to 0 dB in Fig. 4 and to 5 dB in Fig.
5. In these two cases, the algorithm converges after only three
iterations. Moreover, it is observed that the performance of the
OLSE approaches that of the second iteration when the SIR
increases. It makes sense, as the OLSE is designed to perform
well without NBI.

Finally, the bias of ĥ is studied. We plot the histogram of
the real part and imaginary part of b̂p, p = 1, . . . , P in Fig. 6
and Fig. 7, respectively. The SNR is fixed to 10 dB and the
SIR to 0 dB. It can be observed that the mean is zero for all
p, which leads to an unbiased estimator for ĥ. This confirms
corollary 5.3 1).

VIII. CONCLUSION

This article has addressed the problem of maximum likeli-
hood channel estimation for OFDM systems in the presence
of unknown interference. First, it was proved that the solution
is without ambiguities as long as the number of transmitted
OFDM symbols, denoted K, is strictly greater than one. For
this case, we have proposed to use the conditional maximum
likelihood (CML) algorithm to obtain the estimates. New
theoretical developments to the CML algorithm in this context
have been brought. It was proved that the solution of the
algorithm is an algebraic function of the data. Furthermore,
it was also proved that the channel estimator is unbiased and
that the second moment exists as long as K > 3.
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= 0 dB
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APPENDIX A
PROOF OF PROPOSITION 5.1

The proof of proposition 5.1 1) is a consequence of the
following general results. Let Σ be an invertible matrix. The
equality

(I−Π(Σ)) = (I−Π(Σ))(I−Π)

is equivalent to

Π = Π(Σ)Π.

Now, it can easily be shown that

Π(Σ)Π = F(FHΣF)−1FHΣF(FHF)−1FH

= Π.
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Fig. 6. Histogram of b̂Rp , p = 1, . . . , P , SNR = 10 dB, SIR = 0 dB
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Fig. 7. Histogram of b̂Ip, p = 1, . . . , P , SNR = 10 dB, SIR = 0 dB

The proof of 2) is a consequence of the following general
result:

(FHΣ−1F)−1 = F+Σ(FH)+

where F+ = (FHF)−1FH and (FH)+ = F(FHF)−1. From
that we have

Π(Σ−1) = FF+Σ(FH)+FHΣ−1 = ΠΣΠΣ−1. (36)

The proof of the remaining assertions is straightforward.

APPENDIX B
PROOF OF COROLLARY (5.3)

A. Distribution probability of the sample mean and the sample
variance

Cochran’s theorem states that the sample mean and variance
are two independent random variables. Moreover, it is also

stated that the sample variance of K independent normally
distributed real random variables with mean 0 and standard
deviation 1 has a chi-square distribution with K−1 degrees of
freedom. Therefore, we can write the distributions for s2p(y).
The distribution for ȳp is straightforward:

ȳp ∼ CN (fph,
σ2
p

K
), (37)

s2p(y) ∼
σ2
p

2K
χ2
2(K−1). (38)

Here we find 2(K−1) degrees of freedom since the considered
random variables are complex.

B. Proof of assertion 1) of Corollary (5.3)

From Cochran’s theorem, it can be deduced that the
Gaussian vector z := (I − Π)ȳ is zero-mean with
the covariance matrix K−1(I − Π)D(σ2), i.e. (I −
Π)ȳ ∼ (I − Π)K−1/2D(σ)CN (0, I). The components
of the vector 2Ks2(y) are independent with the distri-
bution probability (σ2

1χ
2
2(K−1)(1), . . . , σ2

Pχ
2
2(K−1)(P )). Here

χ2
2(K−1)(1), . . . , χ2

2(K−1)(P ) are i.i.d. with the common dis-
tribution χ2

2(K−1). From Cochran’s theorem s2(y) and ȳ
are independent. From Proposition (5.1), the random vector
b(i+1) = ϕ(i)(z, s2(y), z) is rational function having a posi-
tive denominator. Therefore,

E(b(i+1) | s2(y)) = E(ϕ(i)(z, s2(y), z)) = 0

because z is zero-mean and z→ ϕ(i)(z, s2(y), z) is odd.

C. Proof of assertion 2) of Corollary (5.3)

Here, b(1) = z is again used. We wish to prove that the sec-
ond moment exists, i.e. E

[
|b(i)p |2

]
< +∞ for p = 1, . . . , P .

The proof starts with:(
E
[
|b(i)p |2

])2
=

(
E

[
|b(i)p |2

s2p(y)
s2p(y)

])2

≤ E

[
|b(i)p |4

s4p(y)

]
E
[
s4p(y)

]
from Cauchy-Shwartz inequality. Since s2p(y) has a chi-square
distribution, all its moments exist, so E

[
s4p(y)

]
< +∞. It

remains to prove that E
[
|b(i)p |

4

s4p(y)

]
< +∞. Note first that, by

definition, the CML algorithm increases the log likelihood
function from one iteration to the next. So, from (20) we get:

P∏
p=1

(
s2p(y) + |b(i+1)

p |2
)
≤

P∏
p=1

(
s2p(y) + |b(1)p |2

)
.

We derive that
P∏
p=1

(
1 +
|b(i+1)
p |2

s2p(y)

)
≤

P∏
p=1

(
1 +
|b(1)p |2

s2p(y)

)
.

For all p = 1, . . . , P ,

|b(i+1)
p |2

s2p(y)
≤

P∏
p=1

(
1 +
|b(1)p |2

s2p(y)

)
. (39)
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Now taking the square, calculating the expectation and using
b(1) = z yields:

E

[
|b(i+1)
p |4

s4p(y)

]
≤ E

[
P∏
p=1

(
1 +

|zp|2

s2p(y)

)2
]
. (40)

At this stage, it remains to be proved that the right side of
inequality (40) is finite in order to finish the proof.

Recall that zp and s2p(y) are independent from Cochran’s
theorem, and that s2p(y) and s2q(y) are independent if p 6= q.
Moreover, since z is Gaussian, all its moments exist. It remains
to be shown that E

[
1

s2p(y)

]
and E

[
1

s4p(y)

]
are finite. From (38)

we get the probability density function of s2p(y), yielding:

E
[

1

s2p(y)

]
=

∫ +∞

0

1

s
·
(

1

a2K−1Γ(K − 1)

( s
a

)K−2
e−

s
2a

)
ds

(41)
where a =

σ2
p

2K is used to simplify notations. This integral
is finite as long as K ≥ 3. In a similar way, we find that
E
[

1
s4p(y)

]
is finite as long as K ≥ 4, which concludes the

proof.

APPENDIX C
FISHER INFORMATION MATRIX

To facilitate the calculations, the negative log-likelihood is
rewritten using real numbers:

`(h,σ2) = K

P∑
p=1

ln(σ2
p)+

K∑
k=1

P∑
p=1

(yRp,k −HR
p )2 + (yIp,k −HI

p )2

σ2
p

.

First, we define the 2P × 2L matrix G:

G =

[
FR −FI

FI FR

]
, (42)

and we write HR
p and HI

p as a function of[
hR1 , . . . , h

R
L , h

I
1, . . . , h

I
L

]
:

HR
p = gp ·

[
hR1 , . . . , h

R
L , h

I
1, . . . , h

I
L

]T
,

HI
p = gP+p ·

[
hR1 , . . . , h

R
L , h

I
1, . . . , h

I
L

]T
.

where gp means the pth row of G. Let gp,q be the (p, q)th
entry of G. The derivatives of `(h,σ2) with respect to hR,hI

and σ2 are equal to:

∂hR
l
`(h,σ2) = −2K

P∑
p=1

gp,lb
R
p + gP+p,lb

I
p

σ2
p

,

∂hI
l
`(h,σ2) = −2K

P∑
p=1

gp,L+lb
R
p + gP+p,L+lb

I
p

σ2
p

,

∂σ2
p
`(h,σ2) =

K

σ2
p

−K
s2p(y) + |bRp |2 + |bIp|2

σ4
p

,

which yields:

∂2hR
l1
hR
l2

`(h,σ2) = 2K

P∑
p=1

gp,l1gp,l2 + gP+p,l1gP+p,l2

σ2
p

(43)

∂2hR
l1
hI
l2

`(h,σ2) = 2K

P∑
p=1

gp,l1gp,L+l2 + gP+p,l1gP+p,L+l2

σ2
p

(44)

∂2hI
l1
hI
l2

`(h,σ2) = 2K

P∑
p=1

gp,L+l1gp,L+l2 + gP+p,L+l1gP+p,L+l2

σ2
p

(45)

∂2hR
l σ

2
p
`(h,σ2) = 2K

gp,lb
R
p + gP+p,lb

I
p

σ4
p

(46)

∂2σ2
p1
σ2
p2
`(h,σ2) =

(
− K

σ4
p1

+ 2K
s2p1(y) + |bRp1 |

2 + |bIp1 |
2

σ6
p1

)
δp2p1 .

(47)
Then, the expectation needs to be calculated to find J. The

expectation of (43), (44) and (45) is unchanged. From the
definition of bp = ȳp−Hp and (37), the expectation of (46) is
found to be 0, and from (38) the expectation of (47) is found
to be K

σ4
p1

δp2p1 .
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