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Small moving rigid body into a viscous incompressible fluid

Christophe Lacave & Takéo Takahashi

June 29, 2015

Abstract

We consider rigid bodies moving under the influence of a viscous fluid and we study the asymptotic as

the size of the solids tends to zero.

In a bounded domain, if the solids shrink to “massive” pointwise particles, we obtain a convergence to

the solution of the Navier-Stokes equations independently to any possible collision of the bodies with the

exterior boundary.

In the case of “massless” pointwise particles, we obtain a result for a single disk moving in the full plane.

In this situation, the energy equality is not sufficient, and we obtain a uniform estimate for the solid velocity

thanks to the optimal Lp
− L

q decay estimates of the Stokes semigroup.

1 Introduction

We study in this paper the asymptotic of a fluid-solids system as the solids shrink to points.
More precisely, we consider N rigid bodies Sε

i (t) of shape Si,0 and of size ε immersed into a viscous incom-
pressible fluid. The rigid bodies occupy the sets Sε

i,0 at the initial time:

Sε
i,0 := hi,0 + εSi,0,

where we assume that Si,0 is a smooth simply-connected compact subset of R2, with nonempty interior and
where the center of mass of Si,0 is 0. At t = 0, the viscous fluid fills the domain

Fε
0 := Ω \

(

N
⋃

i=1

Sε
i,0

)

where Ω is either a bounded domain of R2 or the full plane. The positions hi,0 ∈ Ω are distinct, hence for ε
small enough we have

Sε
i,0 ∩ Sε

j,0 = ∅ (i 6= j) and Sε
i,0 ⊂ Ω. (1.1)

At time t > 0, the rigid bodies follow the trajectory

Sε
i (t) := hεi (t) +Rθε

i (t)

(

Sε
i,0 − hi,0

)

, (1.2)

where for all t,

hεi (t) ∈ R
2, θεi (t) ∈ R, Rθ =

(

cos θ − sin θ
sin θ cos θ

)

.

The domain of the fluid evolves through the formula

Fε(t) := Ω \
(

N
⋃

i=1

Sε
i (t)

)

. (1.3)
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We denote by n := nε(t, x) the exterior unit normal of ∂Fε(t). The equations for the fluid-solids system read

∂uε

∂t
+ (uε · ∇)uε − div σ(uε, pε) = 0 t > 0, x ∈ Fε(t), (1.4)

div uε = 0 t > 0, x ∈ Fε(t), (1.5)

uε = 0 t > 0, x ∈ ∂Ω, (1.6)

uε = (hεi )
′(t) + (θεi )

′(t)(x − hεi (t))
⊥ t > 0, x ∈ ∂Sε

i (t), i = 1, . . . , N, (1.7)

mε
i (h

ε
i )

′′(t) = −
∫

∂Sε
i (t)

σ(uε, pε)n dγ t > 0, i = 1, . . . , N, (1.8)

Jε
i (θ

ε
i )

′′(t) = −
∫

∂Sε
i (t)

(x− hεi )
⊥ · σ(uε, pε)n dγ t > 0, i = 1, . . . , N, (1.9)

uε(0, ·) = uε0 in Fε
0 , (1.10)

hεi (0) = hi,0, (hεi )
′(0) = ℓεi,0, θεi (0) = 0, (θεi )

′(0) = rεi,0, i = 1, . . . , N. (1.11)

Here and in what follows
σ(u, p) = 2νD(u)− pI2,

with ν > 0 is the constant viscosity and

D(u) :=
1

2
((∇u) + (∇u)∗) .

We write for any x ∈ R
2,

x⊥ :=

(

−x2
x1

)

= Rπ/2x.

In the unbounded case Ω = R
2, (1.6) should be understood as

lim
|x|→∞

uε(t, x) = 0 t > 0.

It is convenient to extend the velocity field uε inside the domains of the rigid bodies as follows:

uε(t, x) = (hεi )
′(t) + (θεi )

′(t)(x − hεi (t))
⊥ t > 0, x ∈ Sε

i (t), i = 1, . . . , N.

For any smooth open set O, we define

• V (O) :=
{

ϕ ∈ C∞
0 (O) | divϕ = 0 in O

}

;

• H(O) the closure of V (O) in the norm L2:

H(O) =
{

ϕ ∈ L2(O) | divϕ = 0 in O, ϕ · n = 0 at ∂O
}

;

• V(O) the closure of V (O) in the norm H1:

V(O) =
{

ϕ ∈ H1
0 (O) | divϕ = 0 in O

}

and its dual space by V ′(O) with respect to H(O).

We also define VR(Fε(t)) the subspace of V(Ω) of velocity fields that are rigid in the solids:

VR(Fε(t)) :=
{

ϕ ∈ H1
0 (Ω) ; D(ϕ) = 0 in Sε

i (t) ∀i ∈ {1, . . . , N}, divϕ = 0
}

. (1.12)

In this paper, we will consider the asymptotic ε→ 0 in the two following situations:

• several bodies shrinking to “massive” pointwise particles in a bounded domain;

• a single disk shrinking to a “massless” pointwise particle in the full plane.

The precise definition of massive/massless is given below.
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1.1 Massive pointwise particles in a bounded domain

In this situation, Ω is a bounded domain of R2 and we are considering the case where the solids tend to massive
pointwise particles:

mε
i = m1

i > 0 and Jε
i = ε2J1

i > 0. (1.13)

For instance, this is the case when the density ρεi of the rigid bodies satisfies

ρεi =
ρi
ε2

with ρi a constant.
Let us define a global density in Ω by

ρε(t, x) =

{

1 x ∈ Fε(t),
ρεi x ∈ Sε

i (t).
t > 0.

Under the following hypotheses on the initial conditions

uε0 ∈ L2(Fε
0 ), div uε0 = 0, uε0 · n = 0 on ∂Ω,

uε0 · n =
(

ℓεi,0 + rεi,0(x− hi,0)
)

· n on ∂Sε
i,0, i ∈ {1, . . . , N} ,

(1.14)

(that is uε0 ∈ VR(Fε
0 ) after the extension defined above) together with (1.1), there exists a global weak solution

(uε, hεi , θ
ε
i ) see [31] (see also [12], [18]), in the sense of the definition below.

Definition 1.1. We say that (uε, hεi , θ
ε
i ) is a global weak solution of (1.4)–(1.11) if, for any T > 0, we have

uε ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), uε(t, ·) ∈ VR(Fε(t)),

if
◦

Sε
i (t) ∩

◦

Sε
j (t) = ∅ ∀i 6= j, t ∈ [0, T ];

if it satisfies the weak formulation

−
∫ T

0

∫

Ω

ρεuε ·
(

∂ϕε

∂t
+ (uε · ∇)ϕε

)

dxds+ 2ν

∫ T

0

∫

Ω

D(uε) : D(ϕε) dxds =

∫

Ω

ρεuε0(x) · ϕε(0, x) dx, (1.15)

for any ϕε ∈ C1
c ([0, T );H

1(Ω)) such that ϕε(t, ·) ∈ VR(Fε(t)) and if it satisfies the energy inequality

1

2

∫

Ω

ρε(t, x) |uε(t, x)|2 dx+ 2ν

∫ t

0

∫

Ω

|D(uε)|2 dxds 6 1

2

∫

Ω

ρε0(x) |uε0(x)|2 dx a.e. t ∈ (0, T ). (1.16)

Remark 1.2. For ∂Ω and Si,0 of class C2, San Mart́ın, Starovoitov and Tucsnak established in [31] the existence
of a weak solution (uε, hεi , θ

ε
i ) globally in time, even with possible contact between the rigid bodies or between

a rigid body and the exterior boundary ∂Ω.

When ε→ 0, we establish the convergence of uε to the unique solution of the Navier-Stokes equations in the
full domain Ω.

Theorem 1.3. Assume (1.13), (1.14) and that

uε0 ⇀ u0 in L2(Ω), (1.17)

|ℓεi,0| 6 C, ε|rεi,0| 6 C, ∀i ∈ {1, . . . , N}. (1.18)

Then there exists T > 0 such that

uε
∗
⇀ u in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0(Ω)) (1.19)

where u is the weak solution of the Navier-Stokes equations associated to u0: for any ϕ ∈ C1
c ([0, T );V(Ω)),

−
∫ T

0

∫

Ω

u ·
(

∂ϕ

∂t
+ (u · ∇)ϕ

)

dxds+ ν

∫ T

0

∫

Ω

∇u : ∇ϕ dxds =

∫

Ω

u0(x) · ϕ(0, x) dx. (1.20)
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Remark 1.4. To prove Theorem 1.3, we need the existence of a positive distance between the rigid bodies,
independent of ε. Therefore, denoting by hi the limit of hεi , the time T in the above theorem corresponds to a
time such that

|hi(t)− hj(t)| > 0 (i 6= j, t ∈ [0, T ]).

In contrast, we do not need a positive distance between the bodies and the exterior boundary ∂Ω. In particular,
in the case of a single rigid body (i.e. N = 1), we can take T arbitrary large.

There are also several works showing that for some particular geometries, there are no contact in finite time
(see [20], [19], [21]). In that case, we can also consider any T ∈ R

+.

The asymptotic behavior of the fluid motion around shrinking obstacles is already considered in several
recent papers. Iftimie, Lopes Filho and Nussenzveig Lopes [23] have studied the case of one small fixed obstacle
in an incompressible viscous fluid in 2D. Iftimie and Kelliher [22] have treated the same situation in 3D. In
[26, 27] Lacave has considered the case of one thin obstacle shrinking to a curve in 2D and 3D.

There is also a large literature about porous medium in the homogenization framework. Since the pioneer
work of Cioranescu and Murat [6] for the Laplace problem, the Navier-Stokes system was studied, in particular,
by Allaire [1, 2]. We also mention [7, 8, 29, 32, 33, 38] for the fluid motion through a perforated domain.

In all the above studies, the general strategy relies on energy estimate to get a uniform estimate in H1.
It turns out that such an estimate is sufficient to pass to the limit in the weak formulation by a troncature
procedure. Namely, for a test function ϕ ∈ D(Ω) and for a cutoff function χε, we note that χεϕ is an admissible
test function for the Laplace problem in the perforated domain Ωε. If the inclusions are far enough, for standard
cutoff function, ‖χε‖W 1,p remains bounded only for p 6 2 in dimension two, which allows to pass to the limit in
terms such as

∫

∇uε : ∇(χεϕ). For the Navier-Stokes equations, the cutoff procedure is more complicated and
relies on Bogovskĭı operators. Indeed, we need approximated test functions that are divergence free (see [27]
and Section 3.2).

When the obstacles can move under the influence of the fluid, we also need to control uniformly the velocities
of the solids (hεi )

′(t). When the masses are independent of ε (1.13), this estimate follows easily from the energy
estimate (1.16).

Remark 1.5. We do not use that the domain is bounded in Theorem 1.3, and a similar result holds in the case
of Ω = R

2. The only difference is that the existence of global weak solutions is only stated in the literature
in the case of a single rigid body (see [34]). The well-posedness in the case of several bodies in the full plane
could be established with similar arguments as [31] (for instance). One could also use the result in [9] for strong
solutions in the case of several rigid bodies in the plane.

Indeed, as the compactness argument holds up to collision between the bodies, it is easy to adapt our result
with strong solutions, up to choosing more regular uε0. But even in this situation, our main argument is related
to a cutoff procedure and a passing to the limit in the weak formulation (1.15).

1.2 Massless pointwise particle in the full plane

In contrast to the massive case, when the masses tend to zero, it is no more possible from the energy estimate to
deduce estimates of (hεi )

′(t) independently of ε. One could try to get an estimate of (hεi )
′(t) from the boundary

condition. However, since the size of the solids tends to zero, this leads to look for a C0-estimate for the fluid
velocity, and thus for Hs estimates with s > 1. It was the strategy followed in [11, 36] with a H2 analysis.
Unfortunately, these articles are based on uniform elliptic estimates in the exterior of a small obstacle which
fail for s > 1; this can be noted by a scaling argument (see also a counter-example related to these estimates in
[5]).

Our strategy is different here. Our basic remark is that the small obstacle limit is related to the long-time
behavior though the scaling property of the Navier-Stokes equations uε(t, x) = ε−1u1(ε−2t, ε−1x). For one disk
moving in the plane, the long-time behavior was recently studied by Ervedoza, Hillairet and Lacave in [13].
In particular, the optimal decay estimates of the Stokes semigroup are the key to treat the massless pointwise
particle.
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More precisely, we consider one rigid disk moving in the plane:

N = 1, Ω = R
2, and S0 = B(0, 1). (1.21)

Without loss of generality, we can assume that h0 = 0 (we also suppress the subscript i = 1 to ease notation).
To apply the result in [13], we also need to assume that the center of the mass corresponds with the center of
the disk. For simplicity, let us assume that the density is constant ρ0 > 0 in the disk.

In this setting and for initial data satisfying (1.14), the existence and uniqueness of a global weak solution
(uε, hε, θε) were established by Takahashi and Tucsnak [37].

The goal of the second theorem is to treat the case where the disk shrinks to a massless pointwise particle:

ρε = ρ0 (1.22)

hence,
mε = ε2m1 and Jε

i = ε4J1. (1.23)

We consider the massless case for small data:

Theorem 1.6. Assume (1.21) and (1.22). Then there exists λ0 such that the following holds.
Let (uε0) be a family of vector fields verifying (1.14) and such that

ε|ℓε0|, ε2|rε0|, ‖uε0‖L2(R2\B(0,1)) 6 λ0 (1.24)

and
uε0 ⇀ u0 in L2(R2). (1.25)

Then for any T > 0 we have

uε
∗
⇀ u in L∞(0, T ;L2(R2)) ∩ L2(0, T ;H1

0(R
2)) (1.26)

where u is the weak solution of the Navier-Stokes equations in R
2 associated to u0 in the sense of (1.20).

For a 2D ideal incompressible fluid governed by the Euler equations, the case of a massive pointwise particle
in the full plane was treated in [15], a massless pointwise particle in the full plane in [16] and both case in a
bounded domain in [17]. In these works, non-trivial limit was obtained (namely, Kutta-Joukowski lift force or
vortex-wave system) when we consider non-zero initial circulations around the points.

The remainder of this work is organized in four sections. In the next section, we provide three examples
where the initial convergence (1.17) or (1.25) holds.

Section 3 is dedicated to the proof of Theorem 1.3. We introduce the cutoff procedure which follows the
trajectories of the solid and provide some uniform estimates. A crucial point for the proof of our main result
is to construct a corrected test function ϕη which satisfies the divergence free condition. This will be obtained
by the Bogovskĭı operator [3, 4]. Then we follow the analysis developed in [27]. Roughly, we pass first to the
limit ε→ 0 far away from the solids to get that u satisfies the Navier-Stokes equations in this region. Next, we
pass to the limit η → 0 in the cutoff function, to prove that the equations are also verified in the vicinity of the
massive pointwise particles.

Section 4 concerns the proof of Theorem 1.6. The main point here is to get a uniform estimate of the disk
velocity. This will be obtained thanks to the results of [13]. Then, the passing to the limit will be performed in
the same way as in the massive case.

Remark 1.7. In dimension three, the case of massive pointwise particles could be treated by the same strategy.
The case of a massless pointwise particle would require to adapt [13] in dimension three, which should be
possible if there is only one rigid ball in R

3. The decay estimates for the Stokes solution for other geometry is
a complicated open question.
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2 Examples of initial conditions

In this paragraph, we develop three examples of family (uε0)ε satisfying the compatibility condition (1.14) which
converges in L2(Ω).

Example 2.1. The first trivial example is the case where uε0 is independent of ε. Namely, let us consider ε0 small
enough such that the solids are disjoints (1.1), then we set

uε0 := uε00 ∀ε ∈ (0, ε0]

where uε00 satisfies (1.14) in Fε0
0 . In this case, the vector field uε0 is solid in a neighborhood of the solid and

obviously verifies (1.17) or (1.25).

Example 2.2. In domains depending on ε, a standard setting is to give an initial data in terms of an independent
vorticity ω0 = curluε0 (see, e.g., [15, 16, 22, 23, 26, 27]).

More precisely, let us assume here that Ω is simply connected. We fix ω0 ∈ Lq(Ω), q > 1, ℓi,0 ∈ R
2, ri,0 ∈ R.

Then we consider uε0 as the unique solution of

div uε0 = 0 in Fε
0 , curluε0 = ω0 in Fε

0 , (2.1)

uε0 · n =
(

ℓi,0 + ri,0(x− hi,0)
⊥
)

· n on ∂Sε
i,0, (i ∈ {1, . . . , N}), (2.2)

uε0 · n = 0 on ∂Ω, (2.3)
∮

∂Sε
i,0

uε0 · τ ds = 0 (i ∈ {1, . . . , N}). (2.4)

Lemma 2.3. Let Ω be a bounded simply connected open subset of R2. For ω0 ∈ Lq(Ω), q > 1, ℓi,0 ∈ R
2, ri,0 ∈ R

fixed, we have
uε0 → u0 in L2(Ω),

where uε0 is the unique solution of (2.1)-(2.4) and where u0 is the unique vector field in L2(Ω) such that

div u0 = 0 in Ω, curlu0 = ω0 in Ω, u0 · n = 0 on ∂Ω.

Proof. By standard results related to the Hodge–De Rham theorem (see e.g. [15, 17]), there is a unique solution
of (2.1)-(2.4) and it can be decomposed as

uε0 = ∇⊥ψε
0 +

N
∑

i=1

(

2
∑

j=1

(ℓi,0)j∇φεi,j + ri,0∇φεi,3
)

with ψε
0 the unique solution of























∆ψε
0 = ω0 in Fε

0

ψε
0 = 0 on ∂Ω,
∂τψ

ε
0 = 0 on ∂Sε

i,0 ∀i = 1, . . . , N,
∮

∂Sε
i,0

∂nψ
ε
0 ds = 0 ∀i = 1, . . . , N,

and φεi,j are the Kirchhoff potentials:











∆φεi,j = 0 in Fε
0

∂nφ
ε
i,j = 0 on ∂Ω ∪

(

⋃

k 6=i Sε
k,0

)

,

∂nφ
ε
i,j = Ki,j on ∂Sε

i,0,

where
Ki,1 = n1, Ki,2 = n2, Ki,3 = n · (x− hi,0)

⊥.
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As the Kirchhoff potentials are defined up to a constant, we can assume that
∫

B(hi,0,αε)\Sε
i,0

φεi,j dx = 0 with α fixed such that Si,0 ⋐ B(0, α).

By an energy estimate together with a trace estimate we have

‖∇φεi,j‖2L2(Fε
0
) =

∫

∂Sε
i,0

φεi,jKi,j ds 6 ε1+δj,3

∫

∂Si,0

|φεi,j(εs+ hi,0)| ds

6 Cε1+δj,3‖φεi,j(ε ·+hi,0)‖L2(∂Si,0) 6 Cε1+δj,3‖ε(∇φεi,j)(ε ·+hi,0)‖L2(B(0,α)\Si,0)

6 Cε1+δj,3‖∇φεi,j‖L2(Fε
0
)

where we have used Poincaré–Wirtinger in B(0, α) \ Si,0. Therefore, we deduce that

N
∑

i=1

(

2
∑

j=1

(ℓi,0)j∇φεi,j + ri,0∇φεi,3
)

→ 0 strongly in L2(Ω)

where we have extended ∇φεi,j (by ej for j = 1, 2 and by (x − hi,0)
⊥ for j = 3) in Sε

i,0 and by 0 in Sε
k,0 for all

k 6= i.
Concerning the last part, we introduce q′ ∈ [1,∞) such that 1/q + 1/q′ = 1 and we use that ψε

0 is constant
on each boundary to perform the energy estimate

‖∇ψε
0‖2L2(Fε

0
) =

∫

Fε
0

ω0ψ
ε
0 +

N
∑

i=1

∮

∂Sε
i,0

ψε
0∂nψ

ε
0 =

∫

Fε
0

ω0ψ
ε
0

6 ‖ω0‖Lq(Ω)‖ψε
0‖Lq′ (Ω) 6 C‖ω0‖Lq(Ω)‖ψε

0‖H1(Ω)

6 C‖ω0‖Lq(Ω)‖∇ψε
0‖L2(Ω)

where we have extended ψε
0 inside the obstacles by the constant values at the boundary, and applied the Poincaré

inequality in Ω. Therefore, ψε
0 is uniformly bounded in H1

0 (Ω), so for any sequence, we can extract a subsequence
which converges weakly to ψ0 in H

1
0 (Ω) (Banach-Alaoglu theorem) and strongly in L2∩Lq′(Ω) (Rellich theorem).

Passing to the limit in the Laplace problem, we have

∆ψ0 = ω0 in D′(Ω \ ∪{hi,0}).

For any ϕ ∈ D(Ω), we introduce a cutoff function χ ≡ 1 on B(0, 1)c and that χ ≡ 0 on B(0, 1/2), so that

ϕ
∏

χ(
x−hi,0

η ) belongs to D(Ω\∪{hi,0}) and converges weakly in H1
0 to ϕ as η → 0. With this remark, we prove

that
∆ψ0 = ω0 in D′(Ω).

As the solution of this laplace problem is unique in H1
0 (Ω) we infer that the limit holds for the full sequence

(without extraction).
Moreover, by the strong convergence of ψε

0 to ψ0 in Lq′(Ω), the weak convergence of ω01Fε
0
to ω0 in Lq(Ω),

and the equation verified by ψε
0 and ψ0 we note:

‖∇ψε
0‖2L2(Ω) =

∫

Fε
0

|∇ψε
0|2 =

∫

Fε
0

ψε
0ω0 =

∫

Ω

ψε
0ω01Fε

0
→
∫

Ω

ψ0ω0 = ‖∇ψ0‖2L2(Ω)

which gives with the weak limit in H1
0 (Ω) that

ψε
0 → ψ0 strongly in H1

0 (Ω).

This ends the proof of uε0 → ∇⊥ψ0 = u0 strongly in L2(Ω).

7



Remark 2.4. If we consider non-zero initial circulations in (2.4), then some singular terms appear at the limit of

the form γi
(x−hi,0)

⊥

2π|x−hi,0|2
, which does not belong to L2(Ω). In this case, we can only show Lp estimate for p ∈ [1, 2).

For more details, we refer to [23, 15, 16, 17].

In exterior domains, we recall that

uε0 ∈ L2(Fε
0 ) ⇐⇒

∫

Fε
0

ω0 = 0.

Adding the zero mean-value condition, we get a convergence result for unbounded domains Fε
0 = R

2 \B(0, ε).

Lemma 2.5. Let Ω = R
2. For ω0 ∈ Lq

c(R
2 \ {0}), q > 1, ℓ0 ∈ R

2 fixed such that
∫

ω0 = 0, we have, for ε small
enough such that supp ω0 ∩B(0, ε) = ∅, a unique solution uε0 in L2(Fε

0 ) of

div uε0 = 0 in Fε
0 , curluε0 = ω0 in Fε

0 , lim
|x|→∞

uε0(x) = 0,

uε0 · n = ℓ0 · n on ∂B(0, ε),

∮

∂B(0,ε)

uε0 · τ ds = 0.

Moreover, extending uε0 by ℓ0 + r0x
⊥ in B(0, ε) (with any r0 ∈ R) we have

uε0 → u0 in L2(R2),

where u0 = KR2 [ω0] =
x⊥

2π|x|2 ∗ ω0 is the unique vector field in L2(Ω) such that

div u0 = 0 in R
2, curlu0 = ω0 in R

2, lim
|x|→∞

u0(x) = 0.

Proof. The existence and uniqueness of uε0 is well-known (see e.g. [15, Section 2]), and we can find therein the
following explicit formula:

uε0(x) =
1

2π

∫

B(0,ε)c

(x− y)⊥

|x− y|2 ω0(y)dy +
1

2π

∫

B(0,ε)c

( x

|x|2 − x− ε2y∗

|x− ε2y∗|2
)⊥

ω0(y)dy − ε2
2
∑

j=1

(ℓ0)j∇
( xj
|x|2

)

with the notation y∗ = y/|y|2. By a standard computation, we note that

∥

∥

∥
ε2

2
∑

j=1

(ℓ0)j∇
( xj
|x|2

)
∥

∥

∥

L2(Fε
0
)
6 Cε|ℓ0|.

It is also rather classical to prove that the second integral in the right hand side tends to zero as ε→ 0. For
instance, we can do as follows:

• Squaring both side, we verify that
∣

∣

∣

a

|a|2 − b

|b|2
∣

∣

∣
=

|a− b|
|a||b| . Hence

∣

∣

∣

∫

B(0,ε)c

( x

|x|2 − x− ε2y∗

|x− ε2y∗|2
)⊥

ω0(y)dy
∣

∣

∣
6

∫

B(0,ε)c

ε2|y∗|
|x||x− ε2y∗| |ω0(y)|dy.

• Defining R0 such that supp ω0 ⊂ B(0, R0) \B(0, 1/R0) we have for all x ∈ B(0, 2ε)c:

∫

B(0,ε)c

ε2|y∗|
|x||x− ε2y∗| |ω0(y)|dy 6

ε2

(|x| − ε)2

∫ |ω0(y)|
|y| dy 6

ε2R0‖ω0‖L1

(|x| − ε)2

so we compute

∥

∥

∥

∫

B(0,ε)c

( x

|x|2 − x− ε2y∗

|x− ε2y∗|2
)⊥

ω0(y)dy
∥

∥

∥

L2(B(0,2ε)c)
6 CR0ε‖ω0‖L1.
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• For x ∈ B(0, 2ε) \B(0, ε), y ∈ suppω0 and ε 6 1/(2R0), we verify that |x− ε2y∗| > ε− ε2

|y| > ε(1− εR0) >

ε/2, hence

∣

∣

∣

∫

B(0,ε)c

( x

|x|2 − x− ε2y∗

|x− ε2y∗|2
)⊥

ω0(y)dy
∣

∣

∣
6

∫

B(0,ε)c

ε2|y∗|
ε2/2

|ω0(y)|dy 6 2R0‖ω0‖L1

which implies

∥

∥

∥

∫

B(0,ε)c

( x

|x|2 − x− ε2y∗

|x− ε2y∗|2
)⊥

ω0(y)dy
∥

∥

∥

L2(B(0,2ε)\B(0,ε))
6 2R0‖ω0‖L1(π3ε2)1/2.

This ends the proof of

∥

∥

∥

∫

B(0,ε)c

( x

|x|2 − x− ε2y∗

|x− ε2y∗|2
)⊥

ω0(y)dy
∥

∥

∥

L2(Fε
0
)
6 CR0ε‖ω0‖L1 .

Now we note that 1
2π

∫

B(0,ε)c
(x−y)⊥

|x−y|2 ω0(y)dy = KR2 [ω] = u0 for ε 6 1/R0, then for all ε 6 1/(2R0) we have

‖uε0 − u0‖L2(R2) 6 ‖ℓ0 + r0x
⊥ − u0‖L2(B(0,ε)) + CR0ε‖ω0‖L1 + Cε|ℓ0|

6 (|ℓ0|+ |r0|ε+
1/(2π)

1/R0 − ε
‖ω0‖L1)(πε2)1/2 + CR0ε‖ω0‖L1 + Cε|ℓ0|

6 C(|ℓ0|+ |r0|ε+ ‖ω0‖L1)ε

which goes to zero as ε→ 0.

Example 2.6. Another example of initial conditions satisfying (1.14) can be obtained by truncating a stream
function associated to a vector field u0 defined on Ω.

In a bounded domain Ω, let us consider u0 = ∇⊥ψ0 ∈ L2(Ω) such that

div u0 = 0 in Ω, curlu0 ∈ Lq(Ω) with q > 1, u0 · n = 0 on ∂Ω.

We denote by χ a smooth cutoff function such that χ(x) ≡ 0 in B(0, α) and χ(x) ≡ 1 in B(0, 2α)c, where α is
chosen large enough such that Si,0 ⊂ B(0, α) for any i. We consider (ℓi,0, ri,0) ∈ R

3 given and since the positions
hi,0 ∈ Ω are distinct, we can consider ε small enough such that

B(hi,0, 2αε) ∩B(hj,0, 2αε) = ∅ (i 6= j) and B(hi,0, 2αε) ⊂ Ω.

Then, we define

uε0 := ∇⊥

(

ψ0(x)

N
∏

i=1

χ

(

x− hi,0
ε

)

+

N
∑

i=1

(

1− χ

(

x− hi,0
ε

)

)

(ℓi,0 · (x− hi,0)
⊥ + r0,i

|x−hi,0|
2

2 )

)

which is divergence free, tangent to ∂Ω, equal to u0 far away the solids, and equal to ℓi,0 + ri,0(x−hi,0)
⊥ in the

vicinity of Sε
i,0. Using that ψ0 ∈ W 2,q(Ω) →֒ L∞(Ω) and that 1

ε∇χ
(

·−hi,0

ε

)

converges weakly to 0 in L2, one

can check that uε0 ⇀ u0 in L2(Ω).
In the case of one solid in the full plane, we chose ψ0 in the previous formula such that ψ0(h1,0) = 0 and in

that case, we can prove that the convergence holds strongly in L2(R2).
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3 Case of massive pointwise particles

The goal of this section is to prove Theorem 1.3, hence we are considering the following settings:

• Ω is a bounded domain of R2 and the fluid domain is the exterior of N rigid solids (N > 1) see (1.2)-(1.3);

• (uε0) is a family of divergence vector fields verifying (1.14) such that uε0 ⇀ u0 in L2(Ω) and (ℓεi,0, εr
ε
i,0)i,ε

are bounded (for instance see Section 2);

• the solids tend to massive pointwise particles (1.13).

From the result in [31], we know that, for every ε > 0, there exists a global weak solution (uε, hεi , θ
ε
i ) of

(1.4)–(1.11) in the sense of Definition 1.1.

3.1 First convergences

Thanks to the assumptions on the initial data, we deduce from the energy inequality (1.16) that

(uε)ε is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (3.1)

((hεi )
′)ε is bounded in L∞(0, T ), (3.2)

(ε(θεi )
′)ε is bounded in L∞(0, T ), (3.3)

Then up to a subsequence,

uε
∗
⇀ u in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) (3.4)

and
hεi → hi uniformly in [0, T ] (i = 1, . . . , N), (3.5)

with
hi ∈ W 1,∞(0, T ). (3.6)

By abuse of notation, we continue to write uε and hεi the subsequences.
As (hi)

′ is bounded, there exist T > 0 and η0 > 0, such that for any t ∈ [0, T ],

|hi(t)− hj(t)| > 2η0 (i 6= j). (3.7)

We will prove the convergence up to this time T .

Remark 3.1. We can note that this time does not take into account the distance between hi and ∂Ω. Therefore,
in the case of one obstacle (N = 1), we can choose any T > 0.

3.2 Modified test functions

The key to treat shrinking obstacles problem is to approximate test functions in Ω by admissible test functions
in the perforated domain.

Proposition 3.2. Let T > 0, ϕ ∈ C∞
c ([0, T )× Ω) with divϕ = 0 and consider η1 > 0 such that

|hi(t)− hj(t)| > 2η1 for all t ∈ [0, T ] and i 6= j (3.8)

and
dist(suppϕ(t, ·), ∂Ω) > 2η1 for all t ∈ [0, T ]. (3.9)

For any η 6 η1 there exists ϕη ∈W 1,∞
c ([0, T );H1

0 (Ω)) satisfying

divϕη = 0 in [0, T )× Ω, (3.10)

10



ϕη ≡ 0 t ∈ (0, T ), x ∈ B
(

hi(t),
η

2

)

, (3.11)

ϕη ∗
⇀ ϕ L∞(0, T ;H1(Ω)), (3.12)

∂tϕ
η ∗
⇀ ∂tϕ L∞(0, T ;L2(Ω)). (3.13)

Proof. We introduce a cutoff function χ ∈ C∞(R2, [0, 1]) such that χ ≡ 1 in B(0, 1)c and χ ≡ 0 in B(0, 1/2).
Let us denote the annulus B(0, 1) \B(0, 1/2) by A.

We remark that the function ϕ̃η
i : (t, y) 7→ ϕ(t, ηy + hi(t))∇χ(y) belongs to W 1,∞(0, T ;L2(A)) and verifies

for any t
∫

A

ϕ̃η
i (t, y) dy =

∫

A

div
(

ϕ(t, ηy + hi(t))χ(y)
)

dy =

∫

∂B(0,1)

ϕ(t, ηy + hi(t)) · n(y) ds

=

∫

B(0,1)

div
(

ϕ(t, ηy + hi(t))
)

dy = 0,

where we have used twice that ϕ is divergence free, that χ ≡ 1 on ∂B(0, 1) and that χ ≡ 0 on ∂B(0, 1/2). With
these properties, it is known by [14, Theorem III.3.1] (and Exercice III.3.6) that there exists C depending only
on A such that the problem

div g̃ηi = ϕ̃η
i , g̃ηi ∈W 1,∞(0, T ;H1

0 (A))

has a solution such that

‖g̃ηi ‖L∞(0,T ;H1(A)) 6 C‖ϕ̃η
i ‖L∞(0,T ;L2(A)),

‖∂tg̃ηi ‖L∞(0,T ;H1(A)) 6 C‖∂tϕ̃η
i ‖L∞(0,T ;L2(A)).

Extending g̃ηi by zero in the exterior of A, we define

ϕη(t, x) = ϕ(t, x)

N
∏

i=1

χ
(x− hi(t)

η

)

−
N
∑

i=1

gηi (t, x)

where

gηi (t, x) := g̃ηi

(

t,
x− hi(t)

η

)

.

From the assumption (3.8), we deduce that for all i,
∏

j 6=i χ
(

x−hj(t)
η

)

≡ 1 on the support of ∇χ
(

·−hi(t)
η

)

. So

we easily verify the divergence free condition (3.10). Moreover, with a change of variables, we also note that

1

η

∥

∥

∥

N
∑

i=1

gηi

∥

∥

∥

L∞(0,T ;L2(R2))
+
∥

∥

∥
∇

N
∑

i=1

gηi

∥

∥

∥

L∞(0,T ;L2(R2))
6 C

N
∑

i=1

‖ϕ̃η
i ‖L∞(0,T ;L2(A)) 6 C‖ϕ‖L∞((0,T )×Ω) (3.14)

so we check that

1

η
‖ϕη − ϕ‖L∞(0,T ;L2(R2)) + ‖∇ϕη‖L∞(0,T ;L2(R2)) 6 C‖ϕ‖W 1,∞((0,T )×Ω)

which gives directly that ϕη converges to ϕ strongly in L∞(0, T ;L2(Ω)) and weak-∗ in L∞(0, T ;H1(Ω)). By
uniqueness of the limit, we do not need to extract a subsequence and we get the weak limit (3.12).

Now we compute

∂tϕ
η − ∂tϕ =∂tϕ

(

N
∏

i=1

χ
(x− hi(t)

η

)

− 1
)

− ϕ

η

N
∑

i=1

h′i(t) · (∇χ)
(x− hi(t)

η

)

−
N
∑

i=1

∂tg̃
η
i

(

t,
x− hi(t)

η

)

+
N
∑

i=1

h′i(t) · ∇gηi (t, x).
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It is obvious that the first right hand side term converges to zero strongly in L∞(0, T ;L2(R2)). It is also an
easy computation to check that the second term is bounded in L∞(0, T ;L2(R2)) and tends to zero strongly
in L∞(0, T ;Lp(R2)) for p ∈ [1, 2). Hence, it converges weak-∗ to zero in L∞(0, T ;L2(R2)). From (3.14), we
know that

∑

gηi converges weak-∗ to 0 in L∞(0, T ;H1(Ω)), hence the last term converges also weak-∗ to zero
in L∞(0, T ;L2(R2)). Finally, we note that

1

η

∥

∥

∥

N
∑

i=1

∂tg̃
η
i

(

t,
x− hi(t)

η

)
∥

∥

∥

L∞(0,T ;L2(R2))
6 C‖∂tϕ‖L∞((0,T )×Ω),

hence the third right hand side term tends to zero strongly in L∞(0, T ;L2(R2)). This gives (3.13).

Due to the support of χ and gηi , it is clear that ϕ
η ≡ 0 on B(hi(t),

η
2 ). It is also obvious that ϕ

∏

χ(x−hi(t)
η )

is compactly supported in [0, T )× Ω. To prove that ϕη vanishes at ∂Ω it is then enough to show that gηi ≡ 0
on ∂Ω, for any t and i.

If dist(hi(t), ∂Ω) > η, then we use that supp gηi ⊂ B(hi(t), η) \B(hi(t), η/2) ⋐ Ω.
If dist(hi(t), ∂Ω) < η, then dist(ηy + hi(t), ∂Ω) 6 2η1 for y ∈ B(0, 1). Therefore, we infer from (3.9) that

ϕ̃η
i (y) = ϕ(t, ηy + hi(t))∇χ(y) = 0 for y ∈ B(0, 1), which implies that gηi ≡ g̃ηi ≡ 0.
This ends the proof.

Remark 3.3. An important consequence is the approximation of any test function. Let T and η0 verifying (3.7)
and let ϕ ∈ C∞

c ([0, T ) × Ω) with divϕ = 0. Then, there exists η1 6 η0 such that we have (3.9) and we can
apply Proposition 3.2 to construct a family (ϕη)η of divergence free test functions which tends to ϕ in the sense
of (3.12)-(3.13). Moreover, for any η ∈ (0, η1] fixed, we put together the strong convergence of hεi (3.5) with the
support of ϕη (3.11) to deduce the existence of εη > 0 such that

ϕη ≡ 0 for t ∈ [0, T ), x ∈ Sε
i (h

ε
i (t)), ε 6 εη.

This implies that ϕη is an admissible test function for the fluid-solid problem (see Definition 1.1).

In the proof of the above proposition, we note that H1 is the critical space in dimension two: χ( ·
η )− 1 tends

to zero strongly in W 1,p for any p ∈ [1, 2), is bounded in H1 (then tends weakly to zero), and goes to infinity
in W 1,p for p > 2. This explains why the standard framework for shrinking obstacles problems is H1 (see, e.g.,
[1, 2, 6, 22, 23, 38]). Nevertheless, as we need an estimate of the solid velocities, it is natural to look for a C0

estimate of the velocity, hence a Hs estimate for s > 1. Unfortunately, the H2 analysis developed in [11, 36]
fails (see [5]).

In the case of massive pointwise particles, the estimate of the solid velocities comes directly from the energy
estimate, but for the case of a massless pointwise particle, we need a new argument (see Section 4)

In dimension three, the critical space for the cutoff argument is W 1,3 which is again not embedded in C0.

3.3 Proof of Theorem 1.3

The first step is to pass to the limit ε→ 0 for η fixed.

Theorem 3.4. Let T and η0 verifying (3.7) and let ϕ ∈ C∞
c ([0, T )×Ω) with divϕ = 0. From Remark 3.3, we

consider η1 6 η0 and (ϕη)η6η1
which approximate ϕ.

Then, for any η ∈ (0, η1], the limit u of uε (see (3.4)) verifies

−
∫ T

0

∫

Ω

u ·
(

∂ϕη

∂t
+ (u · ∇)ϕη

)

dx+ 2ν

∫ T

0

∫

Ω

D(u) : D(ϕη) dx =

∫

Ω

u0(x) · ϕη(0, x) dx.

Proof. Let η ∈ (0, η1] be fixed. Since hi is Lipschitz continuous, there exists a subdivision t0 = 0 < t1 < . . . <
tM+1 = T such that for all j = 0, . . . ,M , if t ∈ (tj , tj+1), then

|hi(t)− hi(tj)| 6
η

6
.
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From (3.11) in Proposition 3.2, we deduce

ϕη ≡ 0 in (tj , tj+1)×
N
⋃

i=1

B(hi(tj),
η

3
).

Putting together this relation with (3.5), there exist open relatively compact sets Oj and ε̃η > 0 such that for
all ε < ε̃η

Sε
i (t) ∩ Oj = ∅ for all t ∈ (tj , tj+1) and suppϕη ⊂

M
∑

j=0

(tj , tj+1)×Oj . (3.15)

For any j = 0, . . . ,M , we write the Helmholtz-Weyl decomposition

uε = POju
ε +∇qε,

where POj is the Leray projection on H(Oj) (see the introduction for the definition of H(O)). This projection
is orthogonal in L2 and by a standard estimate on the Laplace problem with Neumann boundary condition,
there exists a constant COj > 0 such that

‖POju
ε‖L2(Oj) 6 ‖uε‖L2(Oj) and ‖POju

ε‖H1(Oj) 6 COj‖uε‖H1(Oj).

Thus, by (3.1),
(

POju
ε,∇qε

)

ε
is bounded in L∞(0, T ;L2(Oj)) ∩ L2(0, T ;H1(Oj)).

In particular,

POju
ε ∗
⇀ POju in L∞(0, T ;L2(Oj)) ∩ L2(0, T ;H1(Oj)), (3.16)

∇qε ∗
⇀ ∇q = u− POju in L∞(0, T ;L2(Oj)) ∩ L2(0, T ;H1(Oj)). (3.17)

Now we derive a time estimate for POju
ε in order to get a strong convergence. For any divergence free test

function ψ ∈ C∞
c ((tj , tj+1)×Oj), we have by (3.15) that ψ(t, ·) ∈ VR(Fε(t)) (see (1.12)), hence (1.15) gives

〈∂tPOju
ε, ψ〉L2((tj ,tj+1);V(Oj)′),L2((tj ,tj+1);V(Oj)) =−

∫ tj+1

tj

∫

Oj

POju
ε · ∂tψ dxdt

=−
∫ tj+1

tj

∫

Oj

uε · ∂tψ dxdt

=

∫ tj+1

tj

∫

Oj

uε · (uε · ∇)ψ dxdt− 2ν

∫ tj+1

tj

∫

Oj

D(uε) : D(ψ) dxdt.

Thus, by using (3.1) and the interpolation inequality ‖f‖L4(Ω) 6 ‖f‖1/2L2(Ω)‖∇f‖
1/2
L2(Ω), we get

∣

∣

∣
〈∂tPOju

ε, ψ〉L2((tj ,tj+1);V(Oj)′),L2((tj ,tj+1);V(Oj))

∣

∣

∣

6 ‖uε‖2L4((tj ,tj+1);L4(Oj))
‖ψ‖L2((tj ,tj+1);V(Oj)) + ‖Duε‖L2((tj ,tj+1);L2(Oj))‖ψ‖L2((tj ,tj+1);V(Oj))

6 C‖ψ‖L2((tj ,tj+1);V(Oj)).

Consequently,
(

∂tPOju
ε
)

ε
is bounded in L2((tj , tj+1);V(Oj)

′), and the Aubin-Lions lemma in H1 ∩ H(Oj) →֒
L4 ∩H(Oj) →֒ V ′(Oj) allows us to extract a subsequence such that

POju
ε → POju strongly in L2((tj , tj+1);L

4(Oj)). (3.18)

Actually, by the uniqueness of the limit, we do not need to extract a subsequence in (3.18).
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These convergences are enough to pass to the limit in the Navier-Stokes equations. Indeed, for any ε ∈ (0, ε̃η],
we know from (3.15) that ϕη is an admissible test function, and (1.15) reads

−
∫ T

0

∫

Ω

uε · ∂ϕ
η

∂t
dxdt−

M
∑

j=1

∫

(tj ,tj+1)×Oj

(uε ⊗ uε) : ∇ϕη dxdt+ 2ν

∫ T

0

∫

Ω

D(uε) : D(ϕη) dxdt

=

∫

Ω

uε0(x) · ϕη(0, x) dx.

Using the weak limits (1.17) and (3.4), we easily pass to the limit in the linear term

−
∫ T

0

∫

Ω

uε · ∂ϕ
η

∂t
dx dt+ 2ν

∫ T

0

∫

Ω

D(uε) : D(ϕη) dx dt

→ −
∫ T

0

∫

Ω

u · ∂ϕ
η

∂t
dx dt+ 2ν

∫ T

0

∫

Ω

D(u) : D(ϕη) dx dt

and
∫

Ω

uε0(x) · ϕη(0, x) dx→
∫

Ω

u0(x) · ϕη(0, x) dx.

For the non-linear term, we decompose in (tj , tj+1)×Oj as

uε ⊗ uε = POju
ε ⊗ uε +∇qε ⊗ POju

ε +∇qε ⊗∇qε.

Let us note that for any harmonic q̃ (i.e. ∆q̃ = 0), we have the following relation:

∫

Oj

(∇q̃ ⊗∇q̃) : ∇ϕη = −
∫

Oj

div(∇q̃ ⊗∇q̃) · ϕη = −
∫

Oj

(

1

2
∇|∇q̃|2 · ϕη +∆q̃∇q̃ · ϕη

)

= 0, (3.19)

because ϕη is divergence free and compactly supported in Oj . From (3.18), (3.16) and (3.17), we have

∫

(tj ,tj+1)×Oj

(POju
ε ⊗ uε) : ∇ϕη dxdt→

∫

(tj ,tj+1)×Oj

(POju⊗ u) : ∇ϕη dxdt,

and
∫

(tj ,tj+1)×Oj

(∇qε ⊗ POju
ε) : ∇ϕη dxdt→

∫

(tj ,tj+1)×Oj

(∇q ⊗ POju) : ∇ϕη dxdt.

Gathering the two above convergences and (3.19) applied to qε and to q, we conclude

∫

(tj ,tj+1)×Oj

(uε ⊗ uε) : ∇ϕη dxdt→
∫

(tj ,tj+1)×Oj

(u⊗ u) : ∇ϕη dxdt.

This ends the proof of Theorem 3.4.

To end the proof of Theorem 1.3, it is sufficient to pass to the limit η → 0, thanks to Proposition 3.2.

Proof of Theorem 1.3. From Proposition 3.2, Remark 3.3 and Theorem 3.4, we consider T and η0 verifying (3.7)
and ϕ ∈ C∞

c ([0, T )× Ω) with divϕ = 0, then there exist η1 6 η0 and (ϕη)η6η1
which approximate ϕ such that

the limit u verifies for any η ∈ (0, η1]

−
∫ T

0

∫

Ω

u ·
(

∂ϕη

∂t
+ (u · ∇)ϕη

)

dx+ 2ν

∫ T

0

∫

Ω

D(u) : D(ϕη) dx =

∫

Ω

u0(x) · ϕη(0, x) dx.
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As u belongs to L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), we deduce from the convergences (3.12)-(3.13) of ϕη to ϕ
that

−
∫ T

0

∫

Ω

u ·
(

∂ϕ

∂t
+ (u · ∇)ϕ

)

dx+ 2ν

∫ T

0

∫

Ω

D(u) : D(ϕ) dx =

∫

Ω

u0(x) · ϕ(0, x) dx.

By density, this equality is also true for any ϕ ∈ C1
c ([0, T );V(Ω)). Noting that

∫

D(u) : D(ϕ) =
1

2

∫

∇u : ∇ϕ+
1

2

∫

div u divϕ =
1

2

∫

∇u : ∇ϕ,

we end the proof of Theorem 1.3.

Remark 3.5. Since there exists a unique weak solution of the Navier–Stokes system associated to u0, the weak
convergence (1.19) holds for all sequence (εn) converging to 0:

uεn
∗
⇀ u in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

as n→ ∞, without extracting a subsequence.

4 Case of a massless pointwise particle

This section is dedicated to the proof of Theorem 1.6, hence we now consider the following situation:

• Ω = R
2 and the fluid domain is the exterior of one disk (N = 1);

• (uε0) is a family of divergence vector fields verifying (1.14) such that uε0 ⇀ u0 in L2(Ω) and (ℓε0, εr
ε
0)ε are

bounded (for instance see Section 2);

• the solid tends to a massless pointwise particles: (1.22)-(1.23).

For one rigid ball in the full plane, [37] established that there exists a unique weak solution to problem
(1.4)–(1.11). As there is only one solid, we omit the subscript 1 in the notation of this section:

Sε
0 := Sε

0,1 = B(0, ε), Sε(t) := Sε
1(t) = B(hε(t), ε).

4.1 Uniform estimates

4.1.1 Energy estimate

As in the massive case, we first use the energy inequality (1.16) so that

(uε)ε bounded in L∞(R+;L2(R2)) ∩ L2
loc(R

+;H1(R2)),

hence we can extract a subsequence such that

uε
∗
⇀ u in L∞(R+;L2(R2)) ∩ L2

loc(R
+;H1(R2)).

By abuse of notation, we continue to write uε the subsequence.
In the case of massless pointwise particle, ρε0 is independent of ε, and the energy estimate only gives

ε(hε)′(t), ε2(θε)′(t) bounded in L∞(R+).

The goal of the sequel is to obtain an estimate of (hε)′ independently of ε.
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4.1.2 Duhamel’s formula

As in [13, 37], we make the change of variables

vε(t, x) = uε(t, x− hε(t)), qε(t, x) = pε(t, x− hε(t)),

and we define
ℓε(t) = (hε)′(t), rε(t) = (θε)′(t).

The vector fields vε is the weak solution of a system similar to (1.4)–(1.11):

∂vε

∂t
+ ([vε − ℓε] · ∇)vε − div σ(vε, qε) = 0 t > 0, x ∈ Fε

0 , (4.1)

div vε = 0 t > 0, x ∈ Fε
0 , (4.2)

lim
|x|→∞

vε(x) = 0 t > 0, (4.3)

vε(t, x) = ℓε(t) + rε(t)x⊥ t > 0, x ∈ ∂Sε
0 , (4.4)

mε(ℓε)′(t) = −
∫

∂Sε
0

σ(vε, qε)n dγ t > 0, (4.5)

Jε(rε)′(t) = −
∫

∂Sε
0
(t)

x⊥ · σ(vε, qε)n dγ t > 0, (4.6)

vε(0, ·) = vε0 in Fε
0 , (4.7)

ℓε(0) = ℓε0, rε(0) = rε0. (4.8)

We set the global density in R
2:

ρε(x) =

{

1 x ∈ Fε
0 ,

ρ x ∈ Sε
0 .

We can define a weak solution

Definition 4.1. We say that (vε, ℓε, rε) is a global weak solution of (4.1)–(4.8) if, for any T > 0, we have

vε ∈ L∞(0, T ;L2(R2)) ∩ L2(0, T ;H1(R2)), vε(t, x) = ℓε(t) + rε(t)x⊥ in Sε
0 ,

if it satisfies the weak formulation

−
∫ T

0

∫

R2

ρεvε ·
(

∂ϕε

∂t
+ (vε · ∇)ϕε

)

dxds+ 2ν

∫ T

0

∫

R2

D(vε) : D(ϕε) dxds =

∫

R2

ρεvε0(x) · ϕε(0, x) dx,

for any ϕε ∈ C1
c ([0, T );H

1(R2)) such that ϕε(t, ·) ∈ VR(Fε
0 ) and if it satisfies the energy inequality

1

2

∫

R2

ρε(x) |vε(t, x)|2 dx+ 2ν

∫ t

0

∫

R2

|D(vε)|2 dxds 6 1

2

∫

R2

ρε(x) |vε0(x)|2 dx a.e. t ∈ (0, T ).

One can check that uε is a weak solution in the sense of Definition 1.1 if and only if vε is a weak solution in
the sense of the above definition.

We also define the following functional spaces for p ∈ [1,∞],

Lp
ε =

{

v ∈ Lp(R2) ; div v = 0 in R
2, D(v) = 0 in Sε

0

}

,

with the norm (for p 6= ∞)

‖v‖Lp
ε
=

(
∫

R2

ρε|v|p dx
)1/p

.
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For p = ∞, the norm L∞ is the classical L∞ norm. We recall that for any v ∈ Lp
ε , there exists (ℓv, rv) ∈ R

3

such that
v(y) = ℓv + rvy

⊥ (y ∈ Sε
0).

Moreover, one can deduce ℓv from v by

ℓv :=
1

|Sε
0 |

∫

Sε
0

v dy. (4.9)

One can write the system (4.1)–(4.8) in the following abstract form:

∂tv
ε +Aεvε = P

ε divF ε(vε), vε(0) = vε0,

where
D(Aε) :=

{

v ∈ H2(R2) ; div v = 0 in R
2, D(v) = 0 in Sε

0

}

,

Aεv :=















−ν∆v in Fε
0 ,

2ν

mε

∫

∂Sε
0

D(v)n ds+
2ν

Jε

(

∫

∂Sε
0

y⊥ ·D(v)n dy

)

x⊥ in Sε
0 .

(v ∈ D(Aε)),

Aε := P
εAε,

F ε(vε) =

{

vε ⊗ (ℓvε − vε) on Fε
0

0 on Sε
0 ,

(4.10)

and where P
ε denotes the continuous projector from Lp(R2) to Lp

ε, and ℓvε is defined through (4.9). Note that
in the definition of Aε, D(v)n corresponds to the trace of the restriction of D(v) to the fluid domain.

The operator −Aε is the infinitesimal generator of a semigroup of (Sε(t))t>0 in Lp
ε for p ∈ (1,∞) (see [13]).

Then, Duhamel’s formula gives the following integral formulation of the above equations:

vε(t) = Sε(t)vε0 +

∫ t

0

Sε(t− s)Pε divF ε(vε(s)) ds. (4.11)

4.1.3 Semigroup estimates

The key for the uniform estimate of ℓε is the following theorem concerning the Stokes-rigid body semigroup.

Theorem 4.2. For each q ∈ (1,∞), the semigroup Sε(t) on Lq
ε satisfies the following decay estimates:

• For p ∈ [q,∞], there exists K1 = K1(p, q) > 0 such that for every vε0 ∈ Lq
ε:

‖Sε(t)vε0‖Lp
ε
6 K1t

1
p−

1
q ‖vε0‖Lq

ε
for all t > 0. (4.12)

• For 2 6 q 6 p < ∞, there exists K2 = K2(p, q) > 0 such that for every F ε ∈ Lq(R2;M2×2(R)) satisfying
F ε = 0 in Sε

0 :

‖Sε(t)Pε div F ε‖Lp
ε
6 K2t

− 1
2
+ 1

p−
1
q ‖F ε‖Lq(R2) for all t > 0. (4.13)

• For 2 6 q <∞, there exists Kℓ = Kℓ(q) > 0 such that for every F ε ∈ Lq(R2;M2×2(R)) satisfying F ε = 0
on Sε

0 :

|ℓSε(t)Pε div F ε | 6 Kℓt
−( 1

2
+ 1

q )‖F ε‖Lq(R2) for all t > 0. (4.14)

For ε fixed, estimates like (4.12)-(4.13) were only established for the Stokes system with the Dirichlet
boundary condition [10, 28]. For the fluid solid problem with one rigid disk in R

2, this result was recently
obtained by Ervedoza, Hillairet and Lacave in [13]. The only point to check here is that the constants K1,K2,Kℓ

are independent of ε, which will be easily obtained by a scaling argument.
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Proof. For ε = 1, the statements of the theorem were proved in [13], see therein Theorem 1.1, Corollaries 3.10
and 3.11.

We note that vε(t) := Sε(t)vε0 satisfies

∂vε

∂t
− div σ(vε, qε) = 0 t > 0, x ∈ Fε

0 ,

div vε = 0 t > 0, x ∈ Fε
0 ,

lim
|x|→∞

vε(x) = 0 t > 0,

vε(t, x) = ℓε(t) + rε(t)x⊥ t > 0, x ∈ ∂Sε
0 ,

mε(ℓε)′(t) = −
∫

∂Sε
0

σ(vε, qε)n dγ t > 0,

Jε(rε)′(t) = −
∫

∂Sε
0
(t)

x⊥ · σ(vε, qε)n dγ t > 0,

vε(0, ·) = vε0 in Fε
0 ,

ℓε(0) = ℓε0, rε(0) = rε0.

Setting
v(t, x) := vε(ε2t, εx), q(t, x) := εqε(ε2t, εx), ℓ(t) := ℓε(ε2t), r(t) := εrε(ε2t), (4.15)

standard calculation gives that

∂v

∂t
− div σ(v, q) = 0 t > 0, x ∈ F1

0 ,

div v = 0 t > 0, x ∈ F1
0 ,

lim
|x|→∞

v(x) = 0 t > 0,

v(t, x) = ℓ(t) + r(t)x⊥ t > 0, x ∈ ∂S1
0 ,

m1ℓ′(t) = −
∫

∂S1
0

σ(v, q)n dγ t > 0,

J1r′(t) = −
∫

∂S1
0
(t)

x⊥ · σ(v, q)n dγ t > 0,

v(0, ·) = v0 in F1
0 ,

ℓ(0) = ℓ0, r(0) = r0,

where
v0(x) := vε0(εx), ℓ0 := ℓε0, r0 := εrε0. (4.16)

This means that v(t) = v1(t) = S1(t)v0 and thus that

‖v(t)‖Lp
1
6 K1(νt)

1
p−

1
q ‖v0‖Lq

1
for all t > 0.

Using (4.15)-(4.16), this estimate is equivalent to

‖vε(t)‖Lp
ε
6 K1(νt)

1
p−

1
q ‖vε0‖Lq

ε
for all t > 0.

Relations (4.13) and (4.14) can be done similarly. In that case, we also set

F (x) :=
1

ε
F ε(εx)

and we show that if vε(t) = Sε(t)Pε divF ε, then v defined by (4.15) satisfies

v(t) = S1(t)P1 divF.
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4.1.4 Uniform estimate on the solid velocity

The main goal of this paragraph is to get a uniform estimate on ℓε. This will be obtained by assuming a
smallness condition on the L2 norm of uε0. We first show that there exists λ0 > 0 such that if ‖vε0‖L2

ε
6 λ0, then

there exists a unique

vε ∈ C0([0, T ];L2
ε) ∩ C0

3/8([0, T ];L8
ε) with ℓε := ℓvε ∈ C0

1/2([0, T ];R
2) (4.17)

satisfying (4.11) (that is a mild solution). Here we have denoted for any Banach space X by C0
α([0, T ];X) the

Banach space of functions f such that t 7→ tαf(t) are continuous from [0, T ] in X . The norm associated is

‖f‖C0
α([0,T ];X) := sup

t∈[0,T ]

tα‖f(t)‖X .

Proposition 4.3. There exist λ0, µ0 > 0 independent of ε such that the following holds for any T > 0. If
vε0 ∈ L2

ε satisfies
‖vε0‖L2

ε
6 λ0 (4.18)

then there exists a unique vε satisfying (4.11) and such that

‖vε‖C0([0,T ];L2
ε)
, ‖vε‖C0

3/8
([0,T ];L8

ε)
, ‖ℓε‖C0

1/2
([0,T ];R2) are bounded by µ0.

Moreover there exists a constant C > 0 independent of ε such that, if vε0a, v
ε
0b ∈ L2

ε are two initial conditions
satisfying (4.18), then

‖vεa − vεb‖C0([0,T ];L2
ε)

6 C‖vε0a − vε0b‖L2
ε
. (4.19)

Proof. As we have proved in the previous theorem that the constant in the semigroup estimates are independent
of ε, it is then enough to follow the fixed point argument in [13, pp. 364-371]. For completeness, let us write
here the details.

Let us introduce the space

X ε :=
{

vε ∈ C0([0, T ];L2
ε) ∩ C0

3/8([0, T ];L8
ε) with ℓvε ∈ C0

1/2([0, T ];R
2)
}

endowed with the norm

‖vε‖X ε := ‖vε‖C0([0,T ];L2
ε)
+ ‖vε‖C0

3/8
([0,T ];L8

ε)
+ ‖ℓvε‖C0

1/2
([0,T ];R2).

Let us also define the map
Zε : X ε → X ε,

defined by

Zε(vε)(t) = Sε(t)vε0 +

∫ t

0

Sε(t− s)Pε divF ε(vε)(s) ds,

where F ε is defined by (4.10). One can define

Φ(vε, wε)(t) =

∫ t

0

Sε(t− s)Pε divGε(vε, wε)(s) ds,

where

Gε(vε, wε) =

{

vε ⊗ (ℓwε − wε) on Fε
0

0 on Sε
0 .

We deduce from (4.13) that

t
3
8 ‖Φ(vε, wε)(t)‖L8

ε
6 t

3
8K2(8, 4)

∫ t

0

(t− s)−5/8
(

‖vε(s)⊗ wε(s)‖L4
ε
+ |ℓwε(s)|‖vε(s)‖L4

ε

)

ds.

19



Using Hölder’s inequalities, we obtain from the above inequality that

t
3
8 ‖Φ(vε, wε)(t)‖L8

ε
6 t

3
8K2(8, 4)

∫ t

0

(t− s)−5/8
(

s−
3
8 ‖vε‖C0

3/8
L8

ε
s−

3
8 ‖wε‖C0

3/8
L8

ε

+ s−
1
2 |ℓwε |C0

1/2
‖vε‖1/3L∞L2

ε
(s−

3
8 )2/3‖vε‖2/3

C0
3/8

L8
ε

)

ds

6 2K2(8, 4)B

(

5

8
,
3

4

)

‖vε‖X ε‖wε‖X ε , (4.20)

where B(·, ·) is the Beta function:

B(α, β) :=

∫ 1

0

(1− τ)−ατ−β dτ.

Similarly,

‖Φ(vε, wε)(t)‖L2
ε
6 2K2(2, 2)B

(

1

2
,
1

2

)

‖vε‖X ε‖wε‖X ε , (4.21)

and

t
1
2 |ℓΦ(vε,wε)(t)| 6 2Kℓ(4)B

(

3

4
,
3

4

)

‖vε‖X ε‖wε‖X ε . (4.22)

Gathering (4.20), (4.21) and (4.22) yields

‖Φ(vε, wε)‖X ε 6 C0‖vε‖X ε‖wε‖X ε , (4.23)

where

C0 = 2

(

K2(8, 4)B

(

5

8
,
3

4

)

+K2(2, 2)B

(

1

2
,
1

2

)

+Kℓ(4)B

(

3

4
,
3

4

))

.

We assume (4.18) for λ0 that we fix below and we apply (4.12) in order to obtain

‖Sεvε0‖X ε 6 C1λ0, (4.24)

where
C1 = K1(8, 2) +K1(2, 2) +K1(∞, 2).

Relations (4.23) and (4.24) imply that the mapping Zε is well-defined and that

‖Zε(vε)‖X ε 6 C1λ0 + C0‖vε‖2X ε .

Let us set

R :=
1

4C0
and λ0 = min

( R

2C1
, R
)

.

Then the closed ball BX ε(0, R) of X ε is invariant by Zε and if vε, wε ∈ BX ε(0, R),

‖Zε(vε)−Zε(wε)‖X ε = ‖Φ(vε, vε − wε) + Φ(vε − wε, wε)‖X ε 6 2C0R‖vε − wε‖X ε =
1

2
‖vε − wε‖X ε.

Using the Banach fixed point, we deduce the existence and uniqueness results. Moreover, we have µ0 = R =
1/(4C0), which is independent of ε. This strategy comes from [24] and [25]. It is originally done through an
iterative method, but it was adapted as a fixed point argument in [30] (see also [35]).

Sensitivity of vε to the initial data. Assume vε0a, v
ε
0b ∈ L2

ε satisfy (4.18). Then,

‖vεa − vεb‖X ε 6 ‖Sε(vε0a − vε0b)‖X ε + ‖Φ(vεa, vεa − vεb)‖X ε + ‖Φ(vεa − vεb , v
ε
b )‖X ε

6 C1‖vε0a − vε0b‖L2
ε
+ C0‖vεa − vεb‖X ε (‖vεa‖X ε + ‖vεb‖X ε)

6 C1‖vε0a − vε0b‖L2
ε
+ 2C0R‖vεa − vεb‖X ε.

We conclude that
‖vεa − vεb‖X ε 6 2C1‖vε0a − vε0b‖L2

ε
.
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One can show that a mild solution in the above sense is also a weak solution (see [13]). For sake of
completeness, we give the proof of this result here.

Lemma 4.4. Assume vε satisfies (4.17) and (4.11). Then vε is the weak solution of (4.1)-(4.8) in the sense
of Definition 4.1.

Proof. Let us consider a sequence (vε0n)n with values in D((Aε)1/2) such that

vε0n → vε0 in L2

and such that vε0n satisfies (4.18). For all n, it is proved in [37] there exists a unique strong solution

vεn ∈ H1(0, T ;L2
ε) ∩C([0, T ];D((Aε)1/2)) ∩ L2(0, T ;D(Aε))

of (4.1)-(4.8) and it satisfies (4.11) since in this case

divF ε(vεn) ∈ L2(0, T ;L2(R2)).

It is also proved in [37] that (vεn) converges towards the weak solution of (4.1)-(4.8) in the sense of Definition 4.1.
From (4.19), we also have that (vεn) converges towards the mild solution of Proposition 4.3 in L∞(0, T ;L2

ε).
Consequently, the mild solution vε, that satisfies (4.17) and (4.11), is the weak solution associated to vε0.

4.2 Proof of Theorem 1.6

Following the strategy of Section 3, we can now prove Theorem 1.6.

4.2.1 First convergences

We have already obtained in Section 4.1.1 the weak convergence of uε to u.
If the initial data satisfies the smallness condition (1.24), we deduce from the above section that

|(hε)′(t)| 6 µ0√
t

(t > 0),

where µ0 is independent of ε. As a consequence,

|hε(t)| 6 2µ0

√
T (t ∈ [0, T ]).

We fix q ∈ (1, 2), thus (hε) is bounded in W 1,q(0, T ;R2) and we have, up to a subsequence,

hε → h uniformly in [0, T ],

with
h ∈ W 1,q(0, T ).

As in the massive case, let us note that this convergence is uniform (see (3.5)) but the estimate of h is slightly
weaker than (3.6).

4.2.2 Modified test function

The differences comparing with Proposition 3.2 are the regularity and the convergence of ∂tϕ
η. Namely, for

any ϕ ∈ C∞
c ([0, T )× R

2) with divϕ = 0 and any η > 0, there exists ϕη ∈ W 1,q
c ([0, T );H1

0 (R
2)) satisfying the

divergence free condition (3.10), vanishing on B
(

h(t), η2
)

, which converges weak-∗ to ϕ in L∞(0, T ;H1(R2))
such that

∂tϕ
η ⇀ ∂tϕ Lq(0, T ;L2(R2)). (4.25)
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4.2.3 Proof of Theorem 1.6

The proof of Theorem 3.4 can be done in a similar way. Indeed, we obtain the subdivision t0 = 0 < t1 < . . . <
tM+1 = T by fixing t1 such that 2µ0

√
t1 = η/6, and then we use that h is Lipshitz on [t1, T ].

Finally, the passing to the limit η → 0 holds in the same way, even with (4.25) instead to (3.13).
Remark 3.5 can be also applied to state that the convergence to the unique solution of the Navier-Stokes

equations in R
2 holds without extracting a subsequence. This ends the proof of Theorem 1.6.
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