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This article has been successively submitted to Computer Graphics Forum
(response received on May, 31st 2014) and The Visual Computer (response
received on August, 27th 2014) without success. Meanwhile, Fléchon et al.
published similar work at Vriphys, in September 2014 [FZDJ14]. Since there
are only slight conceptual differences between their work and ours, but different
algorithmic approaches and hypotheses on the model, we have decided to make
our paper freely available on the web. In a section added at the end of the
paper, the reader will find more information that helps positioning it among
recent work.
Please contact Philippe.Meseure@univ-poitiers.fr for further details.

Abstract

This paper shows the interest of basing a mechanical mesh upon an
efficient topological model in order to give any simulation the ability to re-
fine this mesh locally and apply topological modifications such as cutting,
tear and matter destruction. Refinement and modifications can indeed be
combined in order to get a more precise result. The powerful combinato-
rial map model provides the mathematical background which ensures that
the quasi-manifold property is guaranteed for the mesh after any topo-
logical modification. The obtained results offer the versatility and time
efficiency that are expected in applications such as surgical simulation.

keywords:Physically-based animation, Adaptive/hierarchical models, Gen-
eralised maps, Topological modifications, surgical simulation.
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Introduction

Much research has been focused on physically-based deformable models for inter-
active manipulation for twenty years. Nowadays, simulators require models that
can not only be computed in real time, but also undergo structure modifications.
Several methods have been proposed to compute the behaviour of deformable
bodies, such as Finite Element Method (FEM), Finite Differences [DDCB01],
mass/spring systems [Pro95], and so on. Some of these models allow structure
modifications such as fractures [TF88, NTB+91]. This is useful in different ap-
plications but more specifically in surgical simulation, where cuttings, tears or
matter destruction are undergone by physical bodies.

Several topological modifications have been proposed, as shown in Figure 1.
Basically, face splitting or volume deletion have been used. But these approaches
suffer from the coarse resolution of the simulated mechanical mesh (needed to
ensure interactive manipulations). The cutting of some volumes of the mesh by
a plane surely gives an acceptable visualisation of the cut path [BG00, GCMS00,
MK00, SOG06, BGTG03], but heavily disturbs the mechanical simulation by
creating non regular or ill-formed elements.

Besides, some approaches have been proposed to refine this mesh [HPH96,
FDA02] or provide several levels of detail of simulation [DDCB01]. The main
goal of these models is to adapt the mesh resolution, depending on the focus
and the modality of interactions. While a fine definition of geometry is locally
required in any contact zone, other areas can be computed at a coarser level.
This adaptation allows to devote most of calculations to areas of interest, and
therefore saves computation time.

Unfortunately, very few approaches allow topology changes in refined meshes
[FDA05, GCMS00]. Dick et al. rely on a hexahedral mesh refined by means of
an octree structure. General models with adaptive resolution require a complex
structure that makes modifications quite hazardous. Defining robust and stable
topological changes in such structures appears to be a real challenge.

In this paper, we propose to base any meshed mechanical system on a topo-
logical model (namely, generalised maps), to achieve real-time interaction and
robust modifications of a structure with adaptive resolution. Our contributions
include:

1. a topological model with adaptive resolution and the associated mechani-
cal embedding, allowing various interactive simulations of deformable bod-
ies (either discrete or continuous). The model is mathematically-defined,
which guarantees both its self-consistency and robustness,

2. a refinement process that allows the adaptation of the model during run-
time,

3. several different topological operations that allow interactive structure
modifications while still guaranteeing consistency.

The article is organised as follows. First, we discuss the work dealing with
physical simulation including, on the one hand, topological modifications, and,
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Figure 1: Different topological approaches for cutting in a 2D mesh : from top
to bottom, (a) face deletion, (b) face separation (edge splitting) and (c) face
duplication

on the other hand, adaptive or multiresolution approaches. In a second section,
the main principles to provide a physical simulation with a topological basis are
explained. In section 3, the topological model allowing adaptive resolution is
described. In the following section, the refinement process is detailed, including
the associated mechanical adaptation. Next, in section 5, the operations for
cutting/tearing and matter destruction are presented. Finally, some results and
performance measures are shown before conclusion and prospects.

1 Previous work

1.1 Physical simulation including topology changes

Various physical models have been proposed to simulate objects deformation
in Computer Graphics. Two types of methods are often compared. First, so-
called discrete methods rely on a set of point masses and interactions between
all or a subset of couples of these points (for instance, see [LJF+91] as a general
approach). Among them, mass/spring systems (MSS) rely on a mesh where
vertices are provided with mass and edges and/or faces with damped springs.
Second, Finite Differences or Finite Element Methods (FEM) can be used to
solve the equations of continuous mechanics [TPBF87, OBH02]. These models
have gained interest for interactive simulation since the introduction of explicit
FEM [CDA00], that compute forces resulting from the deformation of volumetric
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elements and apply them to the vertices of the mesh. Co-rotational computa-
tion [MG04] and several consecutive approaches [NPF05] provide more realistic
behaviours by determining a rigid displacement of elements before computing
their deformation. From an algorithmic point of view, discrete and continuous
simulations of a deformable mesh only differ by the way the forces applied to
nodes are computed, but the overall simulation algorithm is the same.

As mentioned in [SHGS06], there are three main approaches to simulate
cutting. The first category consists in deleting cells intersecting a cut path
[MK00, CDA00]. These methods are well-suited for matter destruction but
hardly represent a sharp cut, since they loose matter and, as a consequence,
mass. The second category of approaches separate volumes [FG99, NvdS00].
These methods generate a dubious cut trace, approximated by the local geom-
etry of the mesh. They have been enhanced by “node snapping” that consists
in deforming the initial mesh to match a cut path [SHS01, NvdS03]. Some ap-
proaches directly cut the mesh elements [BG00, GCMS00, MK00, BGTG03]. A
mesh co-refinement can also be used [SOG06]. However, all these methods cre-
ate sliver elements that the force model (either discrete or continuous) is unable
to correctly compute [Bat82].

To avoid such ill-conditioned elements, some authors [FDA02, DGW11] pro-
pose to refine the mesh in the cut area. This approach guarantees to keep
elements with right proportions while allowing a good approximation of the cut
path. The “virtual node algorithm” is another way to avoid ill-conditioned ele-
ments. It was first introduced by [MBF04] and extended by [TSSB+05, SDF07].
It consists in duplicating elements intersected by a cut plane and adapting their
mechanical behaviour depending on which side of the plane they are placed.
It does not modify the element shapes but the duplication results in a non-
manifold mesh (neighbour volumes can be adjacent to both copies of the initial
volume by the same face). Since manifold property cannot be assumed, it is
hard to check if the topology of the mesh is consistent after a modification.

A recent survey of cuts simulation can be found in [WWD14]. All the above-
mentioned methods rely on a simple topological model. Indeed, to compute the
model’s forces, adjacency relations are required. An explicit encoding of cells
(vertices, edges, faces, volumes) and adjacency graphs are often used. Each cell
is identified by an index pointing to a table giving the index of its adjacent cells
(volumes pointing to vertices for FEM or to edges for MSS). Unfortunately, such
a simple structure allows the modelling of non-manifold objects, which makes
topological modifications a tedious process. For instance, Forest et al. use a
heavy post-processing to ensure the manifold property of their mesh [FDA05].
A more robust topological model, that is, a model that can only represent mani-
folds (or, more exactly, quasi-manifolds) and nothing else, is obviously desirable.
Some recent works have proposed to rely on combinatorial maps [FZDJ13] (as
an extension of half-edges) or generalised maps [MDS10] but, still, only simple
modifications of the mesh (volume separation or deletion) have been proposed.
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1.2 Refinement and adaptive resolution

As stated above, it seems that using subdivision or a finer resolution of a mesh
is a convenient way to deal with both precision and well-conditioned elements.
Note that using finer elements requires to integrate equations using a smaller
time step (since mass is smaller and stiffness is higher). In [DDCB01], Debunne
et al. propose to define a body at different resolutions and choose the most
appropriate one, depending on the required precision in a given area. Interpo-
lation is used to compute the effect of a deformation on the other resolutions.
This model is unfortunately incompatible with topology modifications since the
different resolutions of the mesh are computed separately and are not correlated
one to another.

Some approaches rather rely on pyramidal models, that is, models where
any finer resolution is always included in the coarsest ones [KCB09]. When
the mesh is conformal, any introduction of a new vertex on a edge or a face
implies to subdivide the surrounding volumes to take that vertex into account.
Forest et al. [FDA02] use such a condition and give several subdivision schemes
to match the subdivision applied to adjacent volumes. The other possibility
is to define “inactive nodes” [HPH96, DMG05] between different resolutions.
The position of such nodes is constrained, since they belong to non-subdivided
elements. In other words, if, for instance, a vertex is located in the middle of an
edge of a triangle, it should be kept there if the mesh elements are supposed to
be triangles, whereas, topologically speaking, the element is no longer a triangle
but a quad. In [DGW11], Dick et al. use a dedicated mechanical model based
on FEM and given shape functions to handle the refined structure, but allow
only one resolution level between to adjacent elements.

This article does not aim at presenting new modifications of mechanical
meshes. Instead, it presents how generalised maps can efficiently endorse in
a unique formalism various manipulations, such as adaptive resolutions and
topology modifications, whatever the kind of the used mechanical laws (MSS
or explicit FEM). The used meshes are supposed tetrahedral. To keep tetra-
hedra as well-proportioned as possible, we rely on an extension of the Loop
subdivision scheme [Loo87], by splitting edges and building tetrahedra inside
the original tetrahedron. The same scheme has been used in several methods,
for instance [FDA02].

2 Topologically-based mechanical models

This section presents the concepts needed to understand the use of topological
models in simulation. For further details, reader is invited to consult [MDS10]
and [FZDJ13].

2.1 Generalised maps

A generalised map aims at representing quasi-manifolds, that is, for instance in
3D, objects that are composed of volumes linked by (and only by) their faces
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and where a face can link at most two volumes. These objects are subdivisions
of space that can be decomposed into vertices, edges, faces and volumes. For
convenience, the rest of the article refers to i-cells or cells of dimension i (0-cell
means vertex, 1-cell edge, etc.). Figure 2 shows an example in 2D. Note that
α0 ◦ α2 and α2 ◦ α0 are the same permutation.

Figure 2: Example of a generalised map in 2D

A generalised map or, more shortly, g-map is based on a unique abstract
element, called dart. For 3D-objects, a dart roughly represents “a vertex of an
edge for a face and a volume of an object”. In other words, a dart identifies a
vertex, an edge, a face and a volume at the same time. There are as many darts
as different quadruplets (vertex, edge, face, volume).

More formally, a g-map is defined in any dimension as a set of darts and
permutations defined on these darts:

Definition 1 (Generalised map). Let n ≥ 0. A n-dimensional generalised map
(or n-g-map) is defined as G = (D,α0, . . . , αn), where:

1. D is a finite set of darts,

2. ∀i, 0 ≤ i ≤ n, αi is an involution,

3. ∀i, j, 0 ≤ i < i + 2 ≤ j ≤ n, αi ◦ αj is an involution (condition of quasi-
manifolds).

Let G be an n-g-map. A dart of G corresponds to an (n + 1)-tuple of cells
(c0, ..., cn), where ci is an i-dimensional cell that belongs to the boundary of
ci+1 [Bri89]. αi associates darts corresponding with (c0, . . . , cn) and (c′0, . . . , c

′
n),

where cj = c′j for j 6= i, and ci 6= c′i. In other words, αi allows one to point at
a different i-cell while still pointing at the same cells of other dimensions.

When two darts d1 and d2 are such that αi(d1) = d2 (0 ≤ i ≤ n), d1 is said
i-sewn with d2. Moreover, if d1 = d2 then d1 is said i-free.

α involutions can also be seen in a constructive way. α0 is used to sew two
darts (representing vertices) and create an edge. α1 aims at connecting two
edges by their common vertex. By repeating this operation, several edges can
be 1-sewn in order to create a face when closing the obtained curve. α2 aims
at connecting faces by their common edge. Both darts of each edge are 2-sewn.
The resulting edge includes four darts (for instance, edge E4 with darts c, d, q

6



Adaptive Resolution for Topology Modifications in Physically-based Animation

and r in Figure 2). By connecting several faces by their edges and closing the
obtained surface, a volume can be created. α3 aims at sewing volumes together
to form a complex 3D object.

A g-map provides an implicit representation of cells. Indeed, several darts
point at the same i-cell. This set of darts is called orbit of this cell. For instance,
a vertex is an orbit containing all the darts that are sewn by any α1, α2 and
α3 combination in 3D. More formally, an i-cell associated with some dart d, is
the set of all darts that can be reached starting from d, using any combination
of all involutions except αi. The set of i-cells, 0 ≤ i ≤ n, is a partition of the
g-map’s darts. The notion of orbit can be extended to any combination of αi

to represent more than just i-cells. The list of αi which are used to define an
orbit is enclosed inside < and > brackets. For instance, given a dart d of a
3-g-map, < α1, α2 > (d) contains darts pointing at different edges and faces,
but at the same vertex and volume. It is therefore the orbit composed of all the
faces surrounding a vertex, on a given volume. Note that < α0, α1, α2, α3 > (d)
represents the connected component of the object including dart d. More details
about g-maps are provided in [Lie94].

A topological model only describes the structure of an object. Geometric in-
formation, such as a position for each vertex, must be added. For that purpose,
it is possible to embed information in the g-map, that is, to attach information
to all or a subset of its darts. However, the embedded information is usually
related to a cell, in other words, an orbit. That means that the darts of an orbit
share the same information. This information can be attached to all the darts
of an orbit (i.e. all darts of this orbit include a pointer to the same information)
or only to a single (randomised) dart of the orbit. However, this last approach
requires to search, inside an orbit, for the dart which owns some requested infor-
mation, which can be time-consuming. Note that any type of information can
be embedded, not only geometric positions, but also colorimetric or rendering
as well as mechanical information.

2.2 Mechanical Embedding

Mechanical information can also be embedded in the g-map. The used mechani-
cal model is supposed to be a mesh composed of tetrahedra in 3D or triangles in
2D. Depending on its dimension, the model relies either on a 3-g-map or a 2-g-
map. All the vertices of the mesh support mechanical nodes. The fundamental
equation of motion for each node i is:

miai =
∑

finternal +
∑

fexternal (1)

where mi is the mass of the node, ai the acceleration. The term
∑

fexternal
includes ambient viscosity, gravity, etc.

∑
finternal represents internal deforma-

tion forces.
For each vertex, several data are embedded in its 0-cell: mass, ambient

viscosity coefficient, rest position as well as runtime data (position, velocity,
sum of all the applied forces, and so on). The mass of a node results from
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the sum of the contributions of all its surrounding volumes in 3D or faces in
2D [GCMS00]. In 3D, any tetrahedron is supposed to bring 1/4 of its mass
to each of its vertices. The mass of a tetrahedron depends on its volume, by
considering that the volumetric mass is uniform. The same applies in 2D, where
triangles bring 1/3 of their mass each of their vertices and the surface mass is
supposed uniform.

Depending on the chosen deformation model, information can be embedded
in cells of higher dimension. For instance, stiffness and damping can be included
in some edge orbit if edges are supposed to correspond to damped springs.
Explicit finite element method computes forces for each volume or face. Here,
as a proof of concept, we consider linear elasticity for small displacements of an
isotropic and homogeneous material represented by a tetrahedral mesh. Under
these assumptions, for each tetrahedron, forces can be computed as:

f = −Ku with K = VBtCB (2)

where V is the volume of the given tetrahedron at rest, f includes the forces
for each node of this tetrahedron (fx1 , f

y
1 , f

z
1 , f

x
2 , f

y
2 , ...)

t, and u represents
the displacement from their rest position (ux1 , u

y
1, u

z
1, u

x
2 , u

y
2, ...)

t. C is the
6x6 stress-strain matrix that depends on the Young modulus and the Poisson
coefficient. This matrix is the same for every tetrahedron. B is the 12x6 strain-
displacement matrix allowing a measure of a deformation that is computed once
and for all using the rest position of the vertices of each tetrahedron (see for
instance [MG04] for more details about how to compute such matrices). K
is the 12x12 rigidity matrix and has to be computed (as well as B) for each
tetrahedron and embedded in the corresponding 3-cell of the 3-g-map.

Simulation mainly consists in choosing the right path through the structure
at each step. To compute internal forces, depending on the deformation model,
a walk through the edges and/or volumes of the structure is needed. To compute
collision, faces and/or volumes are covered, depending on the chosen collision
detection. Integration phase (including velocity and position updates) requires
to treat each vertex. One important point is that such a topological model is
basically a graph where walking through the structure requires a costly mark-
ing process. To avoid such a waste of time, it is recommended to project the
structure into arrays that allow an indexed cover of vertices, edges, faces and
volumes (arrays are an order of magnitude faster to walk through than graphs).
Note that indices in these arrays are only iterators and are not aimed at re-
ferring to cells. This structure has to be updated whenever (and only when) a
topology change occurs. A fast way to handle such structures is to use arrays
of embeddings [FZDJ13].

3 Adaptive Resolution Model

In this section, a new adaptive model that allows hierarchical subdivisions in
a robust and consistent way is introduced. The structure being used is some-
how related to Kraemer’s hierarchical model [KCB09]. This model is dedicated

8



Adaptive Resolution for Topology Modifications in Physically-based Animation

to multiresolution, and provides different permutations (in our case αi involu-
tions) depending on the chosen resolution. Moreover, a set of darts in a coarse
resolution is always included in every set of darts of finer resolution (in other
words, the model is nested). In practice, we use a simpler model since we do not
use multiresolution, but the idea of defining resolution-dependent permutations
provides us with a convenient way to control the refinement process.

We have chosen a Loop subdivision scheme [Loo87], extended to tetrahe-
dra. First, it consists in applying it to each face of a tetrahedron. Then, one
apex tetrahedron is built for each vertex of the original tetrahedron. These
tetrahedra are similar to the original tetrahedron scaled uniformly by 1/2, so
have strictly the same proportion. This guarantees that the obtained tetrahe-
dra are well-conditioned for physical simulation. This refinement scheme also
avoids providing vertices with new edges, that is, providing nodes with new links
(springs), which generally results in system instabilities. After building apex
tetrahedra, an octahedron appears in the middle of the tetrahedron [CMQ02].
This octahedron is thereafter subdivided into four tetrahedra by means of a
process described in section 4. The complete subdivision is shown in Figure 9.

This structure provides the mesh with a kind of hierarchy. A vertex that has
been created by cutting an edge in two is called “child vertex”. The extremities
of this edge are called “parent vertices”.

Figure 3: Edge refinement on a g-map (Level of black darts is 0. Blue stands
for level 1 and red for level 2)

3.1 Definition

The definition of a dart must be extended. The notion of level is introduced,
which corresponds to the number of refinements required to make the given
dart appears. By default, the level of all initial darts is 0. The higher the
level, the finer the resolution. Figure 3 shows the application of two successive
refinement processes on an edge. Considering an initial level 0 for darts a and
b, a first refinement process introduces new darts c and d with level 1. Another
refinement gives new darts e and f with level 2. As shown, α0 can link darts
with different levels, but every α1 links darts with the same level. The key
point is that a new vertex is introduced only when an edge is cut. Thus, only
α0 supports resolution changes, the other involutions are kept unchanged or
new ones are added between new darts only. Note that in the remainder of this
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article, α0 are no longer explicitly represented in figures in order to make these
more clear.

Figure 4 shows dart levels while applying a Loop subdivision to a triangle.
New inner darts also get level 1. On the right part, another subdivision is
applied to one of the resulting triangles. Remark that α1 and α2 always link
darts with the same level.

Figure 4: Face subdivision on a face of a 2-g-map (the level of black darts is 0,
blue stands for level 1 and red for level 2)

Levels are also supplied to i-cells. This leads to the following theorem:

Theorem 1. Any αi, where i > 0, links two darts with the same level.

Proof. : When a refinement is applied, only α0 are modified for any already-
existing darts and no changes are applied to other αi. Ad absurdio, let’s suppose
that there exists an αi linking two darts with different levels. That means that,
at some coarse level, one of the darts would not exist yet and the other one
would be i-free. This status cannot be changed in further operations.

Since vertex orbit does not contain α0, that means that all the darts in a
vertex orbit have the same dart level. This is called vertex level. Note that this
property appears as an invariant that topological operations should guarantee,
which helps validating their implementation. Since a refinement cuts edges and
provides the new ones with new darts, the definition of edge level is immediate:

Definition 2 (Edge level). The level of an edge orbit is defined as the maximum
of the levels of the darts composing this orbit.

Faces and volumes are also provided with a level. They also correspond
to the number of subdivisions necessary to create them. However, these levels
cannot be computed by just considering the level of the darts included in the
orbit. In Figure 5, two triangles have been subdivided first, and one of the
resulting 1-level face has been further refined. It can be seen, for example on
the face pointed at by an arrow, that a face level is neither the maximum of the
levels of its darts nor the minimum. As a consequence, face and volume levels
are explicitly coded in the structure.
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In the remainder of this paper, level(d) denotes the level of a dart d. leveli(d)
is the level of any i-cell supported by d. For instance, level1(d) corresponds to
the edge level of d. Note that at any time, all the darts of a face have the same
level2 and the darts of a volume have the same level3 (the level is related to
the embedding of the i-cell).

Figure 5: Several refinements applied to two initial 0-level faces (black stands
for level 0, blue stands for level 1 and red for 2)

3.2 Queries

The subdivision of an i-cell implies that, on its boundary, the common (i −
1)-cell with each of its adjacent i-cells is subdivided. For instance, when a
tetrahedron is subdivided, its adjacent tetrahedra, if non-refined, see one of their
faces divided by a Loop scheme. This issue in 2D can be seen in Figure 4. Since
one of its adjacent triangles has been refined, face F is no longer a “topological”
triangle, but a quad. In such cases, it is important to find a way to navigate
in the structure. More precisely, the vertices of a non-refined original triangle
should be found while ignoring the vertices introduced in the middle of its edges
(the level of such vertices is higher than the level of the face). To allow a proper
navigation, an α0 which corresponds to the level of the triangle, and not the
level of the edge, is needed. The same problem appears in 3D when edges
and/or faces of a tetrahedron have been refined, and an α0 which corresponds
to its volume level is needed.

Instead of tracing the different α0 for each level (after a cutting, such a
structure does not remain consistent), an algorithm which finds the dart linked
by α0 for a given level is preferred. It is denoted as αlev

0 . This algorithm is
recursive: To get αi

0, it is necessary to get αi+1
0 . Naturally, this is not useful if

the support edge has not been further refined, since level i + 1 does not exist.
In such a case, α0 gives the answer and allows the end of recursion. The main
idea is to find the adjacent dart at level i + 1 in order to get the vertex in the
middle of the edge at level i. Then, in this vertex orbit, the dart that “extends”
this edge must be found. If the adjacent face is not refined, only applying
α1 is sufficient. On the contrary, due to the Loop scheme, the combination
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(α1 ◦ α2)(2) ◦ α1 is used (see how dart f can be found starting from dart a in
Figure 4). When the dart that extends the support edge is found, another call
to find its αi+1

0 allows the algorithm to find the searched dart. As an example,
in Figure 6, let us assume that α0

0(a), that is b, must be found. This requires to
find α1

0(a) = c. Applying α1 to c (or a combination of α1 and α2 if the adjacent
face is refined), it is possible to find d. Applying another α1

0 allows one to find b.
During recursion, c is found by first searching for e, then computing f and then
c. If the face supported by the request dart has not been refined, no recursion is
needed and a simple walk alternating α0 and α1 is sufficient to find the desired
dart (the level of this dart is at most i, so the algorithm goes on while such a
level is not found). That means that in Figure 6, it is also possible to find b by
just walking through e, f , c and d successively, b is the first met dart with a
level 0 less than or equal to the request level 0. The overall algorithm can be
found in appendix.

Note a strong hypothesis in 3D: If αlev
0 is required, the level of the support

volume is supposed to be less than or equal to lev. If its level is greater, finding
αlev
0 would require to walk through some sub-volumes. However, the number of

these sub-volumes cannot be known easily (4 or 5 sub-volumes), since it depends
on how the refinement has been applied. Fortunately, in treatments described
below, it is always possible to work with a non-refined volume.

Another important point is that a very similar algorithm provides a coverage
of all the darts composing an edge at a given level.

Figure 6: Different α0 queries depending on a given level (black stands for level
0. Blue stands for level 1 and red for level 2)

Finally, a last query is mandatory: When an edge has been split, the newly-
created vertex may need to find its parents. A wrong approach consists in
memorizing the parent vertices once and for all when a child vertex is created.
When topological changes occur, ambiguities might appear: Any parent vertex
can split into two vertices and each of its children must update its parent accord-
ingly to match the correct one. This problem is illustrated in Figure 7 where a
2-unsewing is applied. It is worth noting that multiple potential children can be
concerned, if multiple refinements have been applied. Indeed, in 3D, this parent
link problem concerns any introduced vertex on the boundary of a face adjacent
to a 3-unsewn face. Another approach consists in memorizing, for each new
dart of a child vertex, the dart of the corresponding extremity of the cut edge
(the dart that is 0-sewn at the level of the new dart). This approach is quite
memory consuming: It requires to memorize a different dart for only some of
new darts (those coming from an edge cut) and moreover does not take benefit
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from the previously-defined αlev
0 query. Therefore, a way to compute parents in

order to correct parent links after a topological operation is described below.

Figure 7: Example of parent inconsistencies appearing after a 2-unsewing

In subsection 4.5, the request for parents appears really useful whenever one
of the surrounding volumes of a child vertex, in 3D, has not been refined up
to the level of this vertex. Under this assumption, the algorithm first selects a
volume that has not been refined, that is, finds a dart dc in the child vertex orbit
such that level3(dc) < level(dc). Let us call lev the level of dc, which by the
way is also the level of the vertex child, considering theorem 1. In this volume
(i.e. the use of α3 is prohibited), the edge that has been cut to create the given
child vertex must be found. Originally, this edge was composed of darts with
level strictly less than the level where the child vertex was created. Other edges
that have been connected to this child vertex have appeared at higher levels and
include only darts with a level greater than or equal to lev. In Figure 4, it can
be remarked that in the vertex orbit a, b, c, d, e, f , only a and f are 0-sewn (at
level 1, the level of this vertex) with darts with lower levels. These darts give
the parents of this vertex and they indeed verify α0

0(a) = f . These lower dart
levels is the main property that allows the algorithm to find parent vertices.

More formally, each dart d in the orbit < α1, α2 > (dc) is considered. d1 =
αlev
0 (d) is computed and its level is compared to lev. If level(d1) < level(dc), a

parent dart d1 has been found. The other parent can either be found by carrying
on the same algorithm and find another dart with the same property as d1 but
not in the same vertex orbit, or, more directly, by computing αlev−1

0 (d1). Note
that, in 2D, the algorithm works the same way (but, contrary to the 3D case,
adjacent faces can be refined).

3.3 Discussion

It is often argued that generalised maps are not optimal in terms of memory
size. Indeed, more condensed models such as winged-edges or half-edges exist.
Nevertheless they are restricted to 2D. Dual combinatorial maps appear as
an extension of half-edges to other dimensions and deserve to be examined
carefully. Kraemer et al. [KCB09] and later, Untereiner et al. [UCB13] proposed
a multiresolution topological model based on combinatorial maps and adapted
the same Loop subdivision scheme, and others, to their framework. It can be
pointed out that using their model, every permutation and involution is modified
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after a subdivision is applied. These links must be memorised for each dart, as
it is tricky to design queries similar to our αlev

0 -query. If combinatorial maps
require half as many darts as generalised-maps, all the saved memory is lost
to keep permutations and involutions at all levels. In our adaptive approach,
generalised maps are truly a compromise, since the resolution change is locally
defined only on one involution, α0, that our approach avoids to memorise for
each level.

4 Hierarchical Subdivision

This section describes the used refinement process. Only the 3D case is consid-
ered, for 2D is a sub-case. To subdivide a volume, it is necessary to subdivide its
faces first, which implies the subdivision of their edges. When a face is refined,
this operation concerns the one or two volumes it is connected with. Edge refine-
ment has an impact on all the faces (and their adjacent tetrahedra) surrounding
the edge. This implies that, for any edge or face subdivision request, it is first
checked that such a subdivision has not already been applied, during a previous
refinement of any adjacent cell. Before applying a subdivision, if the level of
the cell to subdivide is greater than or equal to the requested level, nothing has
to be done, except finding some darts representing the sub-elements resulting
from the subdivision, when they are needed by the caller of the subdivision.

For the sake of clarity, the different refinement processes are presented in
order of increasing dimension. The end of this section tackles the modification
of embedding after the refinement process and deals with the interfaces between
volumes (or faces) with different refinement levels (so-called “T-junctions”).

4.1 Edge subdivision

Edge subdivision process is described in Figure 3. It basically relies on vertex
insertion, a classical operation in topology [BDSM08]. In short, this consists
in first creating “inner darts” linked by α1 and connected to the original darts
of a given edge by α0. Note that if this edge belongs to multiple faces linked
by α2 and, possibly volumes linked by α3, this operation is done for each edge
common with adjacent faces and volumes. α2 and α3 links must be positioned
in an isomorphic way as the original darts of the cut edge to ensure the quasi-
manifold condition stated in definition 1. The level of any new edge is set to the
subdivision level. The face and volume levels for new darts are easily obtained
since they are the same as the one of their 0-sewn dart. Note that even if new
darts belong to the same vertex orbit, they are likely to have different face and
volume levels.

4.2 Face subdivision

Figure 8 shows the overall process of face refinement. After checking that the
given face is not already subdivided at the requested level, its three edges must
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be subdivided. Note that the αlev
0 query described in subsection 3.2 is of interest

if the edges have already been subdivided, in order to find the three vertices of
the triangle to subdivide. For each vertex, the algorithm gets the darts resulting
from the edge subdivision and linked only by α0 to the vertex orbit. By means
of these two darts, a classical face cutting is applied [BDSM08] which consists in
introducing a new edge that is 1-sewn to these darts. The two resulting faces are
2-sewn along the newly created edge. If the cut face is not 3-free, the face of the
adjacent volume is transformed with the same process and the corresponding
new darts of each face are 3-sewn.

The level of all new darts is set to the level of subdivision (see Figure 4).
Their volume levels are duplicated from originally-existing darts of the subdi-
vided face (note that the levels of the two volumes adjacent to this face can be
different). The face level of new and existing darts for the four newly-created
faces are set to the subdivision level, on both sides of the original face.

Figure 8: Steps of face refinement

4.3 Volume subdivision

Volume subdivision is presented in Figure 9. Volume subdivision does not re-
quire any volume level checks, it is applied whatever the volume level of any
given tetrahedron. First, if needed, its four adjacent faces are subdivided at the
needed level. Note that this requires no more than one subdivision for each face.
The first step consists in cutting the volume around each vertex by inserting a
face. An “edge path” must be defined which includes the edges resulting from
the subdivision of the tetrahedron’s faces around each vertex. These edges be-
come the edges of the new inserted face inside the original tetrahedron. Thus,
four tetrahedra, one for each vertex, are built. Since edges come from face sub-
division, new darts of each inserted face are only duplicates of existing darts.
Their level corresponds to the subdivision level, as well as their face level and
volume level.

Figure 9: Volume subdivision

A central octahedron appears. The same subdivision scheme as [FDA02] is
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used. It consists in (1) cutting the octahedron into two pyramids by following
some of the edges resulting from the subdivision of its faces, (2) cutting the
(unique) base of the pyramids in two along its diagonal and (3) cutting each
pyramid into two tetrahedra using its apex and the above-mentioned diagonal.
All new darts have a level, a face level and a volume level set to the subdivision
level. All the volume levels of the existing darts of the original tetrahedron must
also be updated.

4.4 Mechanical adaptation

When a refinement process is applied to a tetrahedron, new vertices, edges,
faces and volumes are created. Since these cells embed mechanical properties,
these must be added or adapted in a consistent way. New mechanical nodes are
introduced in the middle of the edges of the initial tetrahedron. A new mass
distribution is to be computed. After a subdivision, all the tetrahedra around
any new nodes resulting from edge cuts must be covered to give their mass con-
tribution. Note also that the mass contribution of the initial tetrahedron must
be reduced by a factor 8 for its four vertices. Depending on the used defor-
mation laws, new edges and/or new volumes must be mechanically embedded.
During edge refinement, when a spring with stiffness k is cut, the stiffness of
the two resulting edges is 2k. This avoid instabilities since the new couple of
springs is equivalent to the original one. More generally, for edges created from
scratch, it is considered that l0 × k is a constant of the body, where l0 is the
rest length of the spring and k its stiffness. The final stiffness is obtained by
summing the stiffness brought by each volume surrounding the support edge. If
FEM is used, the volume of each of the eight new tetrahedra must be computed,
as well as their strain-displacement and rigidity matrices. Note that the cost of
the overall process depends on the number of volumes around vertices (for mass
computation) and edges (for stiffness computation if springs are used).

4.5 T-junctions

As explained previously, after a subdivision process, new vertices appear and
change the topological type of surrounding faces and volumes. Triangles become
quads, tetrahedra become heptahedra (when one face is transformed into four
ones), and so on, as shown in Figure 10. When all adjacent cells are refined, a
triangle can become an hexagon, and, in the same way, a tetrahedron becomes
at most a polyhedron with 16 faces. More complex faces and volumes are
obtained when higher level refinements are applied. However, in any case, such
faces/volumes must remain triangles/tetrahedra.

To overcome this problem, a first approach consists in providing specific sub-
divisions in order to keep a conformal mesh. In [FDA02], different subdivision
schemes can be found. We are interested in two of them:

• the one that cuts a tetrahedron so that its common face with another
refined tetrahedron is subdivided using a Loop scheme,
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Figure 10: Examples of T-junctions in 2D (left) and in 3D (right)

• the one that cuts a tetrahedron in two because one of its edge has been
subdivided.

These transformations are rather straightforward in our model. They rely
on the same operations as previously, that is, cutting a face by inserting an edge
and cutting a volume by inserting a face along an edge path. Note that such a
subdivision implies to change the level of new volumes (see below the constrained
vertex condition). However, this approach has a real drawback. It can be
seen as a partial subdivision that prevents any further complete subdivision (as
described in previous subsections). Instead, we rely on the approach in [HPH96,
DMG05] where constraints are added in order to keep some vertices in the
middle of their original edge. Such vertices are called “constrained vertices” in
the remainder of the article (where Hutchinson et al. prefer “inactive”).

First, the following definition is proposed: A vertex is constrained if at least
one of its surrounding volumes (faces in 2D) has a level less than its own level.
More formally, considering a g-map in dimension n:

Definition 3 (constrained vertex).
constrained(dart) ≡ ∃d ∈ vertex orbit(dart) such that leveln(d) < level(dart).

A vertex is free if it is not constrained. Figure 11 shows examples of con-
strained and free vertices in the 2D case. When a vertex is created during a
subdivision, it gets mechanical properties, such as mass for instance. However,
until it is free, it is not simulated. Instead, its position is computed as the middle
of its parents. Note that one or both parents can themselves be constrained, so
this process is recursive. Forces can be applied on constrained vertices (at least
gravity, but also collision for instance). Half of any such forces is reported for
each parent. This is also a recursive algorithm in case parents are constrained as
well. After any topological change, the constrained condition must be checked
for any implied constrained vertex. Some vertices can indeed be freed, as they
are no longer adjacent to any lower-level volume (resp. face in 2D). If a vertex
is freed, it must be included in the simulation process by adding new degrees of
freedom to the system.
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Figure 11: Example of a constrained vertex (in blue) and a free vertex (in red)

5 Topological modifications

It has been shown in [MDS10] that cutting and tear mainly rely on 3-unsewing
(2-unsewing in 2D), as well as matter destruction that requires first to unsew
the faces of a volume in order to isolate and delete it. The main problem is
that 3-unsewing or “face splitting” must be processed in a consistent way with
the adaptive resolution. In 2D, such modifications rely on 2-unsewing or “edge
splitting”. This section mainly focuses on the 3D case, since 2D appears more
simple to handle. Nevertheless, the text is punctuated with elements related to
2D case to show the high correlation between both dimensions.

5.1 Topological face/edge splitting

Basically, face splitting consists in walking through the darts of the face (<
α0, α1 > orbit) and 3-unsewing them (resp., in 2D, walking through the edge
orbit and 2-unsewing the darts). A problem might appear if one of the vertices
of the split face (resp. edge) is constrained. Figure 12 shows this problem in 2D.
In part (a), a constrained vertex has to remain in the middle of its support edge,
since one of the adjacent faces is not enough refined. The obtained behaviour is
quite weird, because one resulting edge can move while the other is constrained.
To avoid such cases, face (resp. edge) splitting must be applied at the level of
the least refined adjacent volume (resp. face), as shown in part (b). Thereafter,
unsewing must be applied for all the sub-faces (resp. sub-edges). In 2D, this
is quite straightforward using different αlev

0 queries. In 3D, a complete walk
through all the darts of sub-faces is necessary. A recursive treatment of the
Loop subdivision of the face can be used, but can be rather inefficient (darts
may be unsewn several times, so they have to be marked to be treated only
once, and unmarked at the end of the algorithm). Another approach consists
in 2-unsewing the face to be split from the rest of the map (that is no longer a
formal g-map, since a “cap” has been removed) and 3-unsewing all darts in the
cap, by walking through < α0, α1, α2 > orbit. Sewing the cap again by α2 to
the rest of the object is required to get a proper g-map again.

Face or edge splitting can imply vertex splitting(s) (see Figure 12). Note
that a constrained vertex can be freed after such a splitting, so the constraint
condition must be checked.
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Figure 12: Example of vertex splitting in 2D

5.2 Mechanical modifications

After a face splitting, edges and consequently vertices can be split. First, a split-
ting can be detected by tracing couples of darts before unsewing and checking if
the darts of these couples belong to different orbits after modification. When an
edge splits, and if springs are used, new stiffness must be computed by walking
through all its surrounding volumes (both adjacent faces in 2D). Basically, each
edge of a volume (resp. face) is considered as a spring, so an edge is supposed to
include several springs in parallel that are distributed in case of edge splitting.
Note that edges of all sub-faces of a refined face are also subject to this process.
If FEM is used, face splitting does not imply any change, even when adjacent
cells are split.

The mass of any split vertex must be computed, again by walking through
its surrounding volumes/faces and taking into account every mass contribution.
The same remark as in section 4.4 applies: the cost of the overall process depends
on the number of volumes surrounding vertices and edges.

6 Results

Subdivision and face splitting have been implemented to allow resolution re-
finement before applying cutting or matter destruction. We used the MOKA
library (freely available at http://moka-modeller.sourceforge.net) as 3-g-
map engine. Figure 13 shows the result of successive randomized refinements
and the robustness of the subdivision process. Figure 14 shows a matter de-
struction after refinement of a liver model. Figure 15 shows that modifications
can be combined (a Blinn-Phong shading is applied on external faces to improve
rendering). A video can be found at http://vimeo.com/92312840.

Performances have been measured on an Intel Core i7 at 2.7GHz. Two liver
models have been used. The first one comes from the SOFA framework (freely
available at http://www.sofa-framework.org) and includes 181 nodes, 914
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Figure 13: Example of several successive refinement operations

edges and 597 tetrahedra. The other one is more tessellated and includes 564
nodes, 2850 edges and 1856 tetrahedra. As explained in [MDS10], the use of
a topological model does not significantly affect performances, provided that
optimisation tables are computed to avoid long walks through the structure
when no topological transformations occur.

Figure 14: Examples of matter destruction on a coarse mesh (left) and a refined
one (right)

Table 2 shows different average simulation time using both models. A sim-
ulation step includes force computation and Runge-Kutta 4 integration. Force
computation depends on the chosen mechanical model: MSS, linear FEM or
Nesme et al.’s QR-based co-rotationnal approach [NPF05]. Note that the tested
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simulation did not take benefit from any parallelism on GPU.

Table 1: Computation times of a single simulation step for two models of liver
(in ms)

MSS LINEAR QR
Liver model FEM FEM
SOFA Model 0.8 1.0 1.37
Complex model 2.2 3.7 5.0

Table 2 shows computation times of different topological modifications. These
computation times include not only modifications of the topological model and
its adaptive structure but also every mechanical properties update and detection
of freed vertices. As shown in previous sections, all these updates necessitate
various walks through the structure that require computation time.

Table 2: Computation times for several topological modifications (in ms)
Face Tetrahedron Refinement

Liver model splitting removal
SOFA Model 0.2 0.7 1.3
Complex model 0.4 1.1 1.3

Note that face splitting must be applied to several faces to be visible, so
splitting enough faces to split a vertex can require a bit more than 1ms. This
also explains why face splitting and consequently tetrahedron removal (that in-
cludes one, two or, more often, three face splittings) depends on the tessellation
of the modified mesh (in particular the number of volumes surrounding vertices
and edges). If adjacent cells (edges and more profitably faces) are already sub-
divided, a refinement can be less costly than shown in table 2. This is desirable
since, most of the time, a subdivision process is applied to a tetrahedron and its
surrounding tetrahedra to allow topological modifications as stated in section 5.
This may concern more than a tenth of tetrahedra, so the overall refinement pro-
cess may require between 10 and 20ms. This may appear costly compared to a
simulation step. Nevertheless, these changes occur very rarely (several seconds
can separate two successive changes) and, in practice, the missed simulation
steps are acceptable.

Conclusion and prospects

In this paper, we have shown a topologically-based mechanical model, that
allows a robust handling of modifications such as refinement, cutting, volume
destruction, etc. We proposed a robust, mathematically specified, approach
to deal with topological changes. This model behaves well and offers a real
flexibility. Is is currently intended to implement this model into the SOFA
framework.
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Figure 15: Combination of refinement, deletion and cutting

A GPU version could provide a faster simulation but only between topolog-
ical changes that are computed on the CPU. In other words, that means that
we extend our optimisation structure in order to export it to the graphics card
memory.

Since the used topological model allows the representation of any kind of
faces or volumes, an extension to hexahedra is absolutely possible. For this
purpose, a dedicated refinement scheme must be chosen and new navigation
processes must be designed, but no huge adaptation should be required. Another
interesting topological modification deals with coarsening. It is not sure that the
proposed structure allows the location of zones that can be coarsened. Tracing
all the resolutions of the body through a hierarchical model seems mandatory
in this case. However, keeping a consistent hierarchical structure that allows
topology modifications is a real issue, therefore more studies are needed.

Addendum

As stated at the beginning of this document, our work is very similar to [FZDJ14].
In this section, we try to highlight some fundamental differences. First, Fléchon
et al. use combinatorial maps, but in practice, combinatorial maps appear as
optimizations of g-maps, so any approach using combinatorial can be potentially
applied to g-maps and vice versa. In their work, they define hierarchical darts
that is, darts that exist before a subdivision is applied and allow to identify a
cell at a coarse level after several subdivisions. In our model, these darts corre-
spond to darts of the considered cell with a level less than or equal to the level
of the cell. Besides, some of their algorithms that need to walk through a face
of a volume may require to walk through darts on the adjacent volume [Flé14],
since no αi

0-equivalent request is proposed. This suppose that in their model,
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any subdivided face must be sewn to another volume by this face. If a cutting
is applied on such a face, any unnecessary subdivision (that is, where the ad-
jacent volume is not subdivided) should be suppressed. In our approach, this
simplification step is not mandatory.

We can also mention the work of Untereiner et al. [UKCB15] that provides
a convenient way to implement and walk through multiresolution models. They
use combinatorial maps and, in the same philosophy as us, provide an algo-
rithmic way to find permutation and involutions at any given resolution. Note
that, although only primal subdivisions can be applied (that is, subdivisions
that rely on edge cuts), combinatorial maps imply to implement a level-based
permutation, and define any involution, for a given level, by relying on the level-
based permutation (in other word, they cannot only focus on level-based α0).
Their model has nevertheless the great advantage to be completely general and
extensible, not limited to only tetrahedra (they can handle hexahedra as well).
This model could surely be used to get similar results as ours.

Finally, let us mention two more recent papers. Koschier et al. [KLB14]
provide an adaptive refinement in 5 steps for tetrahedral models dedicated to
fracture and Paulus et al. [PUC+15] rely on a mesh modification that keep the
number of nodes constant while providing a better fitting of a cutting path.
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Appendix

This section shows the algorithm that computes the α0 link at a given level.
The underlying volume is supposed not to be refined more than this level.

1: function αlev
0 (dart:Dart) : Dart

2: // Dart must exist at this level, so has a lower level
3: assert(lev≥ level(dart))
4: assert(lev≥ level3(dart)) // Volume must not have been refined
5: assert(lev≤ level1(dart)) // Request level exists ?
6: Dart d
7: if lev= level1(dart) then
8: return α0(dart)
9: end if

10: if lev< level2(dart) then
11: // the face is cut, we have to walk through the
12: // 3 sub-faces to find the extension of the edge
13: d ← αlev+1

0 (dart)
14: d ← α1 ◦ α2 ◦ α1 ◦ α2 ◦ α1(d)
15: return αlev+1

0 (d)
16: else
17: // face not subdivided, we just walk along the edge
18: d ← α0(dart)
19: while level(d)>lev do
20: d ← α0 ◦ α1(d)
21: end while
22: return d
23: end if
24: end function
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