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Abstract

The knowledge of cutting forces is of prime importance to ensure the success of cutting operations, the desired
properties of the machined parts and therefore the functionality of the workpieces.
Edge discretisation is one way to model cutting forces. Traditionally used in milling, this methodology enables
local changes in uncut chip thickness or cutting geometry to be taken into account and then gives suitable
results in the three directions. A key point of this method is the geometrical transformation that enables the
description of various tool geometries.
This study proposes a geometrical model based on homogeneous matrices, whose main interest is to decompose
the transformations step-by-step. The method, generalisable to all machining operations, is detailed for turning
operations. Inserted cutters are modelled considering both the positioning of the insert and the local geometry
of the insert.
The cutting geometry and the edge are described using the same model in the machine coordinates system,
allowing forces and moments to be calculated easily.

Keywords: Cutting force modelling, Edge discretisation, Tool geometry, Homogeneous matrix
transformations, Turning operations

Nomenclature

αne Working normal clearance angle; defined in Pn [1]
αPn Normal clearance angle given by the local preparation (P) of the insert; defined in Pn
αoe Working orthogonal clearance angle; defined in Poe [1]
γne Working normal rake angle; defined in Pn [1]
γPn Normal rake angle given by the local preparation (P) of the insert; defined in Pn
εE Tool included angle of the cutting edge (E); also denoted εr if the cutting edge is included in Pr [1]
η Chip flow angle
θ Polar angle defined in a coordinate system linked to the insert (parameterisation of the cutting edge)
Θ Polar angle defined in a coordinate system linked to the machine (Θ = θ + κr + εr/2− π/2)
κ′r Tool minor cutting edge angle; defined in Pr [1]
κBr Tool cutting edge angle of the major cutting edge during cylindrical turning (or κr [1])
κre Working cutting edge angle; defined in Pre [1]
λse Working cutting edge inclination angle; defined in Pse [1]
λE Inclination angle given by the local curvature of the cutting edge (E)
ψBf Tilting angle defining the positioning of the insert on the tool body (B); defined in Pf
ψBp Tilting angle defining the positioning of the insert on the tool body (B); defined in Pp
AD Nominal cross-sectional area of the cut [2]
ap Depth of cut (Back engagement of the cutting edge [2])
f Feed [2]
−→
f Local linear forces
−→
Fx Global force applied to the tool in the machine X axis direction (idem for Fy and Fz)
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h Local thickness of cut [2]
hmax Maximum uncut chip thickness on the active cutting edge
Kc Specific cutting force
LS Length of the considered segment
M Current point on the cutting edge
Mx,C Moment around ~XM at point C
NSeg Number of segments used in the discretisation
Pf Assumed working plane [1]
Pn Cutting edge normal plane [1]
Poe Working orthogonal plane [1]
Pp Tool back plane [1]
Pr Tool reference plane [1]
Pre Working reference plane [1]
Pse Working cutting edge plane [1]
rβ Rounded cutting edge radius (standardised notation: rn [1])
rEε Corner/nose radius; also denoted rε if the cutting edge is included in Pr [1]
RE Polar radius (parameterisation of the cutting edge)
RWo Radius of the workpiece (W) in the plane Po−→vc Local cutting speed [1]
−→ve Local resultant cutting speed [1]
−→
Vf Feed speed [1]
xM Machine axis translation in the X direction (defined by [3])
zM Machine axis translation in the Z direction (defined by [3])

1. Introduction

The modelling of cutting forces is essential to predict the progress of machining operations as well as the
final properties of workpieces. At a large scale, the cutting forces can be used to size the clamping system [4] or
to predict the deflections [5] or the vibrations [6–11] of the tool, the part or the structure, in order to ensure the
geometry and the roughness characteristics of the machined surface. When focusing on the tool-part interface,
numerous studies have tried to link cutting forces to residual stresses [12] or surface integrity, and then predict
fatigue life or corrosion resistance [13].

More and more manufacturers wish to adapt the cutting parameters in order to obtain the expected prop-
erties of the workpiece. For example, the feed can be modified along the tool path in order to limit the cutting
forces, while minimising the cycle time [14, 15]; the machining allowance may also be variable. The feed can
be adapted in real-time by measuring the forces and modifying the numerical command (NC) instructions [16].
Nevertheless, predictive methods should be preferred because of the cost of the monitoring equipment and the
difficulties in modifying the NC command data or the set-point value in the speed control loop. Moreover, sim-
ply respecting a maximum force does not ensure the smooth progress of the cutting process. As a consequence,
there is a need for cutting force models which can be used for complex and various cutting operations.

In a literature review conducted in 1998 [17], the authors noted that cutting force models are too rarely
used in industry, because they are not well formalised and the validity domain is not clearly specified.

The aim of the present study is to propose a methodology which enables the description of cutting operations
when turning with inserted tools.

A brief review of cutting force modelling by mechanistic approaches is first proposed. Then a geometrical
model using homogeneous matrix transformations is presented. Next, the cutting geometry is described and
the main factors affecting the forces are calculated in order to be used as inputs for the cutting force models.
Finally, the forces and moments applied to the tool can be calculated.

In this article, most notations used are consistent with ISO standards [1–3]. The notations
−→
Fx ,

−→
Fy and

−→
Fz

correspond respectively to the radial, tangential and axial components of the global forces (in Newtons). The

local forces (in N/mm) are denoted with a lowercase
−→
f .

2. Mechanistic modelling and edge discretisation - A state of the art

2.1. Origin of the mechanistic models

As the physical modelling of the cutting process is complex, due to the number of uncertain local parameters,
mechanistic models, which are easier to handle, have been developed. The form of the cutting relations is
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elaborated starting from the observation of the mechanical effects of the machining parameters. Then the
model is identified from a set of tests, which limits the validity domain [9].

Mechanistic models involve the operative parameters, as well as the tool and workpiece geometries, from
which other parameters, like the chip load, are calculated [18].

Classically, the chip load is considered as the nominal cross-sectional area of the cut AD, which is linked
to the cutting force by the specific cutting force Kc. Therefore, when contour turning is considered, many
elementary areas should be calculated and a macroscopic chip flow direction is required to estimate the axial
and radial components [6, 19].

Some authors try to link the operative cutting parameters f (feed) and ap (depth of cut) directly to the
cutting forces [20]. However, sometimes these parameters have no physical sense, especially when only the
nose of the tool is cutting. This is why approaches like ANOVA or RSM (Response Surface Methodology)
generally conclude that the interaction between these two parameters is non negligible; the link is geometric
and corresponds to the local undeformed chip thickness h.

Thus a geometric analysis can be helpful to determine the local cutting conditions, which are more repre-
sentative of the cutting process.

This considered, if a global approach is nevertheless preferred, an effective or mean uncut chip thickness
[21, 22] or the maximum uncut chip thickness hmax [23] may be used.

2.2. Edge discretisation methodology

In the early 1960’s, Sabberwal [24] showed that the cutting force is proportional to the width of cut in flank
milling.

This observation allows us to consider that the cutting forces applied to the tool are the sum of the local
contributions. The active cutting edge is then generally discretised into segments and the tool is considered as
a sum of elementary rectilinear edged tools.

It should be noted that the assumption of the independence of the elementary tools is implicit; consequently,
the curvatures of the edge and the rake face are neglected [25].

The edge discretisation methodology was originally used to consider the temporal slippage of edge elements
when flank milling [24, 26] and has been taken up in many studies.

In turning, this methodology enables the local value of the uncut chip thickness to be taken into account
when round-nosed tools are used [27].

Shaw et al. [28] began to analyse the variation in cutting geometry along a cutting edge and the possible
effects on the cutting forces. Later, one of the first applications of the edge discretisation method to take the
local geometry into account was proposed by Armarego and Cheng [25] for drilling operations.

The edge discretisation method can be used with analytical or numerical local cutting models, representative
of orthogonal or oblique cutting operations. However, mechanistic models are the most widely used due to their
simplicity.

2.3. Local cutting models

A local cutting model is defined by the cutting relations linking the local forces to the parameters (scalar
relationships) and also by the basis in which the local forces are expressed. Various local bases can be used;
the most common are presented in this paragraph.

In milling, three forces are classically defined in the Radial-Tangential-Axial (RTA) basis [29]. When
considering ball-end mills, this basis is normal to the sphere-envelope [30] and the RTA denomination is not
proper; it is also the case whenever κr is not equal to 90◦, as for turning operations.

Bissey et al. [31] propose to use the local basis denoted (−→o ,−→v ,
−→
h ) and defined as follows: −→v is parallel to

the cutting speed
−→
Vc,
−→
h is the intersection between the reference plane Pr and the cutting edge normal plane

Pn (measurement direction of h) and −→o completes the basis. This basis can be qualified as semi-global, because
it is oriented both by the tool (cutting edge angle κr taken into account) and by the machine (primary motion).

One of the most popular local cutting models was proposed by Thaulow in 1942 - as reported in the
discussion in reference [32] - and considers that the forces are expressed with an affine relation with respect to
h. This law is explainable by observing the results of orthogonal cutting tests [33] when h is large compared to
the edge radius rβ.

Accordingly, the three components
−→
fv ,
−→
fh ,
−→
fo (Fig. 1 (a)) are expressed with an affine relation (Eq. (1)) [29].

If there is no inclination, component fo is equal to zero.

fi = Kci h+ kei with i = o, v, h (1)
3



Coefficients Kci represent the chip load contribution, while kei corresponds to the edge effect [34]. As the
cutting angles do not appear in this model, the four identified coefficients are only available for one type of
local cutting geometry (edge preparation).
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Figure 1: Possible applications of the local forces: (a) in the (~o,~v,~h) basis; (b) on the rake face; (c) on the rake and clearance faces;
(d) on the worn clearance surface (or the rounded edge).

In order to enhance the physical meaning, it is possible to apply the local forces on the rake face Aγ as

shown in Fig. 1 (b) [35, 36]. In this case, the force
−→
fnγ is applied normal to the rake face and the tangential

force
−→
fg γ - or

−→
ff γ if oriented by a chip flow angle - represents the friction.

To take into account the clearance contact (Fig. 1 (c)), local forces can be also applied on the rake and

clearance faces (
−→
fnα,

−→
fg α) [37, 38].

Some authors replace the clearance face Aα with the surface created by flank wear, which brings back the

forces normally applied to Aα in the (−→o ,−→v ,
−→
h ) basis (Fig. 1 (d)) [12]. The same result is obtained by authors

who consider that the tool/workpiece contact is localised in the rounded edge [39].

2.4. Generalisation of the cutting force models

In 1985, the structure of a unified multi-operations model, shown in Fig. 2, was set out by Armarego
and Whitfield [34] and has been completed since then [40]. Cutting relations are established in orthogonal or
oblique cutting and a database of identified coefficients is constituted from the results of elementary cutting
tests conducted on various materials. Cutting relations and identified coefficients are available for a given edge
preparation / machined material pair; chip breakers should also be fixed.

At the heart of this approach is the interface between the oblique analysis and the applications, which consists
of geometrical transformations. The simpler these transformations are, the more industrial applications can be
expected for them.

In the next section, a mathematical interface between the cutting model and the applications, built on
homogeneous matrix transformations, is presented. This methodology is a generalisation and an improvement
of a previous work concerning round inserts [38]. The application of the present paper is limited to 2-axis
turning with inserted tools, but the method can be applied to any machining operation.

As indicated by Kaymakci et al. [36], geometrical modelling is independent of the local cutting model used
to calculate the forces. For this reason, cutting models are not discussed further in this paper.
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Figure 2: Principle of a multi-operation cutting force model (adapted from [34]).

3. Geometrical modelling of turning operations

3.1. General principle of geometrical modelling

The calculation of cutting forces by edge discretisation requires the knowledge of several geometrical pa-
rameters.

The most significant parameters are the uncut chip thickness h and the rake angle γn, while the effect of the
cutting speed Vc is often not significant [20]. These parameters can be used in expressions of the local forces,
such as the inclination angle λs which is also often taken into account [35]. The clearance angle and the edge
radius rβ are rarely considered, but they could be introduced. Recent work suggests that the cutting edge angle
κr and the radius of curvature of the workpiece RWo should also be taken into account [41].

In order to calculate the uncut chip thickness, it is helpful to have a definition of the cutting edge in a
coordinate system linked to the workpiece.

Concerning the calculation of the working cutting angles, the tool geometry should be expressed in a basis
given by the cutting and feed movements.

In addition, to be compared with measured forces, the calculated forces must be expressed in the same basis
as that of the measured ones.

In the particular case of turning, these three bases are coincident.
The principle of the method, summarised in Fig. 3, is that any cutting operation with inserted cutters can

be modelled by considering each of the following transformations:
• the joint movements of the machine (translations and rotations, if any), represented by the matrix
MMachine and given by the trajectory and, in some cases, the orientation of the tool;
• the positioning of the insert on the tool body: MBody;
• the shape of the cutting edge (global shape of the insert): MEdge;
• the local cutting geometry of the insert (edge preparation): Mγ and Mα respectively for the rake and

clearance faces.
The notations for angles and distances used in the transformations are the following: κBr means that the

angle is given by the element B (for Body) and considered in the plane Pr.
The planes and their reference systems are defined by the ISO 3002-1 standard [1].
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Figure 3: Graphic summary of the method, illustrated for turning.

3.2. Principle of modelling by homogeneous matrix transformations

The use of rotation matrices is the common way to transform a local basis into the measurement basis
[6, 7, 11, 21, 37], even in orthogonal cutting [39].

The limit of the 3x3 matrix transformations is that the cutting edge should be described by a stand-alone
representation [7, 21, 37].

Since Denavit and Hartenberg [42] introduced homogeneous matrices, they have commonly been used for
the kinematical description of machine-tools, particularly for 5-axis milling centers [43].

Later, the cutting geometry obtained from grinding kinematics were modelled by homogeneous transforma-
tions [44].

Rivière-Lorphèvre [9] note that these transformations can also be used to describe cutting operations in
order to model cutting forces, as do Sambhav et al. [45].

The interest of homogeneous transformations is to consider local coordinate systems, rather than vector
bases, which enables the edge and the local geometry to be described simultaneously. In turning, the coordinate
systems linked to the dynamometer, the workpiece and the motions are the same, and correspond to that linked

to the machine, denoted RMachine = (
−−→
XM ,

−→
YM ,
−→
ZM , OPr). OPr corresponds to the origin of the NC program

(on the spindle axis).

3.3. Parameterisation of the machine (M) movements - Tool trajectory

The conventions for axis definition are given by the ISO 841 standard [3]. All the presented applications
are performed for a rear turret lathe.

As previously mentioned, the use of homogeneous matrices for the description of machine axis movements
is common when a 5-axis machine is considered. In 2-axis turning, the first matrix of the model involves only
the two translations xM and zM . If cutter radius compensation (CRC) is used, the matrix is simply written
under Eq. (2) for the kth spindle revolution. This matrix represents the trajectory of the nose centre, denoted
Cε (Fig. 4).

MMachine(k) =


1 0 0 xM (k)
0 1 0 0
0 0 1 zM (k)
0 0 0 1

 (2)

If CRC is not used in the NC program, the value of the corner radius rε must be added to consider the nose
centre instead of the cutter reference (point P ).

3.4. Parameterisation of the positioning of the insert on the tool body (B)

Unfortunately, the ISO 3002 standard [1] is not well adapted to inserted tools. Indeed, this standard refers
to HSS tools, and the positioning of inserts is not considered.

Thus, the positioning of the insert on the cutter body is defined by three angles: the cutting edge angle
κBr defined in Pr [1], and two tilting angles (Fig. 5), whose definition is not clear. The first one, κBr , is defined
between the major cutting edge and the feed direction for cylindrical turning. The two last angles are defined
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Figure 4: Machine axis and tool trajectory.

by tool manufacturers around
−−→
XM and

−→
ZM and can be respectively called rake angle γB and inclination angle

λB [38, 46, 47], or axial rake angle γBf (in Pf ) and radial rake angle γBp (in Pp) [7, 36]. It should be noted
that the denomination axial/radial rake angles enables us to draw a parallel with milling operations, but the
conventions must be redefined: in flank milling, γBf is the radial rake angle and γBp is the axial rake angle.

As these angles simultaneously modify all the working angles γne, αne and λse along the cutting edge, the
denomination ”rake angles” does not seem appropriate. In this paper, these tilting angles are denoted:
• ψBf for the tilt in Pf ;

• ψBp for the tilt in Pp.

Figure 5: Positioning of the insert on the tool body: cutting edge angle κBr and tilting angles ψBf and ψBp (see also [36]).

In order to be extended to rotating tools (milling cutters, drills), the method should consider the rotation
and the run-out at this level, and of course the different teeth of the tool.

3.4.1. Matrix composition

Classically, the rotation of the insert is obtained by multiplying three rotation matrices [7, 21, 36, 38].
However, matrix multiplication is not commutative and the three angles are defined from the same basis (Pr,
Pf and Pp are orthogonal). Thus, since the result of the matrix calculation depends on the chosen sequence of

7



rotations, the problem cannot be rigorously modelled by matrix compositions.
While error is negligible for tilting angles ψBf and ψBp due to their low value (between 0 and −10 ◦), it

becomes a problem when κBr is considered because of its higher variations.
There is therefore a need for a method to express a specific matrix describing the positioning of the insert.

3.4.2. SORA Method

The Simultaneous Orthogonal Rotations Angle (SORA) method, proposed by Tomažic and Stančin [48] in
the field of electrical engineering, could lead to a solution to this problem.

The simultaneous rotations are written in the form of a vector, called SORA vector and denoted here VBody.
This vector is expressed in the machine coordinate system (or RTool) by Eq. (3).

VBody =


ψBf

π

2
− κBr −

εE

2

−ψBp


RTool

(3)

The rotation vector VBody corresponds to a single rotation, whose angle (modulus) φB and orientation −→v B
can be calculated by Eq. (4) and (5).

φB = ||VBody|| (4)

−→v B =

 vx
vy
vz

 =
VBody
φB

if φB 6= 0 (5)

Finally, a homogeneous matrix MBody, representing the positioning of the tool insert on the body, can be
calculated according to Rodrigues’ rotation formula (Eq. (6)).

MBody = cosφB


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 M44

+ (1− cosφB)


v2
x vxvy vxvz 0

vxvy v2
y vyvz 0

vxvz vyvz v2
z 0

0 0 0 M44



+ sinφB


0 −vz vy 0
vz 0 −vx 0
−vy vx 0 0

0 0 0 M44

 with M44 =
1

1 + sinφB

(6)

To consider round inserts, the cutting edge angle κBr and the tool included angle εE must be taken as
respectively equal to π/2 and 0.

The matrixMBody enables the transformation ofRTool into the coordinate systemRInsert = (
−→
XI ,
−→
YI ,
−→
ZI , Cε)

linked to the insert, whose X axis corresponds to the bisectrix of the insert.
The results obtained for two different composition sequences (cf. Section 3.4.1) and the SORA method are

compared in Fig. 6 for a circular edge and high values of ψBf and ψBp (−30 ◦).
As shown in Fig. 6, the unique solution given by the SORA method is located between the two solutions

obtained by the compositions. This method enables disambiguation when modelling the positioning of inserts
on tool bodies.

3.5. Description of the cutting edge (E)

The word ”edge” should be understood here as the theoretical line defined by the intersection between the
rake and clearance faces.
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3.5.1. Case of planar cutting edges

In addition to round inserts (ISO R), the ISO designation (ISO 1832) of inserts [49] provides several shapes
whose active part is always formed by a nose and two rectilinear edges (major and minor).

Consequently, the edge of ISO inserts can be defined by only two parameters: the nose radius rEε and the
tool included angle εE (also denoted εr when the cutting edge is included in Pr).

A polar description is proposed for all standardised inserts (Fig. 7); the polar angle is denoted θ. If the
increment ∆θ is constant, the width of the segments varies in the linear portions of the edge; but if ∆θ is small
enough, this point has no influence.

EZ
EX

( , )I IX Z

IZ

IX

MP 

Cε 

MS 

M(θ) 

M0 (θ0=0) 

εE 

θ 
rε

E 



Figure 7: Polar parameterisation of the cutting edge.

The reference angle θ0 = 0◦ is on the bisectrix of the insert; the corresponding point is denoted M0. Angles
θP and θS (Eq. (7)) define respectively the change between the nose and the major (primary) and minor
(secondary) cutting edges; the corresponding points are denoted MP and MS .

θP = −θS =
π

2
− εE

2
(7)

The polar radius RE(θ) defining the line of the edge can be calculated using Eq. (8).

RE(θ) =



1

a cos θ + bP sin θ
if θ > θP

rEε if θS < θ < θP

1

a cos θ + bS sin θ
if θ < θS

with



a =
sin(εE/2)

rEε

bP =
1

sin θP

(
1

rEε
− a cos θP

)

bS =
1

sin θS

(
1

rEε
− a cos θS

)
(8)
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Two homogeneous matrices then define the cutting edge (Eq. (9) and (10)).

ME1(θ) =


cos(π2 − θ) 0 sin(π2 − θ) 0

0 1 0 0
− sin(π2 − θ) 0 cos(π2 − θ) 0

0 0 0 1

 (9)

ME2(θ) =


1 0 0 0
0 1 0 0
0 0 1 −RE(θ)
0 0 0 1

 (10)

In order to adjust the system tangent to the edge in the linear portions (Fig. 7), a final rotation is needed
(Eq. (11)).

ME3(θ) =


cos ζ 0 sin ζ 0

0 1 0 0
− sin ζ 0 cos ζ 0

0 0 0 1

 with ζ(θ) =



εE

2
+ θ − π

2
if θ > θP

0 if θS < θ < θP

−ε
E

2
+ θ − π

2
if θ < θS

(11)

3.5.2. Case of local inclination

Some inserts have a local inclination of the cutting edge, in order to assist chip breakage or to evacuate the
chip (for example, aluminium cutters).

In this case, the 3D-line of the cutting edge must be mathematically defined. For example, the cutting edge
equation can be expressed in a Cartesian coordinate system or as a function of the curvilinear abscissa [36]. It
is also possible to use an interpolation of the full measured cutting edge, as proposed by Lazoglu [30] from a
CMM measurement.

3.5.3. Tool centre height adjustment

The point M0 (corresponding to θ = 0) is assumed to be set at the spindle axis height on the real tool.
From the previous transformations, it is possible to determine the coordinates of M0 (calculation similar to
Eq (22)). Then the matrix MTCH enables the modelled tool to be repositioned (Eq. (12)), as a tool centre
height (TCH) adjustment.

MTCH =


1 0 0 0
0 1 0 −yM0

0 0 1 0
0 0 0 1

 (12)

The matrix describing the shape of the cutting edge is given by the product of the four previous matrices

(Eq. (13)), for each discretised element. The coordinate system RInsert = (
−→
XI ,
−→
YI ,
−→
ZI , Cε) linked to the insert

is changed into several local coordinate systems REdge = (
−→
XE ,
−→
YE ,
−→
ZE ,M(θ)) linked to the cutting edge.

MEdge(θ) =ME1(θ)×ME2(θ)×ME3(θ)×MTCH (13)

3.6. Parameterisation of the local cutting geometry of the insert - Edge preparation (P)

As exposed in paragraph 2.3, the local forces are often expressed in a coordinate system linked to the rake
face. However, many inserts have a local preparation (given by sintering or grinding) in order to have a more
or less positive rake angle and a given clearance angle. Currently, the geometrical models of inserted tools
proposed in the literature consider only the positioning on the tool body [7, 11, 36], which is not combined
with the local geometry of the insert. Han-Min [46] considered both positioning and grinding angles in order
to calculate the working cutting angles, but it was done using an approximated method.

The values of the local rake and inclination angles are not specified by the ISO designation of indexable
cutters [49]. However, some manufacturers give information on their cutting geometries and edge preparations
[47]. The local normal rake angle can be either positive or negative (for example, if the edge preparation is a
chamfer).
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Three local angles can be used to define the geometry (Fig. 8): an inclination angle λE , together with a
rake angle γPn or a clearance angle αPn , depending on whether the rake or clearance face is considered. The
values of these angles may vary along the cutting edge.

Figure 8: Local geometry of the insert.

In the case of local inclination, the basis must be tilted according to Eq. (14) in order to be tangent to the
inclined edge. For the current point Mj , the local inclination angle λE is equal to the angle between vector
−−−−−−−→
Mj−1Mj+1 and the plane (

−→
XI ,
−→
ZI); λ

E is positive if
−−−−−−−→
Mj−1Mj+1 ·

−→
YI < 0.

Mλ(θ) =


cos(−λE) − sin(−λE) 0 0
sin(−λE) cos(−λE) 0 0

0 0 1 0
0 0 0 1

 (14)

The local normal rake γPn and clearance αPn angles can then be taken into account (Eq. (15) and (16)).

MP
γ =


1 0 0 0
0 cos γPn − sin γPn 0
0 sin γPn cos γPn 0
0 0 0 1

 (15)

MP
α =


1 0 0 0
0 cosα′ − sinα′ 0
0 sinα′ cosα′ 0
0 0 0 1

 with α′ = −π
2
− αPn (16)

It is also possible to use a corrected rake angle for low uncut chip thicknesses [50, 51], in order to model the
effect of rounded cutting edges. In this case, the calculation of the uncut chip thickness (detailed in Section 5.2)
must be performed between the calculation of the cutting edge (Eq. (13)) and the transformation MP

γ .
Matrices Mγ and Mα can be then calculated by composition (Eq. (17) and (18)) in order to obtain

coordinate systems Rγ = (−→e ,−→nγ ,−→gγ ,M) and Rα = (−→e ,−→nα,−→gα,M), respectively linked to the rake and clearance
faces.

Mγ(θ) =Mλ(θ)×MP
γ (θ) (17)

Mα(θ) =Mλ(θ)×MP
α (θ) (18)

3.7. Chip flow angle

A local chip flow angle η can be consider in the transformations to introduce a realistic friction force
−→
ff γ

on the rake face [35]. The relative transformation is given by Eq. (19).
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Mη =


cos η 0 sin η 0

0 1 0 0
− sin η 0 cos η 0

0 0 0 1

 (19)

This local change can be due to the local working cutting edge inclination angle λse [35, 52] and also to the
working cutting edge angle κre [6].

4. Representation of the cutting geometry

Depending on the chosen local cutting model, several local coordinate systems may be needed:

• Rovh = (−→o ,−→v ,
−→
h ,M) if the model considers the forces

−→
fv and

−→
fh (Fig. 1(a));

• Rγ = (−→e ,−→nγ ,−→gγ ,M) if the forces
−→
fnγ and

−→
fg γ are applied on the rake face with no chip flow angle

(Fig. 1(b));

• Rη = (−→oγ ,−→nγ ,
−→
fγ ,M) if the friction force is applied in the local chip flow direction;

• Rα = (−→e ,−→nα,−→gα,M) if the contact on the clearance face is taken into account (Fig. 1(c)); however, the
friction direction corresponds to the projection of −→ve on Aα.

The calculation of the coordinate system Rγ is explained hereafter (Eq. (20) to (23)).
The geometry of the tool is set for a given operation; for each tool discretisation element, the matrixMTool

(Eq. (20)) can be calculated only once, while the matrix of the machine movementsMMachine must be changed
at each spindle revolution k (or each time step).

MTool γ(θ) =MBody ×MEdge(θ)×Mγ(θ) (20)

The matrix relative to the whole cutting operation MOp is given by Eq. (21).

MOp(k, θ) =MMachine(k)×MTool γ(θ) (21)

Then the coordinates of the current points M (Eq. (22)) and of the local vectors (Eq. (23)) expressed in
RMachine can be calculated.

M(k, θ) =


x(k, θ)
y(k, θ)
z(k, θ)

1


RMachine

=MOp(k, θ)×


0
0
0
1


Rγ

(22)



−→e (θ) =


xe(θ)
ye(θ)
ze(θ)

1


RMachine

=MOp(k, θ)×


1
0
0
0


Rγ

−→nγ(θ) =


xnγ (θ)
ynγ (θ)
znγ (θ)

1


RMachine

=MOp(k, θ)×


0
1
0
0


Rγ

−→gγ(θ) =


xgγ (θ)
ygγ (θ)
zgγ (θ)

1


RMachine

=MOp(k, θ)×


0
0
1
0


Rγ

(23)

Three-dimensional representations1 are shown in Fig. 9 for different types of inserts and bodies. The
numerical values of the parameters correspond either to the ISO designation [49] or to the data given by the
tool manufacturer Sandvik [47].

The examples in Fig. 9 are the following:

1Only the vectors −→gγ and −−→gα are represented (cf. Fig. 8).
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• Case (a): a positive basic shape insert DCMT 11T308-UF (εE = 55◦, rEε = 0.8 mm, αPn = 7◦, γPn = 6◦)
non-inclined by the body SDHCL 2020 K11 (κBr = 107.5◦, ψBf = 0◦, ψBp = 0◦);
• Case (b): a negative basic shape insert CNMG 120408-23 with a positive cutting geometry due to the

edge preparation (εE = 80◦, rEε = 0.8 mm, αPn = 0◦, γPn = 13◦) twice tilted by the body PCLNL 2020 K12
(κBr = 95◦, ψBf = −6◦, ψBp = −6◦);

• Case (c): a negative basic shape insert SNGN 120408-T02520 with a chamfered edge preparation (εE =
90◦, rEε = 0.8 mm, αPn = 0◦, γPn = −20◦) once tilted by the body CSSNL 2525M12-4 (κBr = 45◦, ψBf =

−8◦, ψBp = 0◦).

z 
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y 
M
 (
m
m
)

(a)

z 
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x 
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y 
M
 (
m
m
)

(b)

z 
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x 
M (mm)

y 
M
 (
m
m
)

(c)

Figure 9: 3D representations of the cutting geometry in RMachine for different insert-body pairs: (a) DCMT-UF + SDHCL;
(b) CNMG-23 + PCLNL; (c) SNGN-T (chamfered) + CSSNL.

5. Calculation of the local cutting parameters

The geometry of the tool can be used to orient the local forces. In addition, local cutting parameters can
be used as inputs in the expression of the local cutting relations.

The cutting parameters can be sorted as follows:
• the local cutting conditions: Vc, h;
• the local working cutting angles: γne, λse, αoe;
• the local cutting edge characteristics given by the global geometry of the insert, κre and the edge curvature

(primarily rEε for turning tools); this point means that the segments are not considered as independent;
• the edge properties: rβ in the case of a honed edge or chamfer dimensions, roughness and tool material

or coating;
• the local workpiece curvatures.

5.1. Local effective cutting speed ~ve

In turning, the cutting movement is given by the workpiece rotation. In the case of non-planar cutting

edges or inclined inserts, since the current cutting point M is not in the plane (OPr,
−−→
XM ,

−→
ZM ), the local cutting

speed −→vc is not parallel to
−→
YM .

The direction and norm of −→vc can be calculated according to Eq. (24) from the spindle speed N and the
coordinates of the current point.

−→vc = ||−→vc || · −→vu with



||−→vc || =
π

500

√
x2(θ) + y2(θ) N

−→vu =
1√

x2(θ) + y2(θ)


−y(θ)
x(θ)

0
0


RMachine

(24)

Then the local effective cutting speed −→ve can be calculated (Eq. (25)).

−→ve = −→vc +

−→
Vf

1000
(25)

5.2. Uncut chip thickness

The local thickness of cut hj is defined for each point Mj of the active cutting edge. The measurement
direction of h is the intersection of planes Pne and Pre [2]. Thus it results from a three-dimensional calculation.
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5.2.1. Cylindrical turning with a cutting edge included in Pr
Analytical calculation is of interest when identification algorithms are used, to reduce the calculation time.

It is possible in the case of a planar and non-inclined cutting edge (ψBp = ψBf = 0◦), and if the considered
operation is simple (cylindrical turning or facing, for example).

Armarego and Samaranayake [53] have counted nine types of cut shapes in cylindrical turning, while Atabey
et al. [54] have studied the case of boring. Each configuration should be considered in detail.

As the edge is included in Pr, the classical notations κr, εr and rε are used in this section instead of κBr , εE

and rEε .
The change of variable Θ = θ+κr+εr/2−π/2 is helpful to compare uncut chip thicknesses between different

tools.
The analytical calculation of h is developed for cylindrical turning in the following paragraphs. In this

particular case, Θ is equal to κre.

Circular cutting edge

In 1989, the case where only the nose is cutting was studied in detail by Moriwaki and Okuda [55]; this
configuration is of prime importance since it corresponds to finishing operations. In this particular case, the
maximum uncut chip thickness on the active cutting edge during cylindrical turning can be calculated by
Eq. (26) [23].

hmax = rε −
√

(
√
r2
ε − (rε − ap)2 − f)2 + (rε − ap)2 (26)

Here the active cutting edge is delimited by angles ΘMin and ΘMax, given by Eq. (27) and (28).

ΘMin = arcsin

(
−f
2 rε

)
(27)

ΘMax = arccos

(
rε − ap
rε

)
(28)

The local uncut chip thickness along the active cutting edge can then be calculated using Eq. (29) (see also
[53] or [51] for a front turret lathe).

If Θ < Θhmax : h(Θ) = rε + f sin Θ−
√
r2
ε − f2 cos2(Θ)

If Θ > Θhmax : h(Θ) = rε −
rε − ap
cos Θ

with Θhmax = arccos

(
rε − ap
rε − hmax

) (29)

Other planar edge shapes

Depending on the values of the cutting parameters (f and ap) and the characteristics of the tool (rε, εr and
κr), five zones can be identified in the area of cut, as shown in Fig. 10. These correspond to the more complex
cases, when ap and f are larger than the limit values given by Eq. (30) and (31) [53].

ap lim = rε (1− cosκr) (30)

flim = 2 rε sin(κr + εr) (31)

The formulae for the calculation of the characteristic angles Θ, shown in Fig. 10, are given in Appendix A,
while the calculation of the uncut chip thickness is detailed in Appendix B.

It should be noted that the equation h = f sinκr is too often misused [11], since it is only available in zone
II. Also, for κr > 90◦, zone I is removed with the chip, without being cut.

Two numerical applications are proposed in Fig. 11 (with the same cutting parameters: f = 0.3 mm/rev
and ap = 1 mm):
• (a) a DCMT11T304 insert (rε = 0.4 mm; εr = 55◦) on a SDHCL body (κr = 107.5◦);
• (b) a SCMT120404 insert (rε = 0.4 mm; εr = 90◦) on a SSDCL body (κr = 45◦).
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Figure 10: Cutting zones for cylindrical turning with a rhombic insert, for two cases: (a) κr > 90◦ (ap > ap lim and f > flim);
(b) κr < 90◦ (ap > ap lim but f < flim).
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Figure 11: Uncut chip thickness along the active cutting edge: (a) DCMT11T304 + SDHCL; (b) SCMT120404 + SSDCL.

Knowledge of the uncut chip thickness is obviously required for the calculation of the cutting forces, but it
also provides information on the mechanical load of the tool. Thus it is possible to forecast the zones of the
cutting tool where the wear will be the greatest.

5.2.2. General case

Strictly, when the cutting edge is inclined, the uncut chip thickness should be calculated between the cutting
edge and the surface generated at the previous revolution [56]. However, the calculation can be approximated in

the plane (OPr,
−−→
XM ,

−→
ZM ) in some cases. Indeed, the difference is negligible insomuch as the workpiece diameter

is large, and the feed and the inclination are small.
The simulation of contour turning operations, or with non-ISO inserts like wiper inserts, nevertheless requires

the calculation of the uncut chip thickness with various shapes of tool-workpiece intersections. As all cases of
tool-workpiece intersection cannot be predicted, it is simpler to evaluate h by numerical methods. The methods
currently used are:
• point-to-point distances [8, 9];
• N-buffers [14];
• dexel or voxel removal [6, 30];
• volumic boolean operations [10].
It is thus possible to simulate the forces along a tool path by numerical calculation of the uncut chip

thickness, even if the identification of the model has been performed from cylindrical turning tests (with an
analytical calculation of h).

5.3. Working cutting angles

From the previous calculations of the local coordinate systems and −→ve , it is possible to define the planes of
the tool-in-use system (Eq. (32)) [1].
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Pre ⊥ −→ve
Pfe = (−→vc ,

−→
Vf )

Pse = (−→ve ,−→e )

Poe = (−→ve ,
−→
h )

Pne = (−→nγ ,−→gγ) = Pn

(32)

According to Armarego [52], the normal rake angle γn is the most relevant rake angle; this conclusion has
been confirmed more recently by Komandury et al. [57].

As elastic recovery occurs normally to the machined surface, and because the friction on the clearance face
is due to the primary motion, the working orthogonal clearance angle αoe seems to have the most physical
meaning.

The inclination angle λse and the cutting edge angle κre may influence both the chip flow direction and the
value of the forces.

The angles of the tool-in-use system can be calculated by Eq. (33). The notation −→ve⊥Pn indicates the
orthogonal projection of vector −→ve on plane Pn.

γne = ̂(Aγ , Pre)Pne = ̂(−→ve⊥Pn ,−→nγ)

αne = ̂(Aα, Pse)Pne = ̂(−→ve⊥Pn ,−→gα)

λse = ̂(Pre,
−→e )Pse = ̂(−→ve ,−→e )− π

2
κre = ̂(Pse, Pfe)Pre = sgn(−→e ·

−−→
XM ) ̂(−→vf⊥Pre ,−→e ⊥Pre)

αoe = arctan(tanαne cosλse)

(33)

Fig. 12 shows the evolution of the working angles along the cutting edge in cylindrical turning with the
following parameters:
• a CNMG 120408-23 / PCLNL 2020 K12 pair for the tool (idem Fig. 9 (b));
• Vc = 100 m/min and D = 100 mm (N = 318 rev/min);
• f = 0.3 mm/rev (Vf = 95 mm/min) and ap = 2 mm.
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Figure 12: Calculated working cutting angles along the active cutting edge.

This type of result allows the local working cutting geometry to be analysed. For example, in Fig. 12, it
can be seen that the working normal rake angle γne is greater for small values of θ. Yet this portion of the edge
is where the smaller uncut chip thicknesses are and where the machined surface is generated (θ < θlim surf ).
Thus, the working cutting geometry tends to improve the cut in this zone and therefore a better surface finish
can be expected.

In the same vein, the geometrical model can be used when designing tools in order to produce a given
working geometry, as proposed by Hsieh for single-point cutting tools [58]. Thus a variable local clearance
angle αPn would allow the normal wedge angle βn to be maximised where the chip thickness is the largest while
having a constant working clearance angle αne.

6. Calculation of global forces and moments by numerical integration

When the local cutting forces are expressed in the RTA basis (Fig. 1 (a)), the summation is obvious [29].
But, when they are applied on the rake and clearance faces (Fig. 1 (c)), they have to be projected before
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numerical summation.
As the vectors −→nγ , −→gγ , −→nα and −→gα are expressed in RMachine (Eq. (23)), the projections on

−−→
XM ,

−→
YM and

−→
ZM

are direct.
The calculation for the component Fx of the force and the moment around

−−→
XM at point Cε are respectively

given by Eq. (34) and (35) for the case corresponding to Fig. 1 (c). Ls is the length of the segment, which is
variable on the rectilinear edges.

Fx(k) =
∑
i=α,γ

Nseg∑
j=1

fn i(θj) Ls(θj) −→ni(θj) ·
−−→
XM + fg i(θj) Ls(θj) −→gi (θj) ·

−−→
XM (34)

Mx,Cε(k) =
∑
i=α,γ

Nseg∑
j=1

fn i(θj) Ls(θj) (−→ni(θj) ∧
−−−→
MjCε) ·

−−→
XM + fg i(θj) Ls(θj) (−→gi (θj) ∧

−−−→
MjCε) ·

−−→
XM (35)

This calculation must be made at each translation of the tool, corresponding to one revolution of the spindle.

7. Conclusion

In this paper, a generalised geometrical model of turning operations is proposed. The geometrical transfor-
mations linked to the machine-tool, the tool body and the insert are modelled by homogeneous matrices.

This contribution should be considered as a methodology, which facilitates the application of cutting force
models to the various cutting operations. In order to develop an algorithm for cutting force calculation, whole
or parts of transformations must be written step-by-step.

The variables required in the cutting relations can then be easily evaluated and the global forces applied on
the tool can be calculated by integration.

The geometrical results can also be helpful for designing cutting tools in order to increase their life ex-
pectancy.

An important feature of this work is the consideration of both the local geometry of the insert and its posi-
tioning, modelled by the SORA method, which allows a unique solution to be calculated from the information
provided by the tool manufacturers.

However, as noted by Armarego [40] more than 10 years ago, the geometry and the specification of the
tools have to be clearly defined by the standards and the tool manufacturers. Currently, the definition of the
positioning of indexable inserts and of local rake geometry remains fuzzy.

Appendix A. Angles Θ defining the cut for cylindrical turning with non-rounded ISO inserts

Intrinsic angles of the tool:

ΘP = κr (A.1)

ΘS = −κ′r = κr + εr − π (A.2)

Limit angles if the minor and major edges are active (if the limits are in the nose, the expressions of ΘMax

and ΘMin are equal to those given by Eq. (27) and (28) for round inserts):

ΘMax = arctan

[
ap + rε (cosκr − 1)

rε sinκr

]
+ κr (A.3)

ΘMin = − arctan

[
f

rε
cosκ′r −

√
r2
ε − (rε − f sinκ′r)

2

rε

]
− κ′r (A.4)

Characteristic angles if κr < 90◦:

ΘI/II = arctan

[
ap + rε (cosκr − 1)− f cosκr sinκr

rε sinκr

]
+ κr (A.5)

ΘIII/IV = arctan

[
rε sinκr − f
rε cosκr

]
(A.6)
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Characteristic angles if κr > 90◦:

ΘII/III = arctan

[
rε + f sinκr

f cosκr − rε tanκr

]
+
π

2
(A.7)

Appendix B. Uncut chip thickness h along the active cutting edge

• In zone V:

hV = RE(θ) cos(κ′r + Θ)− f sinκ′r −
√
r2
ε − [f cosκ′r +RE(θ) sin(κ′r + Θ)]2 (B.1)

• In zone IV:

hIV = rε + f sin Θ−
√
r2
ε − f2 cos2 Θ (B.2)

• In zone III:

hIII =



rε −
rε − f sinκr
cos(κr −Θ)

if κr < 90◦

RE(θ) cos(κr −Θ) + f sinκr

−
√
r2
ε − [f cosκr −RE(θ) sin(κr −Θ)]2 if κr > 90◦

(B.3)

• In zone II:

hII = f sinκr (B.4)

• In zone I:

hI =


f sinκr

[
1−

RE(θI/II) cos ΘI/II −RE(θ) cos Θ

cosκr
√
f2 (1− sin2 κr)

]
if κr < 90◦

Uncut zone if κr > 90◦

(B.5)
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