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Stéphane Bonneaud1, Kevin Rio1, Pierre Chevaillier2, and William H. Warren1

1 Dept. of Cognitive, Linguistic and Psychological Sciences, Brown University, USA
2 ENIB–UEB; LISYC: Computer Science Laboratory for Complex Systems, France

Abstract. Do people in a crowd behave like a set of isolated individuals
or like a cohesive group? Studies of crowd modeling usually consider
pedestrian behavior either from the point of view of an isolated individual
or from that of large swarms. We introduce here a study of small crowds
walking towards a common goal and propose to make the link between
individual behavior and crowd dynamics. Data show that participants,
even though not instructed to behave collectively, do form a cohesive
group and do not merely treat one another as obstacles. We present
qualitative and quantitative measurements of this collective behavior,
and propose a first set of patterns characterizing such behavior. This
work is part of a wider effort to test crowd models against observed
data.
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1 Introduction

Crowd models for virtual worlds need to be persuasive, which can be achieved
by developing (1) more plausible behavioral animation models, (2) richer models
of the environment or (3) more efficient crowd rendering techniques [16, 8, 22].
Our interest here lies in building more reliable behavioral animation models of
locomotor behavior for pedestrians that aggregate into crowds.

We advocate that, before developing new crowd simulation models, there is a
need to better understand how collective behavior can emerge from the individ-
ual locomotion behaviors of pedestrians aggregating in a crowd. This necessary
first step requires the identification of reproducible behavioral patterns from ob-
servations and systematic measures of individual behavior. By rigorously iden-
tifying the patterns that simulations should account for, psychologists can help
computer animation go beyond the limitations of existing crowd simulations.

Most crowd simulation studies focus either on isolated pedestrians and their
behaviors in virtual cities [9] or on large swarms and large-scale self-organisation
phenomena [10, 8]. However, how collective behavior emerges from interactions
among individual pedestrians is still not fully understood [15]. Very few studies
have focused on the modelling of local interactions of pedestrians building up
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small groups and most agent-based models of crowd dynamics [11, 18] have not
been tested against field observations of human behavior [12]. [14] has studied the
behavior of a pedestrian walking in a corridor and interacting with a stationary
pedestrian and with another pedestrian walking in the opposite direction, but
these are not common situations in crowd simulation and do not explain self-
organisation phenomena. More recently, [15] emphasized the need to empirically
study pedestrian groups, showing that social groups are very common in crowds
and that crowd density impacts these groups’ spatial patterns.

This paper presents the analysis of the results obtained from a cognitive psy-
chology experiment on small crowds aimed at understanding whether and how
individuals form a cohesive group when walking towards a common goal. These
results allow us to identify patterns that could be explained by general laws
and that could be later implemented into crowd simulation models for computer
animation. The main objective here is to identify invariants in pedestrian be-
havior, namely locomotion behaviors, and not to introduce individual variability
in crowd simulation, which is another issue [21]. We investigate the impact of
density on a small crowd of participants, in order to make the link between indi-
vidual locomotion and crowd dynamics. If individuals exhibit collective behavior
in these conditions, then the phenomenon might help explain larger crowd dy-
namics. While identifying collective behavior at this level and in a controlled
environment is a result in itself, it also allows us to develop measures of such
behavior and to extract patterns that characterize human crowds.

In this article, we first contextualize the need for empirical data in the com-
puter animation field. Second, we describe the behavioral experiment that was
conducted and the resulting observations. Finally, we identify patterns charac-
terizing collective behavior and the control variables that might yield coherent
crowds. We argue that this knowledge is crucial for the computer animation
field and could be used to develop and validate computational models of crowd
dynamics.

2 Crowd Simulation

The best way to produce realistic simulations of crowds is to develop behavioral
models that account for what real pedestrians do, and validate these models
against observations of real pedestrians. Many studies have tried to understand
how nearly all species can locomote and navigate in space with no apparent effort
[6, 20, 3]. More specifically, humans walk in groups, avoid moving or stationary
obstacles, and steer to common goals, while being involved at the same time
in other cognitive activities, like social interactions with other members of the
group. According to this theoretical framework [6, 24], it should be possible to
identify typical patterns resulting from these fundamental behavioral rules.

Surely, from a computer animation perspective, it is necessary to obtain
agent-based simulations that (1) account for complex scenarios, e.g. interacting
with a street artist while in a crowd, and (2) avoid forbidden behaviors, e.g. walk-
ing through walls or colliding with other pedestrians. Agent architectures and
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complex technological solutions have been proposed for generating such behav-
iors. Several models of locomotion are thus based on cognitive maps and internal
models of the environment that enable the agent to calculate an optimal route
and avoid collisions in a given local environment [23, 17]. [19] have proposed a
solution inspired from social psychology, but advocated obtaining unnatural mo-
tions at the micro level. Generally speaking, one of the main issues with such
approaches is that these models have many parameters and thus are difficult to
calibrate. Others try to use videos and learning algorithms to either automati-
cally extract behavioral rules of locomotion in crowds [13] or to calibrate their
models [14]. But this research, though very promising, has yet to come up with
definitive solutions. Unfortunately, research in psychology or sociology cannot
yet solve these problems because we don’t know the control laws that actually
govern human locomotion.

More reactive approaches have been proposed, based on the assumption that
the agent’s trajectories in space emerge from the interactions between the agent
and its local environment without any internal representation of it [1]. Following
such an approach, [24, 4, 5] have produced a model of individual locomotion that
precisely accounts for individual trajectories in space in various scenarios. This
model has a number of advantages, namely: (1) it is grounded in a clear theo-
retical framework; (2) it explains what control variables and strategies are used
by humans when they locomote in space and interact with moving or stationary
targets and obstacles; (3) it is low parameterized, as the same few processes and
parameters are used for each of the scenarios the model accounts for. Although
the model of [4, 5] only accounts for simple scenarios thus far, making its use
in computer animation not straightforward, we argue that this approach is cur-
rently the most relevant one to obtain validated simulations that can account
for general laws of collective behaviors in crowds and thus allows us to identify
typical behavioral patterns.

3 Experiment

3.1 Objective

The experiment aims at understanding the formation and structure of small
groups of pedestrians walking towards a common goal; more specifically, we want
to determine whether participants behave as a set of individuals or a coherent
group, and how to characterize such collective behavior. We further wish to un-
derstand the control variables that govern local interactions among participants,
and may underlie group formation. The independent variables were (1) the initial
density of the group, characterized by the initial distance between participants,
and (2) the initial bearing angle between the goal and the participants.

3.2 Apparatus

The experiment was built upon the approach and method of [4, 5]. The exper-
iment setup (Fig. 1) was based on experiment 1A of [4] that was designed to
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study how a single pedestrian steers towards a stationary target. The only dif-
ference in the setup is that we now consider four individuals walking together,
instead of one.

Participants walked freely in a 12m × 12m room. Their task was to walk
to one of three goals (Fig. 1) specified out loud to all participants after the
beginning of each trial. The goals were represented by poles of ∼2m high and
∼30cm wide. Participants were initially positioned in a “square” shape, whose
side length characterized the initial density. As shown in the figure, there were
four conditions for the initial density (x-small, .5m; small, 1m; wide, 1.5m; and
x-wide, 2.5m) and three possible goals.

For each trial, participants were first arranged in a randomly chosen configu-
ration (density). Experimenters told each participant to stand on top of a number
on the floor, announcing them out loud. Note that experimenters never spoke
directly about density or the global “square” shape, but only spoke to partici-
pants as individuals, giving them information specific to each of them individu-
ally. Then, participants were told to start walking at a self-selected “comfortable
pace” in a straight line. Once the last participant had crossed an invisible line 1m
from the front of the group (the dashed line in Fig. 1), an experimenter directed
the participants to one randomly selected goal. Participants were instructed to
walk to the goal and remain in contact with it (e.g. by keeping a hand on it).
When all four participants were in contact with it, an experimenter asked them
to walk back to other randomly chosen starting locations.

Fig. 1. Experimental setup: initial spatial setup of participants and goals.

There were 12 conditions: 4 densities × 3 goals. Five groups of four partic-
ipants were studied, with each group receiving 8 trials per condition (total: 96
trials). For each of those 8 trials, the initial locations of the participants were
randomized, so that each density condition was tested with participants at dif-
ferent positions in the “square” shape. There were 20 participants (12 female),
with a mean age of 23.35 years old (SD = 5.2). Participants did not know
each other and groups were always mixed. Participants’ head positions (4 mm
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root-mean-square error) were measured by a hybrid inertial-ultrasonic tracking
system (IS-900, Intersense, Burlington, MA) with six degrees of freedom, at a
sampling rate of 60 Hz.

3.3 Definitions

Position in group – The initial “square” shape had four relative positions
defined with respect to the walking direction of the group: front-left, front-right,
back-left and back-right. The goal can be characterized in the same way. The
same reference system is used to characterize the direction of the group and the
direction of the goal. With such reference system, participants walking towards
the goal see the back of it.
Heading – A participant’s heading or direction of travel was computed from
the walking trajectory (rather than from head orientation data). The heading
at time t is calculated using the participant’s positions at time t and t + 1.
Alone vs group speed – Participants were asked to walk on their own, one
at a time, to goal 2 before starting the experiment. In this way, we obtained
a baseline measure of each participant’s self-selected “comfortable pace”. These
speeds are designated here as the alone speeds as opposed to speeds in group.
Interpersonal distance – The density of the group is characterized by the dis-
tances between participants. The interpersonal distance of the group (or average
individual interpersonal distance) is here the mean of all six distances between
each participant. We also computed the average anterior-posterior (∼ back to
front) distance and the average lateral (∼ shoulder to shoulder) distance.
Collective behavior – This term is used here to contrast with more individual-
istic behavior: where isolated pedestrians may simply avoid other pedestrians as
if they were obstacles, pedestrians exhibiting collective behavior show evidence
of synchronizing their behaviors and the system at the group level exhibits stable
patterns.

3.4 Results

Individual Behaviors. First, participants were consistent throughout the tri-
als and they tended to maintain the initial group structure throughout trials.
That is, participants’ positions in the group were stable as shown in Fig. 2 and,
overall, the group’s geometry was stable as well: e.g. an individual starting at
the front-right in the group had the tendency to have its ending position on the
front-right side of the goal.

Second, while alone speeds were significantly different across participants, in-
dividuals adjusted their speed when walking in a group: specifically, they tended
to walk slower when in a group (M = 1.02 m/s) than when alone (M = 1.09
m/s), t(15) = 2.36, p < .05. These adjustments are more pronounced for faster
individuals, as shown in Fig. 3. There is a negative correlation (r(14) = −.842,
p < .001) between an individual’s preferred speed and their adjustment when in
a group (i.e. the difference between their group and alone speeds).
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Fig. 2. Each line is an average of 8 individual trajectories of one group for a given
“position” in the group (e.g. top left); for each “position” (each color), there are 5 lines
for the 5 groups. Initial positions and positions at half time of the trial are designated
by the crosses.

Third, individual heading trajectories were consistent across participants as
shown in Fig. 4. The figure shows that the variability of the average heading for
each condition is low, which is strong evidence that participants had a tendency
to steer towards the goal consistently with the group. Note that the heading’s
dynamics seem to be alike whatever the initial density of the group.

Fig. 3. Difference between the group speeds and alone speeds against the alone speeds
for each participant.

Group Dynamics. In Fig. 5, the graph on the left shows the evolution in time
of the mean interpersonal distance per condition. The x-small, small and wide
configurations exhibit a convergence towards distances in between 1.3 and 1.6
meters. This could represent a preferred or stable density of the group. In the
wide configuration, the mean interpersonal distance seems stable during most of
the trial before dropping when participants reach the goal. In the x-small con-
figuration, the distance first increases very quickly as participants, in order not
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Fig. 4. Average heading dynamic in time for goal 2 and per density. The vertical lines
show the standard error.

to collide with each other, spread out and double the initial .5m that separates
them. After this quick expansion, the distance continues to increase more slowly,
and the distance’s dynamic seems to be closer to that observed in small config-
uration. In the small configuration, the distance appears to increase slightly to
reach a more stable density close to that observed in the wide configuration. In
the x-wide configuration, the distance never stabilizes, but continues to contract
to the goal. It is not clear whether the distance would stabilize itself around
1.5m if the goal was further away.

Finally, Fig. 5 shows that the dynamics of the anterior-posterior and lateral
distances are quite similar, implying that the same processes could control them.
The anterior-posterior distance tends towards a larger preferred value than the
lateral distance. Presumably, the anterior-posterior distance is controlled by the
participant in back, whereas the lateral distance is controlled by both members
of a pair. Nevertheless, the anterior-posterior variability is no greater than the
lateral variability.

Fig. 5. Interpersonal distance per condition through time. The vertical lines show the
standard error.
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4 Patterns of Collective Behavior

4.1 Analysis

A first remark for crowd simulation is that the group’s consistency in structure
and dynamic, of the heading and speeds, is a strong sign that the modeling of
the phenomenon is accessible and that the patterns are reliably identifiable.

Second, the most important result of this study is that participants do not
seem to behave like isolated pedestrians, but exhibit collective behavior. This is
a clear result that has not yet been shown in a small crowd, with participants
who do not know each other and with no explicit instruction to exhibit such
behavior.

Strong evidence of collective behavior appears in the results on speed and
on interpersonal distances. Consistency of the group’s dynamic is suggestive of
collective behavior, although it might be explained by the physical constraints
of the task itself. Seen through the stability of the geometry of the group, the
consistency also reveals how the group self-organizes upon arrival at the goal. The
first paragraph of section 3.4 shows how individuals tend to keep their positions
in the group and organize themselves around the goal as they were organized in
the group. Findings of [4] show that a single individual goes directly on the goal.
Here, the task does partly explain their distribution around the goal, and one
could argue that it is easier for participants to reach the goal in such a manner.
However, participants’ trajectories are very direct towards these pre-selected
positions (or sub-goals) around the goal.

4.2 Patterns

Group structure: the group exhibits consistency and little variability (visible
in the dynamics of the heading and structure or geometry of the group);

Speed synchronization: individuals adopt a common speed; this speed is
closer to the slower individuals so that faster individuals change their speed
more;

Preferred density: individuals adjust their interpersonal distances in order to
approach a stable density between 1.3 and 1.6 m;

Anisotropy of interpersonal distances: individuals tend to keep a greater
distance from others that are in front or behind, than from those that are
next to them.

5 Discussion

This study shows that pedestrians, when surrounded by other pedestrians going
to the same goal, tend to modify their behaviors according to others and exhibit
collective behavior. They tend to adjust their speed to coordinate with others,
adopting a common speed that is closer to the speeds of the slowest individuals.
The structure of the group tends to maintain a stable “rectangular” shape, with
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a smaller shoulder-to-shoulder distance, leaving a bigger front-to-back distance.
More strikingly, the density of the group tends to converge towards a preferred
stable value, which is very clear for the x-small, small and wide configurations.
Low variabilities of the standard errors for the interpersonal distances show that
those results are consistent across trials and groups, and confirm the structure
of the group. Even though the task itself constrains the behavior of the indi-
viduals, such clear self-organization with only four people was not implied by
the instructions or the simple nature of the task. Finally, the similar dynamics
and comparably low variability of the front-and-back and shoulder-to-shoulder
distances may imply that the same control variables are being used to organize
both distances.

As with many psychological experiments, the experimental setup constrained
the participants to a task in order to make systematic observations in a controlled
environment. To a certain extent, these constraints might force individual tra-
jectories into dynamics that could, after analysis, be mistakenly interpreted as
collective behavior. The initial positioning of participants in a “square” shape
and the initial distance to the goal (less than 10m) are two strong constraints.
Concerning the initial positioning, observational studies [2] show that, when in
groups, pedestrians tend to walk two by two, so the configuration is reasonable
in this context. Concerning the distance to the goal, one limitation of the setup is
that a longer distance would emphasize the stability of the observed dynamics.
Yet, steering to a goal is a very general and common activity in crowd loco-
motion. Observing collective behavior and behavioral synchronization in such a
short time and distance show the rapid and pronounced impact of other pedestri-
ans on individual behavior. Also, in a few trials, participants switched positions
(e.g. some participants passed those in front) showing that the task was not
so constrained. And longer paths alone would not guarantee that participants
would be less socially constrained. As such, the experimental setup does enable
us to isolate patterns of collective locomotion and to answer the question of this
article.

From the computer animation point of view, this bridging between data and
models, cognitive science and computer animation, can lead to better models,
based on or inspired by the patterns of collective behavior shown here. We argue
that such work is a necessary step towards a full understanding of collective
behavior in large crowds. Crowd simulations dramatically need validation and
testing against empirical observations. Patterns are the best way to do this [7].
But, such patterns also give evidence of the control variables humans might use,
therefore helping make modeling assumptions. Much work remains to be done
to clearly and fully identify the behavioral strategies used by humans that give
rise to such collective behavior.

6 Conclusion

Our focus here was to address whether individuals act as isolated pedestrians
or as a cohesive group when locomoting with others towards a common goal.
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We presented an experiment on small crowds of four pedestrians, not instructed
to act collectively, in order to bridge between individual locomotion and crowd
dynamics. The experiment was built based on [4, 5] who studied individual loco-
motion. This approach enabled us to show that individuals self-organize into
groups, maintaining a consistent group structure, while adopting a common
speed and a preferred interpersonal density. We have identified patterns that
can be used to build and validate models of crowd dynamics and help identify
the control variables that govern the emergence of such collective behavior.

The next step is threefold. First, it is necessary to analyse to what extent
existing computational models of pedestrian locomotion could account for the
patterns we have identified, determine their sensitivity and robustness for a given
set of parameter values, and consider how they could be extended to better fit the
experimental data. Second, additional experiments need to be performed in order
to improve our list of patterns. Third, laboratory data has to be compared to
ecological data. Laboratory conditions offer controlled and regular trajectories, a
systemic study of behavior, and clear patterns. And, most likely, individuals use
the same environmental information and behavioral strategies to interact with
others whatever the conditions. If anything is different, we believe that it might
be the level of activation of each behavioral strategy, i.e. their parametrization,
making the patterns still valid, but necessitating comparison with ecological
data.
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