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Many theorems in analysis are based on the notion of limit. Accordingly, a formalization of convergence in
a proof assistant such as Coq must be particularly neat to build a user-friendly library of analysis. Moreover,
usual theorems, such as the one below about exchange of limits, use various definitions of limit: limits of
sequences (e.g. `n) and functions (e.g. f), and limits in functional space (uniform convergence of fn toward
f).

Theorem 1 For all sequences of functions fn : A→ F , with F a complete space, if fn is uniformly convergent
toward f in A, a is a limit point of A, and ∀n, fn −→

x→a
`n, then the sequence (`n)n converges toward a limit

` in F and f −→
x→a

`.

A common approach is to define all the cases independently, but it implies to duplicate some proofs such as
lim(f+g) = lim f+lim g which concern both sequences and functions. A better approach is to generalize the
notions of limit and neighborhood (Section 1) and the notion of metric space (Section 2). Using Theorem 1
in this general scope, we deduced an unexpected corollary presented in Section 3.

1 Generalization of convergence

The first step is the generalization of limits. Indeed, to express a limit lima f(x) = `, the usual ε−δ definition
leads to an explosion of cases, depending on whether a is finite or not, and similarly for `. Some more cases
are needed to express limits of sequences too. Our solution is to define convergence using neighborhood:

lim
x→a

f(x) = ` ⇔ ∀P, P ∈ V` ⇒ f−1(P ) ∈ Va︸ ︷︷ ︸
filterlim(f,Va,V`)

,

where Va and V` are neighborhoods of a and `. We introduce a notation for the neighborhood of an extended
real number a: Rbar locally(a). The neighborhood of +∞ for natural numbers is named eventually.
Using this approach, limits of sequences and functions are now two instantiations of a single definition:

lim
n→+∞

un = `: is lim seq(u, `) := filterlim(u, eventually, Rbar locally(`)) and

lim
t→a

f(t) = `: is lim(f, a, `) := filterlim(a, Rbar locally(a), Rbar locally(`)).

This definition makes it possible to factorize many proofs, in particular arithmetic operations and com-
position. Nevertheless, convergence “in the neighborhood of” is not sufficient in Coq because usage of partial
functions is unpractical. Inspired by [3], our solution to extend the notion of neighborhood is filters: sets of
sets F : (T → Prop) → Prop that are stable by intersection and inclusion. These properties abstract all
the useful properties of neighborhoods and cover some other notions of convergence such as left and right
limits. Filters also make it possible to state Riemann integral as a limit on pointed subdivisions1. Indeed, this
is the limit of the function (x, y) 7→

∑
i(xi+1−xi)f(yi) when max |xi+1 − xi| tends to 0. With the dedicated

filter Riemann fine on pointed subdivisions and the neighborhood of a finite value locally(If ), Riemann

integral
∫ b

a
f(t) dt = If is defined as is Rint(f, a, b, If ) := filterlim(f, Riemann fine(a, b), locally(If )).

We defined the predicate Filter using type classes [2]. This choice allows to automatically instantiate
hypotheses of “being a filter” in lemmas. By example, users do not need to provide a proof that two filters
given filters filter prod F G is also a filter to use lemmas.
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1pointed subdivisions := pair of finite sequences

(
(xi)0≤i≤n+1 , (yi)0≤i≤n

)
such that ∀i, xi ≤ yi ≤ yi+1
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2 Generalization of metric spaces

Even if filterlim and Filter are useful to represent limits in many general spaces, they are not enough to
prove Theorem 1. Indeed, the metric of uniform convergence is painful to use: in order to build a finite distance
between functions from a distance d, we have to use a minimum “d∞(f, g) = min(supx d(f(x), g(x)), 1)”.
Yet, in most proofs, the first step is to change “d∞(f, g) < ε” into “∀x, d(f(x), g(x)) < ε”. The solution to
simplify proofs is thus to replace distances d and d∞ by the predicate ball : T →R →T → Prop which is
understood as ball(x, ε, y)⇔ d(x, y) < ε in simple metric space and ball(f, ε, g)⇔ ∀x, d(f(x), g(x)) < ε in
functional spaces. The notion of Cauchy convergence and complete space have also been extended to these
spaces named UniformSpace.

As for filters, we use a Coq mechanism to automatize instantiation. Type classes were not adapted for
this structure, then, we use canonical structure [4].

3 Exchange of limits and corollaries

Using these new features, the theorem below subsumes Theorem 1 by choosing F1 = eventually

Theorem 2 If V is a complete space, ∀f : T1 × T2 → V, g : T2 → V, h : T1 → V, ∀F1, F2 filters,

lim
x→F1

f(x) = g ∧ ∀x, lim
y→F2

f(x, y) = h(x) ⇒ lim
y→F2

g(y) = lim
x→F1

h(x).

Thanks to this generalization, we were able to prove the exchange of integral and limit in an unusual way:

lim
x→F1

f(x) = g ∧ ∀x,
∫ b

a

f(x, y) dy = h(x) ⇒
∫ b

a

g(y) dy = lim
x→F1

h(x).

Indeed, Riemann integral is a limit, we can use Theorem 2 with F2 = Riemann fine(a, b) and difficulties of
this proof are reduced to proving that uniform convergence of the function f toward g imply the convergence
of Riemann sums. It also proves that continuity of g implies integrability by choosing f a family of step
functions that uniformly converge toward g.

As the filter F1 is already general, it can be applied with F1 = eventually to obtain Theorem 1. It also
can be used to prove that continuity implies integrability in a complete space with a specific filter on positive
real.

4 Conclusion

This generalization of limits and metric spaces comes with a comprehensive development of analysis avail-
able at http://coquelicot.saclay.inria.fr/, compatible with the standard library Reals. Most of the
theorems can be applied as easily for sequences, real functions, complex functions, vector functions, and so
on. More details are available in [1].
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