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ABSTRACT: Uncertainty quantification is the state-of-the-art framework dealing with uncertainties aris-
ing in all kind of real-life problems. One of the framework’s functions is to propagate uncertainties from
the stochastic input factors to the output quantities of interest, hence the name uncertainty propagation.
To this end, polynomial chaos expansions (PCE) have been effectively used in a wide variety of practical
problems. However, great challenges are hindering the use of PCE for time-dependent problems. More
precisely, the accuracy of PCE tends to decrease in time. In this paper, we develop an approach based
on a stochastic time-transform, which allows one to apply low-order PCE to complex time-dependent
problems.

1. INTRODUCTION
Uncertainty quantification has become a key topic
in modern engineering in the last decade due to the
increasing complexity of physical systems and as-
sociated computational models. One of the objec-
tives of the framework is to propagate uncertain-
ties from the stochastic input factors of the model
to the output quantities of interest, hence the name
uncertainty propagation. For this purpose, poly-
nomial chaos expansions (PCE) have been widely
used as approximate models (or metamodels) that
substitute computationally expensive ones.

PCE, however, face challenges when applied to
time-dependent problems, e.g. involving structural
or fluid dynamics or chemical systems. The great-
est challenge hindering the use of PCE is the de-
crease of the accuracy in time (Ghosh and Iac-
carino, 2007; Le Maître et al., 2010).

The causes of the decaying accuracy of PCE in
time-dependent problems can be classified into an
approach-related cause and an inherent cause. The
approach-related cause refers uniquely to the in-
trusive approach, which requires manipulation of
the mathematical equations describing the consid-

ered problem. In particular, the intrusive approach
solves a system of reformulated differential equa-
tions, which are derived from the original system
by substituting PCE for the quantity of interest (Le
Maître et al., 2010). The error due to the approx-
imate solution is accumulated over time and will
certainly be excessive at some point. In contrast,
the non-intrusive approach considers the compu-
tational model as a black-box model in which re-
sponses at different instants can be examined in-
dependently, which prevents the accumulation of
error at late instants. The inherent cause refers to
the increasing complexity in the system’s response
with time. Often, as time elapses, the relationship
between the output quantity and the input factors
becomes increasingly complicated, i.e. non-linear,
non-smooth or discontinuous. This makes the rep-
resentation of the system’s response with PCE in-
creasingly hard.

Existing approaches in literature for dealing with
time-dependent problems may be classified in dif-
ferent categories. The high-order PCE approach
includes the decomposition of the complex prob-
lem into simpler sub-problems (non-intrusive low-
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rank separated approximations (Doostan et al.,
2013), intrusive reduced PCE (Pascual and Ad-
hikari, 2012), factorized (resp. logarithmic) poly-
nomial dimensional decomposition F-PDD (resp.
L-PDD) (Yadav and Rahman, 2013)). It also in-
cludes methods for reducing the size of the high-
order PCE basis (sparse PCE (Blatman and Sudret,
2011), two-step PCE (Peng et al., 2010)) and ad-
vanced computational techniques for computing the
high-order PCE (e.g. decoupled PCE (Pham et al.,
2014)).

The local PCE approach consists in dividing the
input space into subspaces according to the detected
discontinuities or dissimilarities. One then builds
a local PCE in each subspace and combines those
local PCE models to obtain a global metamodel.
This approach includes multi-element PCE (Wan
and Karniadakis, 2006b), simplex stochastic collo-
cation method (Witteveen and Iaccarino, 2013) and
mixture of PCE (Nouy, 2010).

There exist additional approaches involving the
modification or update of the polynomial chaos ba-
sis: enriched PCE (Ghosh and Ghanem, 2008),
time-dependent PCE (Gerritsma et al., 2010), flow
map composition (Luchtenburg et al., 2014), hybrid
PCE (Heuveline and Schick, 2014), dynamically
bi-orthogonal decomposition (Choi et al., 2014)
and wavelet-based Wiener-Haar expansion (Sahai
and Pasini, 2013).

An attractive approach that was proposed re-
cently is to transform the response trajectories in
order to make the relationship between the output
and the input factors less complex. Witteveen and
Bijl (2008) and Desai et al. (2013) represented the
dynamic response trajectories as functions of the
phase φ instead of time t in order to obtain in-phase
vibrations. The phases are extracted from the ob-
servations based on the local extrema of the time se-
ries. The response trajectories are then transformed
from time-histories to phase-histories. Finally PCE
are applied in the phase space. This approach relies
on the assumption that the phase is well defined as
a function of time t. In case this assumption does
not hold, the general solution will not be straight-
forward.

Le Maître et al. (2010) represented the responses

in a rescaled time τ such that the dynamic responses
vary in a small neighborhood of a reference trajec-
tory. The reference trajectory is chosen so that the
variability of the uncertain parameters does not in-
duce significant changes in the trajectory. In gen-
eral, the scaled time τ is not a linear function of t,
i.e. the "clock speed" τ̇ = dτ

dt is not constant. This
relation depends on the difference between the dy-
namic response and the reference trajectory. In the
mentioned paper, τ̇ is adjusted in an intrusive way
at each step so that the difference is minimized.

As a summary, PCE fail to represent long-term
time-dependent system responses because of their
inherent increasing complexity. So far, there has
not been a versatile tool that helps overcome the
problem. The objective of this paper is to intro-
duce a non-intrusive approach that allows the use of
PCE for time-dependent problems. The proposed
approach relies on a non-intrusive stochastic time-
transform of the response trajectories which aims at
maximizing the similarities in frequency and phase
content of sampled time-histories.

The paper is organised as follows: in Section 2,
the fundamentals of PCE are recalled. In Section 3,
we propose a non-intrusive PCE approach for time-
dependent problems and use a benchmark example
of stochastic dynamics to illustrate it.

2. POLYNOMIAL CHAOS EXPANSIONS
Let us consider a computational model Y = M (XXX)
where XXX = (X1, . . . ,XM)T is a M-dimensional ran-
dom input vector with the probability density func-
tion fXXX defined in the probability space (Ω ,F ,P).
Without loss of generality, we investigate the case
when the input random variables are independent.
Assume that the scalar output Y is a second order
random variable, i.e. E

[
Y 2] < +∞. Then, Y be-

longs to a Hilbert space H of square-integrable
functions of random vector XXX . Denote by Hi the
Hilbert space associated with the marginal proba-
bility measure PXi(dxi) = fXi(xi)dxi, in which one
selects a basis of associated orthonormal univari-
ate polynomial functions {ψ i

k,k ∈ N}. For in-
stance, when Xi is a uniform (resp. standard nor-
mal) random variable, those are orthonormal Leg-
endre (resp. Hermite) polynomials. The general-
ized polynomial chaos representation of Y can be
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written as follows (Xiu and Karniadakis, 2002):

Y = ∑
ααα∈NM

yαααψααα(XXX) (1)

in which ψααα(XXX) = ψ1
α1
(X1) . . .ψ

M
αM

(XM) are mul-
tivariate orthonornal polynomials with respect to
fXXX(xxx), ααα = (α1, . . . ,αM) are multi-indices with
{αi, i = 1, . . . ,M} denoting the degree of the uni-
variate polynomial of Xi and yααα ’s are the corre-
sponding polynomial chaos coefficients or "coordi-
nates" of Y in the space spanned by the polynomial
chaos basis.

In practice, the use of infinite series as in Eq. (1)
is not tractable and thus, an approximate truncated
representation is utilized:

Y ≈ ∑
ααα∈A

yαααψααα(XXX) (2)

in which A is the set of truncated multi-indices ααα .
Different choices can be made for the truncation
scheme. For instance, the total degree of the expan-
sion is set to be not larger than a prescribed value,
i.e. :

A = {ααα ∈NM : ‖ααα ‖1=α1+ . . .+αM 6 p} (3)

The computation of the coefficients yααα can be
performed by means of the intrusive approach (i.e.
spectral stochastic finite element method (Ghanem
and Spanos, 2003)) or non-intrusive approaches
(e.g. projection, regression methods). The reader
is refered to Sudret (2007) for further details. In the
following, we will use the adaptive sparse polyno-
mial chaos expansions (Blatman and Sudret, 2011),
which is a non-intrusive approach based on least-
square minimization. The accuracy of PCE is es-
timated by means of the leave-one-out error (Blat-
man, 2009).

3. POLYNOMIAL CHAOS EXPANSIONS
FOR TIME-DEPENDENT PROBLEMS

An intrusive time-transform of the trajectories was
proposed by Le Maître et al. (2010) aiming at rep-
resenting the time-histories in a small neighbor-
hood of a reference trajectory so as to reduce their
variability. This is done by minimizing the Eu-
clidean distance between the distinct trajectories

and a reference counterpart. Herein, we propose
a non-intrusive transform, which consists in find-
ing a suitable stochastic mapping of the time line
that increases the similarity between different tra-
jectories, thus allowing low-order PCE to be ap-
plied. "A neighborhood of a reference trajectory"
(Le Maître et al., 2010) is characterized by similar-
ity in terms of distance, whereas "in-phase vibra-
tions" (Witteveen and Bijl, 2008) are characterized
by similarity in terms of frequency and phase con-
tent. In the current paper, the proposed approach fo-
cuses on increasing the similarity both in frequency
and phase.

3.1. Proposed approach
Consider a time-dependent system (e.g. a struc-
tural dynamic or chemical system) whose response
is modelled by a system of first-order ordinary dif-
ferential equations:

dxxx
dt

= fff (xxx,ξξξ , t) (4)

where t ∈ [0,T ], the initial conditions xxx(t = 0) =
xxx0 are deterministic and the random vector ξξξ de-
notes the uncertain parameters governing the sys-
tem behavior, e.g. masses, stiffness, reaction pa-
rameters. ξξξ comprises independent second-order
random variables defined in the probability space
(Ω ,F ,P). Note that when a non-intrusive ap-
proach is used, it is not required to know explic-
itly the equations, i.e. only runs of the available
solver for realizations of ξξξ will be used. The ini-
tial conditions can also be uncertain, in which case
they become random variables belonging to ξξξ . The
time-dependent response of the system is denoted
xxx(t,ξξξ ). Without loss of generality, one can con-
sider one component of the response, e.g. x(t,ξξξ )
with the initial condition x(t = 0) = x0. At each
time instant, x(t,ξξξ ) is a second-order random vari-
able. As in Witteveen and Bijl (2008), we assume
that x(t,ξξξ ) is an oscillatory response.

We conduct the time transform operation that
makes the trajectories similar in frequency and
phase content as follows:

• One first chooses a reference trajectory xr(t)
which is for instance obtained by consider-
ing the mean values of the input vector ξξξ , i.e.
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xr(t) = x(t,ξξξ r = E [ξξξ ]). In general, xr(t) may
be any realization of the response quantity x(t)
obtained for a specific sample of ξξξ . For the ex-
ample considered in this paper, the choice of
xr(t) shall not affect the final results.

• One determines the fundamental frequency fr
and period Tr of the reference trajectory xr(t).
We emphasize that herein xr(t) is assumed to
be a monochromatic signal, i.e. fr is the only
frequency contained in xr(t). The case when
x(t,ξξξ ) is multichromatic will be considered
in a future work. To estimate fr and Tr, one
can use two techniques. The first technique is
based on the Fourier transform of xr(t), i.e. it
is applied in the frequency domain. The fre-
quency corresponding to the peak of the fre-
quency spectrum of xr(t) is the expected value
of fr and Tr = 1/ fr. The second technique
is based on directly examining the trajectory
of xr(t) in the time-domain. One measures
the average time interval between consecutive
maxima (or minima) of xr(t) which is the ap-
proximate value of Tr. This quick and simple
estimation is found sufficiently effective in the
example in this paper.

• The following pre-processing consists in trans-
forming the time line with the purpose of in-
creasing the similarity between different real-
izations of the output x(t,ξξξ ). Assume that one
is given a set of trajectories xi(t)≡ x(t,ξξξ i), i =
1, . . . ,n for n realizations ξξξ i of the input ran-
dom vector. For each i the following steps are
performed:

– Determine the fundamental frequency fi
and period Ti of the considered trajectory
xi(t).

– Define a linear time transform operator
τ = ki t + φi. This operator consists of
two actions, namely scaling and shifting,
respectively driven by parameters ki and
φi. The time line is stretched (resp. com-
pressed) when ki > 1 (resp. 0 < ki < 1)
and is shifted to the left (resp. to the
right) when φi < 0 (resp. φi > 0). In gen-
eral, the time transform is defined based

on the considered problem and a non-
linear transform shall be possible. When
x(t,ξξξ ) is monochromatic, a linear trans-
form is however sufficient.

– Determine (ki, φi) as the global maxi-
mizer of the similarity measure between
the considered trajectory and the refer-
ence counterpart. We propose the follow-
ing similarity measure as a function of k
and φ :

g(k,φ) =

∣∣∣∣ T∫
0

xi(kt +φ)xr(t)dt
∣∣∣∣

‖xi(kt +φ)‖‖xr(t)‖
, (5)

in which
T∫
0

xi(kt + φ)xr(t)dt is the in-

ner product of the two considered time-
histories and ‖ · ‖ is the associated l2-

norm, e.g. ‖xr(t)‖ =

√
T∫
0

x2
r (t)dt. In

practice, trajectories are discretized over
a grid and the inner product (resp. the
l2-norm) is reduced to the classical dot
product of the two considered vectors
(resp. the Euclidean length). By Cauchy-
Schwarz inequality, this similarity mea-
sure always takes values in the interval
[0,1]. In fact, if (k,φ) is a solution
then so is (k,φ ± Tr/2), i.e. when the
transformed-function is shifted by a dis-
tance equal to Tr/2 (whether to the left
or to the right), the similarity measure
reaches another global maximum (see
Figure 1 for example).

To ensure the uniqueness of the solution,
constraints on the support of the param-
eters need to be imposed. If Tr/4 ≤ φ ≤
Tr/2 (resp. −Tr/2 ≤ φ ≤ −Tr/4) com-
prises a solution, then φ − Tr/2 (resp.
φ +Tr/2) in the interval [−Tr/4,Tr/4] is
also a maximizer. Thus, it is sufficient to
consider φ in the interval [−Tr/4,Tr/4].
In addition, the scaling factor k is as-
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sumed to be positive. Finally, one has:

(ki,φi) = arg max
k∈R+

|φ |6Tr/4

g(k,φ) (6)

– Represent xi(t) on the transformed time
line τ . For this purpose, one chooses
a grid line of τ with the desired time
interval. In fact, the finer the grid is,
the smaller is the error introduced by the
interpolation. Herein, the time step in
the time line τ is chosen equal to the
discretization step in the original time
t. The trajectory xi(t) is projected onto
τi = ki t +φi to obtain xi(τi). Finally, the
latter is linearly interpolated on τ yield-
ing xi(τ).

• One builds PCE of k(ξξξ ), φ(ξξξ ) and x(τ,ξξξ )
using the realizations {ki,φi,xi(τ,ξξξ ), i =
1, . . . ,n} as experimental design (or training
set). Because k(ξξξ ) and φ(ξξξ ) are scalar quan-
tities, the computation of their PCE models
is straightforward. Note that the computation
of PCE of the vector-valued response x(τ,ξξξ )
might be computationally expensive when the
time horizon T is large. This computational
cost can be reduced significantly by means
of principal component analysis (Blatman and
Sudret, 2013). Although we are aware of this
useful tool, we will not use it in this paper be-
cause the considered duration T is relatively
short (30 s); in addition, the response in the
transformed time line becomes a smooth func-
tion of the input variables ξξξ and requires only
low-order PCE which are not expensive to
compute.

Given a new realization of input parameters ξξξ 0,
one can predict the corresponding responses of the
system using PCE as follows:

• One predicts x(τ,ξξξ 0), k(ξξξ 0) and φ(ξξξ 0) using
the computed PCE models.

• One maps x(τ,ξξξ 0) into x(t,ξξξ 0) using t =
τ−φ(ξξξ 0)

k(ξξξ 0)

0
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Figure 1: Similarity measure g(k,φ) (see Eq. (5))

3.2. Example
Let us consider a non-linear single-degree-of-
freedom Duffing oscillator under free vibration.
The equation of motion reads:

ẍ(t)+2ω ζ ẋ(t)+ω
2 (x(t)+ ε x3(t)) = 0 (7)

with the initial conditions x(t = 0) = 1 and ẋ(t =
0) = 0. The motion of the oscillator is driven by
three uncertain parameters described as follows:

ζ = 0.05(1+0.05ξ1), ξ1 ∼U (−1,1)
ω = 2π(1+0.2ξ2), ξ2 ∼U (−1,1)
ε =−0.5(1+0.5ξ3), ξ3 ∼U (−1,1)

(8)
We aim at building PCE of x(t) as a function of the
random variables ξξξ = (ξ1,ξ2,ξ3)

T.
Figure 2 shows 20 trajectories of x(t) from an

experimental design comprising 200 realizations.
The trajectories are oscillatory signals, however,
they are not periodic. Tenth-order PCE applied di-
rectly to this experimental design (i.e. without pre-
processing the trajectories) result in the leave-one-
out (LOO) error depicted in Figure 3. Although it is
acceptable in the early time instants, this error starts
to be excessive at t = 5 s. For illustration, we com-
pare the prediction of this direct PCE model for a
particular realization ξξξ 0 = (−0.95,−0.64,−0.89)T

with the corresponding actual response (Figure 4).
It is clear that the prediction fails after 5 seconds.

We now apply the time-transform approach to
the above problem. Using tenth-order PCE, we can
model the parameters k and φ accurately. For a val-
idation set X =

{
ξξξ
(1)
, . . . ,ξξξ

(n)
}

of size n = 200,
Figure 5 depicts the values of k and φ predicted
by the PCE versus the actual values. The LOO er-
rors of the PCE models of k and φ are 9.3× 10−6
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Figure 2: Twenty different trajectories x(t) in the origi-
nal time line t
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Figure 3: Evolution of the leave-one-out error of PCE
in the original time line t
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Figure 4: Prediction of x(t) by PCE vs. actual response
trajectory

and 5.2× 10−3, respectively. The transformed tra-
jectories become in-phase vibrations, as shown in
Figure 6. For the sake of comparison, PCE of or-
der up to ten are used to model x(τ). However,
the analyses show that the optimal order of the
PCE to obtain the largest accuracy is around six.
The resulting LOO error normalized by the ampli-
tude envelope |xe(τ)| is depicted in Figure 7. One
notices that the LOO error has a similar oscilla-
tory feature as observed in Wan and Karniadakis
(2006a). The error oscillates around 10−4 and at-
tains its minima (resp. maxima) at the instants

when x(τ) reaches its maximal or minimal ampli-
tude (resp. zero amplitude) during an oscillation
cycle. For the same validation set X , Figure 8
(resp. Figure 9) compares the response trajectories
in the transformed time line τ (resp. in the orig-
inal time line t) predicted by PCE with the actual
response trajectories for two realizations of the in-
put vector, namely ξξξ 1 = (−0.02,0.47,−0.38)T and
ξξξ 1 = (−0.95,−0.64,−0.89)T. The results illus-
trate the accuracy of the proposed time-transform
approach.
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Figure 5: Prediction of k and φ by PCE vs. actual val-
ues
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Figure 6: Twenty different trajectories x(τ) in the trans-
formed time line τ . The red curves are the amplitude
envelopes of the trajectories which are defined by
|xe(τ)|= exp(−0.18τ).

4. CONCLUSIONS AND PERSPECTIVES
Polynomial chaos expansions (PCE) constitute an
effective metamodelling technique which has been
used in several practical problems in a wide vari-
ety of domains. However, PCE are known to fail
when time-dependent complex systems are consid-
ered. The failure is associated with the large dis-
similarities between the time-dependent system re-
sponses corresponding to different realizations of
the uncertain parameters.
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Figure 7: Evolution of the leave-one-out error of PCE
in the transformed-time τ
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Figure 8: Prediction of x(τ) by PCE vs. actual models
in the transformed time line τ
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Figure 9: Prediction of x(t) by PCE vs. actual models
in the original time line t

We proposed an approach which consists in rep-
resenting the responses into a transformed time line
where the similarities between different response
trajectories are maximized. The parameters gov-
erning the stochastic time transform are determined
by means of a global optimization problem with a
newly introduced objective function that quantifies
the similarity between two trajectories. The pro-
posed approach allows one to solve time-dependent
problems using only low-order PCE. In the consid-
ered mechanical example, the approach proves ef-
fective in terms of accuracy and computational cost.

Further developments are required in order to ap-
ply the proposed approach to more complex prob-
lems. The formulation in this paper is based on

the assumption that the stochastic responses are
monochromatic. In the case of multi-chromatic
signals (i.e. signals which are richer in frequency
content), one may decompose the signals into
monochromatic components and then apply a sim-
ilar time-transform to each component. One may
also employs a non-linear time-transform in the
same context. Other objective functions based on
different criteria, e.g. a displacement-based mea-
sure, may also be developped according to the con-
sidered problem.

5. REFERENCES

Blatman, G. (2009). “Adaptive sparse polynomial
chaos expansions for uncertainty propagation and
sensitivity analysis.” Ph.D. thesis, Université Blaise
Pascal, Clermont-Ferrand, Université Blaise Pascal,
Clermont-Ferrand.

Blatman, G. and Sudret, B. (2011). “Adaptive sparse
polynomial chaos expansion based on Least Angle
Regression.” J. Comput. Phys, 230, 2345–2367.

Blatman, G. and Sudret, B. (2013). “Sparse polynomial
chaos expansions of vector-valued response quanti-
ties.” Proc. 11th Int. Conf. Struct. Safety and Relia-
bility (ICOSSAR’2013), New York, USA, G. Deodatis,
ed.

Choi, M., Sapsis, T. P., and Karniadakis, G. E. (2014).
“On the equivalence of dynamically orthogonal and
bi-orthogonal methods: Theory and Numerical simu-
lations.” J. Comp. Phys.

Desai, A., Witteveen, J. A. S., and Sarkar, S. (2013).
“Uncertainty Quantification of a Nonlinear Aeroelas-
tic System Using Polynomial Chaos Expansion With
Constant Phase Interpolation.” J. Vib. Acoust., 135(5),
51034.

Doostan, A., Validi, A., and Iaccarino, G. (2013). “Non-
intrusive low-rank separated approximation of high-
dimensional stochastic models.” Comput. Methods
Appl. Mech. Eng., 263, 42–55.

Gerritsma, M., van der Steen, J.-B., Vos, P., and Kar-
niadakis, G. (2010). “Time-dependent generalized
polynomial chaos.” J. Comput. Phys, 229(22), 8333–
8363.

Ghanem, R. G. and Spanos, P. D. (2003). Stochastic Fi-
nite Elements : A Spectral Approach. Courier Dover
Publications.

Ghosh, D. and Ghanem, R. (2008). “Stochastic conver-
gence acceleration through basis enrichment of poly-

7



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

nomial chaos expansions.” Int. J. Numer. Meth. En-
gng., 73(2), 162–184.

Ghosh, D. and Iaccarino, G. (2007). “Applicabil-
ity of the spectral stochastic finite element method
in time-dependent uncertain problems.” Annual Re-
search Briefs of Center for Turbulence Research,
133–141.

Heuveline, V. and Schick, M. (2014). “A Hybrid Gener-
alized Polynomial Chaos Method for Stochastic Dy-
namical Systems.” International Journal for Uncer-
tainty Quantification, 4(1), 37–61.

Le Maître, O., Mathelin, L., Knio, O., and Hussaini, M.
(2010). “Asynchronous time integration for polyno-
mial chaos expansion of uncertain periodic dynam-
ics.” Discret. Contin. Dyn. Sys. - Series A (DCDS-A),
28(1), 199–226.

Luchtenburg, D. M., Brunton, S. L., and Rowley, C. W.
(2014). “Long-time uncertainty propagation using
generalized polynomial chaos and flow map compo-
sition.” J. Comp. Phys.

Nouy, A. (2010). “Identification of multi-modal ran-
dom variables through mixtures of polynomial chaos
expansions.” Comptes Rendus Mécanique, 338(12),
698–703.

Pascual, B. and Adhikari, S. (2012). “A reduced polyno-
mial chaos expansion method for the stochastic finite
element analysis.” Sadhana, 37(3), 319–340.

Peng, Y. B., Ghanem, R., and Li, J. (2010). “Polynomial
chaos expansions for optimal control of nonlinear ran-
dom oscillators.” J. Sound Vib., 329(18), 3660–3678.

Pham, T.-A., Gad, E., Nakhla, M. S., and Achar, R.
(2014). “Decoupled Polynomial Chaos and Its Ap-
plications to Statistical Analysis of High-Speed Inter-
connects.

Sahai, T. and Pasini, J. M. (2013). “Uncertainty quan-
tification in hybrid dynamical systems.” J. Comput.
Phys., 237, 411–427.

Sudret, B. (2007). “Uncertainty propagation and sensi-
tivity analysis in mechanical models - Contributions
to structural reliability and stochastic spectral meth-
ods.” Habilitation thesis, Université Blaise Pascal,
Clermont Ferrand.

Wan, X. and Karniadakis, G. (2006a). “Long-term be-
havior of polynomial chaos in stochastic flow simu-
lations.” Comput. Methods Appl. Mech. Engrg., 195,
5582–5596.

Wan, X. and Karniadakis, G. (2006b). “Multi-element
generalized polynomial chaos for arbitrary probabil-
ity measures.” SIAM J. Sci. Comput., 28(3), 901–928.

Witteveen, J. A. and Bijl, H. (2008). “An alternative
unsteady adaptive stochastic finite elements formula-
tion based on interpolation at constant phase.” Com-
put. Methods Appl. Mech. Eng., 198(3), 578–591.

Witteveen, J. A. and Iaccarino, G. (2013). “Simplex
stochastic collocation with ENO-type stencil selec-
tion for robust uncertainty quantification.” J. Comput.
Phys., 239, 1–21.

Xiu, D. and Karniadakis, G. E. (2002). “The Wiener-
Askey polynomial chaos for stochastic differential
equations.” SIAM J. Sci. Comput., 24(2), 619–644.

Yadav, V. and Rahman, S. (2013). “Uncertainty quantifi-
cation of high-dimensional complex systems by mul-
tiplicative polynomial dimensional decompositions.”
Int. J. Num. Meth. Eng., 94(3), 221–247.

8


	INTRODUCTION
	POLYNOMIAL CHAOS EXPANSIONS
	POLYNOMIAL CHAOS EXPANSIONS FOR TIME-DEPENDENT PROBLEMS
	Proposed approach
	Example

	Conclusions and perspectives
	REFERENCES

