N

N
N

HAL

open science

Queries and Updates on Big XML Documents
(Extended Abstract)

Nicole Bidoit, Dario Colazzo, Carlo Sartiani, Alessandro Solimando, Federico

Ulliana

» To cite this version:

Nicole Bidoit, Dario Colazzo, Carlo Sartiani, Alessandro Solimando, Federico Ulliana. Queries and
Updates on Big XML Documents (Extended Abstract). SEBD: Sistemi Evoluti per Basi di Dati, Jun

2015, Gaeta, Italy. hal-01169269

HAL Id: hal-01169269
https://hal.science/hal-01169269

Submitted on 26 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01169269
https://hal.archives-ouvertes.fr

Queries and Updates on Big XML Documents
(Extended Abstract)

Nicole Bidoit!, Dario Colazzo?, Carlo Sartiani®, Alessandro Solimando*, and
Federico Ulliana®

! BD&OAK Team - Université Paris Sud -INRIA
2 LAMSADE - Université Paris Dauphine
3 DIMIE - Universita della Basilicata
4 DIBRIS - Universita di Genova
5 LIRMM - Université Montpellier 2

Abstract. We present here Andromeda, a system for processing queries
and updates on big XML documents. The system exploits static and dy-
namic partitioning of the input document, so to distribute the computing
load among the machines of a Map/Reduce cluster.

1 Introduction

In the last few years cloud computing has attracted much attention from the
database community. Indeed, architectures like Google Map/Reduce [1] and
Amazon EC2 proved to be very scalable and elastic, while allowing the pro-
grammer to write her own data analytics applications without worrying about
communication, machine failures, and load balancing issues. Therefore, it is not
surprising that cloud platforms are used by large companies like Yahoo!, Face-
book, and Google to process and analyze huge amounts of data on a daily basis.

The advent of this novel paradigm is posing new challenges to the database
community. Indeed, cloud computing applications might also be built upon par-
allel databases, that were introduced to manage huge amounts of data in a very
scalable way. These systems are robust and efficient, but their adoption is still
very limited due to cost and maintenance issues.

In this paper we present Andromeda, a system able to process both queries
and updates on very large XML documents, that are usually generated and
processed in contexts involving scientific data and logs [2]. Andromeda supports
a large fragment of XQuery [3] and XUF (XQuery Update Facility) [4]. The
system exploits dynamic and static partitioning to distribute the processing load
among the machines of a Map/Reduce cluster.

2 System Architecture

The basic idea of our system is to dynamically and/or statically partition the
input data so to leverage on the parallelism of a Map/Reduce cluster and to
increase the scalability. The architecture of our system is shown in Figure 1.

Static Analyzer

Part Cache

i

¥

| Projector |

| Projector |

| Projector |

l

}

}

Query/Update
Engine

Query/Update
Engine

Query/Update
Engine

Intermediate
Result Combiner

Intermediate
Result Combiner

MASTER

MAPPERS

REDUCERS

MASTER

Result Combiner

Fig. 1. System architecture.

When a user submits a query or an update to the system, the STATIC ANA-
LYZER extracts from it the information required for partitioning the input docu-
ment D. This information is passed to the PARTITION MANAGER, which verifies
if D has already been partitioned; in that case, given that document partitioning
is not unique, the PARTITION MANAGER checks if there exists a partition that is
still valid (i.e., D has not been updated or externally modified after partitioning),
and that it is compatible with the input query or update.

If reuse is not possible, D is dynamically partitioned according to the parti-
tioning scheme described in Section 3. Parts are encoded as EXI (Efficient XML
Interchange) files [5] during the partition process through the streaming encoder
of EXIficient [6]; this allows the system to significantly reduce the storage space
required for parts and, most importantly, to cut network costs. Parts are stored
in the distributed file system, so to be globally available.

If, instead, an existing partition can be reused, which is the most com-
mon case, the PARTITION MANAGER assigns parts to mappers and launches
a Map/Reduce job. Each mapper works independently on each assigned part.
In the case of a query, each part is also projected, in order to eliminate all un-
necessary elements or attributes from the part [7]. Projected parts reside in the
local file system of the mapper as EXI files and do not survive query execution.
In the case of updates, the system ignores projection for the sake of simplifying
the global result reconstruction from the updated parts.

After optional projection, the mapper executes the query or the update on
each assigned part by invoking Qizx-open [8], and stores results in the distributed
file system. These results are, then, combined into a single file by means of a
two-phase process involving reducers and the RESULT COMBINER.

3 Processing Queries and Updates

3.1 [Iterative Queries and Updates

Our system supports the execution of iterative XQuery queries and updates,
i.e., queries and updates that i) use forward XPath axes, and ii) first select a
sequence of subtrees of the input document, and then iterate some operation on
each of the subtrees. Iterative queries and updates are widely used in practice,
and a static analysis technique has been proposed to recognize them [7].

As an example of iterative query, consider the following query on XMark doc-
uments [9] (assume $auction is bound to the document node doc(“zmark.aml’)).

for $i in Sauction/site//description
where contains(string(exactly-one($4)), “gold”)
return $i/node()

The query iterates the same operation on each subtree selected by $auction/site
//description and, hence, is iterative.

This property is enjoyed by many real world queries: for instance, in the
XMark benchmark 11 out of the 20 predefined queries are iterative. Non itera-
tive queries are typically those performing join operations on two independent
sequences of nodes of the input documents.

Iterative updates include the wide class of updates that modify a sequence of
subtrees, and such that each delete/ rename/insert/replace operation does
not need data outside the current subtree. As an example of iterative update,
consider the following one:

for $z in Sauction/site/regions/ /item/location
where $z/text() = “United States”
return (replace value of node $z with “USA”)

This update iterates over location elements and replaces each occurrence of
“United States” with “USA”. As no information outside the subtrees rooted by
location elements is required for processing the replace operation, the update
is iterative.

3.2 Data Partitioning

The partitioning process is driven by the set of paths used in the input query/update,
enriched with details about bound variables.
To illustrate, consider the following iterative query:

for $z in /a, $y in $z/b
where $y/c/d
return < res > $y/c/e < /res >

For this query the STATIC ANALYZER extracts the following path set:

{ /a{for x}, /a{for x}/b{for y}, /a{for x}/b{for y}/c/d, [a{for x}/b{for y}/c/e }

By analyzing this path set, the STATIC ANALYZER derives that /a/b is the
path on which the query iterates; this path, called partitioning path, is used
during the partitioning process to identify indivisible subtrees, i.e., subtrees that
cannot be split among multiple parts. In particular, if a node matches this path,
then the whole subtree is kept in the current part; subtrees rooted at nodes
outside subtrees selected by the partitioning path can be split across consecutive
parts. This property is necessary to ensure that the query result on the input
document is equal to the ordered concatenation of query results on each part.

In the case of updates, the system must distinguish between simple updates,
i.e., updates consisting of a single delete/rename/insert/replace operation
without for-iterations, and update containing iterations. In the first case, the
STATIC ANALYZER extracts paths selecting target nodes of the update opera-
tions, and considers these paths as partitioning paths. In the second case, the
partitioning path is computed as for queries. Composite updates are treated by
summing the partitioning paths of each update. As happens for queries, parti-
tioning paths are used to recognise subtrees that should not be divided. Again,
this indivisibility property is necessary in order to ensure semantics preservation
once the update is distributed over the partition.

When an input document D is partitioned for the first time, the PARTITION
MANAGER uses the partitioning paths to perform the actual partitioning and
also computes a DataGuide [10] for D. The DataGuide is later used to verify
the compatibility of a newly issued query/update with an existing partition, by
verifying that the indivisible subtrees identified by the partition paths of the
new query/update are already indivisible in an existing partition.

For both queries and updates, the PARTITION MANAGER ensures that each
part in the partition does not exceed the memory capacity of the main-memory
query engine, by ending the current part and creating a new one when the size
of the current part exceeds a given threshold (if this happens during the visit
of an indivisible subtree, then the part is terminated only after the subtree has
been totally parsed). Also, for both queries and updates, artificial tags are added
during partitioning to ensure each generated part is well-formed and rooted (so
that the query/update engine can process it).

3.3 Query/Update Processing

When processing a query, each mapper receives not only the address on the
distributed file system of each assigned part, but also the path set extracted
by the STATIC ANALYZER. This set is used to project the parts, i.e., to remove
elements and attributes not necessary for the query; projected parts are stored
in the local file system of the mapper and do not survive query execution. The
input query is executed on each projected part by a local instance of Qizx-open,
which exports the results, encoded in XML format, to the distributed file system.

When processing an update, instead, projection cannot be applied, as each
fragment of a given input part is necessary. Therefore, the local instance of Qizx-
open just executes the update on the original part and stores the EXI-encoded
updated part in the distributed file system.

3.4 Result Combination

Result combination works a bit differently for queries and updates. The com-
bination of partial query results is performed in two steps. In the first step,
each reducer receives a set of consecutive part results, which are then combined
through high-speed Java NIO channels; the RESULT COMBINER, finally, links
together the combined part results produced by the reducers. In the case of
updates, untouched parts must be merged with updated parts; this process re-
quires the system to read all parts and drop artificial tags introduced by the
data partitioning technique.

4 Experimental Evaluation

4.1 Experimental Setup

We performed our tests on a 100-node cluster running Hadoop 2.2 on RHEL
and Java 1.7. To reduce issues related to independent system activities, we ran
each experiment five times, discarded both the highest and the lowest processing
times, and reported the average processing time of the remaining runs.

4.2 Datasets

We performed our experiments on two distinct datasets. The first dataset is
dedicated to query experiments, and comprises five XMark [9] XML documents
obtained by running the XMark data generator with factors 100, 150, 200, 250,
and 300, respectively; the resulting documents have approximate sizes ranging
from 10GB to 32GB. The second dataset is used for update tests and contains
ten XMark documents whose size ranges approximately from 1GB to 10GB.

4.3 Evaluating Queries

In these experiments we tested the performance and the scalability of our system
when processing queries. In the first test we selected the iterative fragment of the
XMark benchmark query set (i.e., queries Ql, QQ, Qg, Q4, Q5, Q14, Q15, Q17,
@18, Q19, and Qo) and processed each query individually on the documents
of the first data set; in this experiment we used parts of size 100000000 bytes.
As illustrated in Figure 2(a), the evaluation time is only partially affected by
the size of the input document; indeed, Andromeda filters out parts that do not
structurally match the input query, and processes the query only on those parts
that may give a contribution to the result; hence, even for large documents, the
number of machines actually used by the system is below the cluster size.

Partitioning results for exemplifying queries Q1, Q2, @5, and Q14 are reported
in Table 1. As it can be easily observed, the partitioning time grows linearly
with the size of the input document and the number of used parts is only a
small fraction of the total number of parts, with the only notable exception of

query (Q14, which is not very selective. This explains why the processing time of
queries @14 and @19, that uses exactly the same partitioning scheme of query
(14, is bigger than that of the remaining queries.

Table 1. Partitioning time (sec.), generated parts, and used parts (%).

Q1 Q2 Qs Q14
Time |Gen.|Used| Time |Gen.| Used | Time |[Gen.| Used | Time |Gen.| Used
10GB|[851.686| 142 (9.1%(706.45| 138 |22.4%|813.448| 144 |11.8%|810.014| 138 |42.7%
15GB| 1148 | 214 [8.8%| 1060 | 207 |22.7%| 1243 | 217 (11.9%| 1250 | 208 [42.7%
20GB| 1564 | 285 (9.1%| 1461 | 277 (22.3%| 1666 | 290 | 12% | 1700 | 277 |42.5%
25GB| 2007 | 357 |8.9%| 1808 | 347 |22.1%| 2215 | 363 |11.8%| 2299 | 347 |42.6%
30GB| 2391 | 429 |8.8%| 2147 | 417 |22.3%| 2526 | 436 |11.9%| 2534 | 417 |42.4%

—o—at —0O— Workload
—O0— Q2 Static Analysis
Q3 g 800 |- —#—— MapReduce
Q4 ——o—— Result Concatenation g
Qs =
Q18 &

Size

oy L L L L of ! i ! !
10GB 15GB 20GB 25GB 30GB 10GB 15GB 20GB 25GB 30GB
Document size Document size
(a) Single query experiment. (b) Query workload experiment.
100
Ql
—o0— Qi4
80 -
P
- o o —0
R o
i 60
g
S 40 -

20

ol L L L L
10GB-10 15GB-15 20GB-20 25GB-25 30GB-30
Document size - # of machines

(c) Query horizontal scalability.

Fig. 2. Query experiments.

Processing workloads In this experiment we evaluated the performance of our
system when processing a workload comprising all the queries of the iterative
fragment of XMark. As shown in Figure 2(b), workload processing time grows
linearly with the size of the input document. This is implied by the fact that,
even on smaller documents, the parallel execution of the queries in the workload
involves the use of all the machines in the cluster.

Horizontal scalability: changing cluster size In our last experiment on queries
we evaluated the horizontal scalability of the system when processing queries Q1
and 14: we chose these queries as they are representative of high selectivity (Q1)

and low selectivity (Q14) queries; Q14 also contains a full-text predicate that is
quite stressful for XQuery engines. In particular, we increased the cluster size as
the size of the input document increases, by adding 1 machine per Gigabyte. As
shown in Figure 2(c), the system scales beautifully on query @i, that exploits
only a modest number of machines. Surprisingly enough, we got a similar result
for query @14 too. This shows that, even when fully loaded, the system scales
well and can efficiently process complex iterative queries.

4.4 Evaluating Updates

In our second battery of experiments we evaluated the performance of An-
dromeda when processing updates in different scenarios. We evaluated each up-
date in a set of iterative updates against the documents in the second dataset
of Section 4.2; in all tests we used parts of 100 millions of bytes (about 95 MB).

Scalability of update processing In our first test we analysed the behaviour of
Andromeda when individually executing 16 iterative updates, all returning a
new document. Figure 3(a) illustrates the total execution time for each update
without partitioning time.

Unlike what happens for queries, update processing is deeply influenced by
the input document size, as execution time grows linearly with it. This is mo-
tivated by the fact that the system must produce an updated document by
combining the updated parts with the parts of the original document that were
not touched by the update: this requires the system to traverse all the document
parts. To validate this claim we reported in Figure 3(b) the update process-
ing time without part concatenation; as it can be observed, in this case update
processing exposes a behavior close to that shown on queries (see Figure 2(a)).

Processing mized workloads In our second test we created a random query/update
workload and analyzed the behaviour of the system when processing the work-
load on documents of increasing size. The workload comprises 20 expressions
randomly chosen by an initialization script, that also chooses the execution or-
der: queries and updates are executed according to the reader/writer semantics.
Queries and updates are selected by respecting a 80:20 ratio, hence the workload
contains 16 queries and 4 updates.

As it can be observed in Figure 3(c), the workload execution time grows lin-
early with the input size, despite the fact that 16 tasks out of 20 are queries. This
is caused by the presence of updates, which not only require result concatena-
tion, but also force the system to partition the updated document for processing
the next task, hence making partition reuse much less effective.

5 Conclusions

In this paper we analysed the performance and the scalability of Andromeda.
This analysis confirms that Andromeda scales with the document size and the
number of nodes in the cluster, and that it can efficiently process queries and
updates on very large XML documents.

n n n n n n n n n L ol n n n n n n n n L
1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB 10GB 1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB 10GB
Document size Document size

(a) Single update experiment: total (b) Single update experiment:
time. MapReduce time.

8000

6000 |

Time (sec.)

2000 |

ol L L L L L L L L L
1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB 10GB
Document size

(¢) Query/update workload.

Fig. 3. Update experiments.

References

10.

. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.

In: OSDI, USENIX Association (2004) 137-150

. Choi, H., Lee, K.H., Kim, S.H., Lee, Y.J., Moon, B.: HadoopXML: a suite for

parallel processing of massive XML data with multiple twig pattern queries. In
CIKM, ACM (2012) 2737-2739

. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Siméon, J.:

XQuery 1.0: An XML Query Language (Second Edition). Technical report, World
Wide Web Consortium (2010) W3C Recommendation.

. Robie, J., Chamberlin, D., Dyck, M., Florescu, D., Melton, J., Siméon, J.: XQuery

Update Facility 1.0. Technical report, World Wide Web Consortium (2011) W3C
Recommendation.

Schneider, J., Kamiya, T., Peintner, D., Kyusakov, R.: Efficient XML Interchange
(EXI) Format 1.0 (Second Edition). Technical report, World Wide Web Consor-
tium (2014) W3C Recommendation.

Exificient: http://exificient.sourceforge.net.

Bidoit, N., Colazzo, D., Malla, N., Sartiani, C.: Partitioning XML documents for
iterative queries. In IDEAS, ACM (2012) 51-60

Qizx-open: http://www.xmlmind. com/qizxopen/.

Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
XMark: A Benchmark for XML Data Management. In: VLDB, Morgan Kaufmann
(2002) 974-985

Goldman, R., Widom, J.: DataGuides: Enabling query formulation and optimiza-
tion in semistructured databases. In: VLDB. (1997)

https://www.researchgate.net/publication/279830571

