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METHODS TO COMPUTE RING INVARIANTS AND

APPLICATIONS: A NEW CLASS OF EXOTIC THREEFOLDS

BACHAR ALHAJJAR

Abstract. We develop some methods to compute the Makar-Limanov and Derksen invariants, isomorphism
classes and automorphism groups for k-domains B, which are constructed from certain Russell k-domains. We
propose tools and techniques to distinguish between k-domains with the same Makar-Limanov and Derksen
invariants. In particular, we introduce the exponential chain associated to certain modifications. We extract
C-domains from the class B that have smooth contractible factorial Spec(B), which are diffeomorphic to R6

but not isomorphic to C3, that is, exotic C3. We examine associated exponential chains to prove that exotic
threefolds Spec(B) are not isomorphic to Spec(R), for any Russell C-domain R.

Introduction

This paper discusses some methods to compute Makar-Limanov and Derksen invariants, isomorphism
classes and automorphism groups of k-domains. It also proposes some techniques to distinguish between
k-domains with the same Makar-Limanov and Derksen invariants.

Let k be a field of characteristic zero and let A be a commutative k-domain. A k-derivation ∂ ∈ Derk(A)
is said to be locally nilpotent if for every a ∈ A, there is an integer n ≥ 0 such that ∂n(a) = 0. The Makar-

Limanov invariant ML(A) is defined by L. Makar-Limanov as the intersection of the kernels of all locally
nilpotent derivations of A. The Derksen invariant D(A) is defined by H. Derksen to be the sub-algebra
generated by the kernels of all non-zero locally nilpotent derivations of A. The Makar-Limanov and Derksen
invariants are among the more important tools, arising from the study of locally nilpotent derivations, due to
their applications in distinguishing between k-domain and in studying isomorphism classes and automorphism
groups of k-domain, see e.g. [11, 12, 19, 17, 18, 14, 2, 9].

We improve some techniques used in [1] to compute the Makar-Limanov and Derksen invariants for certain
k-domains of the form

B ≃ k[X,Y, Z, T ]/〈XnY − (Y m −XeZ)d − T r −X Q(X,Y m −XeZ, T )〉.

In [11], S. Kaliman and L. Makar-Limanov developed general techniques to determine the ML-invariant for a
class of k-domains B = k[X1, . . . , Xn]/b. The idea, referred to as the homogeneization technique, is to reduce
the problem to the study of homogeneous locally nilpotent derivations on graded algebras Gr(B) associated
to B. For this, one considers suitable filtrations F = {Fi}i∈R on B generated by R-weight degree functions
ω on k[X1, . . . , Xn], in such a way that every non-zero locally nilpotent derivation on B induces a non-zero
homogeneous locally nilpotent derivation on the associated graded algebra GrF(B). The homogeneization
technique is efficient when dealing with filtrations that are proper, especially filtrations induced by R-weight
degree functions ω, which are appropriate for the ideal b. Therefore, one surveys weights ω(Xi) ∈ R ;

i ∈ {1, . . . , n}, which guarantee that the ideal b̂, generated by top homogenous components of all elements
in b, is prime. We consider a different approach to achieve proper filtrations, that is, we investigate weight
degree functions on k[X1, . . . , Xn, Yn+1, . . . , YN ] = k[N ] for certain choices of N ∈ N together with ideals
a ⊂ k[N ] such that B ≃ k[N ]/a and the ideal â is prime.

In a way similar to the one used in [1], we construct the new class from certain Russell k-domains
as follows. Given two Russell k-domains Ri = k[x, s, t, yi] ≃ k[X,Yi, S, T ]/〈X

niYi − Fi(X,S, T )〉 for i ∈
{1, 2}, via the localization homomorphism with respect to x, we have R1, R2 ⊂ k[x, x−1, s, t], where yi =
x−niFi(x, s, t). The sub-algebra of k[x, x−1, s, t] generated by R1 and R2 coincides with B := R1.R2 the
sub-algebra of k[x, x−1, s, t] consists of all finite sums of elements ab where a ∈ R1 and b ∈ R2. That is,

Key words and phrases. locally nilpotent derivations, degree functions, filtrations, Makar-Limanov invariants, Derksen in-
variants, ring invariants, modifications, exotic structures.
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B = k[x, s, t, y1, y2] ≃ k[X,Y1, Y2, S, T ]/b for some prime ideal b ⊂ k[X,Y1, Y2, S, T ], which clearly contains
the ideal 〈Xn1Y1 − F1(X,S, T ), X

n2Y2 − F2(X,S, T )〉. We show that D(B) = k[x, s, t] and ML(B) = k[x].
We introduce contraction and exponential chains associated to exponential modifications, that is, modi-

fications of k-domains A with locus (an, I), where a ∈ A is an irreducible element, I is an ideal in A and
an ∈ I. An exponential modification A[I/an] has the chain A[I/an] = 〈1〉 ⊃ 〈a〉 ⊃ 〈a2〉 ⊃ · · · ⊃ 〈an〉
of principal ideals in A[I/an], which induces the chain A = 〈1〉c ⊃ 〈a〉c ⊃ 〈a2〉c ⊃ · · · ⊃ 〈an〉c of
ideals in A, that we call the contraction chain, where 〈aN 〉c = 〈aN 〉 ∩ A is the contraction of the ideal
〈aN 〉 ⊂ A[I/an] with respect to the inclusion A →֒ A[I/an]. In turn, the contraction chain give rise to the
chain A ⊂ A[〈a〉c/a] ⊂ A[〈a2〉c/a2] ⊂ · · · ⊂ A[〈an〉c/an] = A[I/an] of sub-algebras of A[I/an], which we call
the exponential chain of A[I/an].

In [1], we introduced a family of ring invariants as a generalization of the Derksen invariant. These
invariants are certainly useful to distinguish between k-domains with the same Derksen and Makar-Limanov
invariants. In this paper we investigate further techniques to distinguish between such k-domains. Certain
conditions that two k-domains, with the same Derksen and Makar-Limanov invariants, must verify to be
isomorphic can be deduced from properties of their locally nilpotent derivations, see section 4.1. Also, for
exponential modifications with the same Derksen and Makar-Limanov invariants, necessary conditions can
be given by examining their associated exponential chains, see Proposition 4.11 and Theorem 5.3. Indeed,
a k-isomorphism Ψ between exponential modifications A[I/an] and R, maps the exponential chain A ⊂
A[〈a〉c/a] ⊂ A[〈a2〉c/a2] ⊂ · · · ⊂ A[〈an〉c/an] = A[I/an] isomorphically onto Ψ(A) ⊂ Ψ(A)[〈Ψ(a)〉c/Ψ(a)] ⊂
· · · ⊂ Ψ(A)[〈Ψ(a)n〉c/Ψ(a)n] = Ψ(A)[Ψ(I)/Ψ(a)n] = R. In particular, if a belongs to the Makar-Limanov
invariant and A coincides with the Derksen invariant of the exponential modification A[I/an], then the
exponential chain is invariant by any k-automorphism of A[I/an], and by any locally nilpotent derivation
of A[I/an]. That is, ψ(A[〈aN 〉c/aN ]) = A[〈aN 〉c/aN ] and ∂(A[〈aN 〉c/aN ]) ⊂ A[〈aN 〉c/aN ] for every k-
automorphism ψ of A[I/an], every locally nilpotent derivation ∂ of A[I/an] and every N ∈ {1, . . . , n}.

We show that k-domains B of the new class of examples arise as exponential modifications of the Derksen
invariant k[x, s, t] with locus (xn, I) for certain ideals I ⊂ k[x, s, t]. Also, we compute the contraction and
exponential chains associated to B and we show that the exponential chain characterizes B, then we proceed
to determine isomorphism classes and automorphism groups.

In the case k = C, we extract C-domains from the class B that have smooth contractible factorial Spec(B),
which are diffeomorphic to R6 but not isomorphic to C3, as their Makar-Limanov and Derksen invariants are
non-trivial, that is, exotic C3. These new exotic threefolds Spec(B) are not isomorphic to Spec(R), for any
Russell C-domain R. To show this we compare the associated exponential chains. Indeed, the exponential
chain of a k-domain B (of the new class) has some identical members while members of the exponential chain
of a Russell C-domains are distinct from (even non-isomorphic to) each other.

1. Preliminaries

In this section we briefly recall basic facts in a form appropriate to our needs, see [11, 21]. Unless otherwise
specified B will denote a commutative domain over a field k of characteristic zero. The polynomial ring in n
variables over the field k is denoted by k[n].

1.1. Z-degree functions, Z-filtrations and associated graded algebras.

Definition 1.1. A Z-degree function on B is a map deg : B −→ Z∪{−∞} such that, for all a, b ∈ B, the
following conditions hold:

(1) deg(a) = −∞ ⇔ a = 0.
(2) deg(ab) = deg(a) + deg(b).
(3) deg(a+ b) ≤ max{deg(a), deg(b)}.

If the equality in (2) is replaced by the inequality deg(ab) ≤ deg(a)+deg(b), we say that deg is a Z-semi-degree

function.

There is a one-to-one correspondence, see e.g. [21, 3], between Z-degree functions and proper Z-filtrations:

Definition 1.2. A Z-filtration of B is a collection {Fi}i∈Z of sub-groups of (B,+) with the following
properties:

1- Fi ⊂ Fi+1 for all i ∈ Z.
2- B = ∪

i∈Z

Fi.
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3- Fi.Fj ⊂ Fi+j for all i, j ∈ Z.
The filtration is called proper if the following additional properties hold:

4- ∩
i∈Z

Fi = {0}.

5- If a ∈ Fi \ Fi−1 and b ∈ Fj \ Fj−1, then ab ∈ Fi+j \ Fi+j−1.

Indeed, for a Z-degree function on B, the sub-sets Fi = {b ∈ B | deg(b) ≤ i} are sub-groups of (B,+) that
give rise to a proper Z-filtration {Fi}i∈Z. Conversely, every proper Z-filtration {Fi}i∈Z, yields a Z-degree
function ω : B −→ Z∪{−∞} defined by ω(0) = −∞ and ω(b) = i if b ∈ Fi \ Fi−1, such an integer i exists
by property 4 of proper filtrations.

Definition 1.3. Given a k-domain B = ∪
i∈Z

Fi equipped with a proper Z-filtration F = {Fi}i∈Z, the associ-

ated graded algebra Gr(B) is the abelian group

Gr(B) := ⊕
i∈Z

Fi/Fi−1

equipped with the unique multiplicative structure for which the product of the elements a+Fi−1 ∈ Fi/Fi−1

and b+ Fj−1 ∈ Fj/Fj−1, where a ∈ Fi and b ∈ Fj, is the element

(a+ Fi−1)(b + Fj−1) := ab+ Fi+j−1 ∈ Fi+j/Fi+j−1.

Property 5 for a proper filtration in Definition 1.2 ensures that Gr(B) is a commutative k-domain when B
is an integral domain. Since for each a ∈ B \ {0} the set {n ∈ Z | a ∈ Fn} has a minimum (by property
4 of proper filtrations), there exists i such that a ∈ Fi and a /∈ Fi−1. So we can define a k-linear map
gr : B −→ Gr(B) by sending a to its class in Fi/Fi−1, i.e b 7→ b + Fi−1, and gr(0) = 0. We will frequently

denote gr(b) simply by b̂. Observe that gr(b) = 0 if and only if a = 0.

1.2. The homogeneization technique.

Definition 1.4. By a k-derivation of B, we mean a k-linear map D : B −→ B which satisfies the Leibniz
rule: For all a, b ∈ B; D(ab) = aD(b) + bD(a). The kernel of a derivation D is the subalgebra kerD =
{b ∈ B;D(b) = 0} of B. A k-derivation D ∈ Derk(B) is said to be locally nilpotent if for every a ∈ B, there
exists n ∈ Z≥0 (depending of a) such that ∂n(a) = 0. The set of all locally nilpotent derivations of B is
denoted by LND(B).

It is convenient to reduce the study of LND(B) to the study of homogeneous locally nilpotent derivations
on a graded algebra GrF(B), associated to a suitable filtration F = {Fi}i∈Z of B, in such a way that every
non-zero locally nilpotent derivation on B induces a non-zero homogeneous locally nilpotent derivation on
the associated graded algebra GrF (B). This technique, which is due to Makar-Limanov [18], of replacing a
locally nilpotent derivation by the induced homogeneous one is called “homogeneization of derivations” or
simply homogeneization technique, see [5].

Definition 1.5. Given a k-domain B = ∪
i∈Z

Fi equipped with a proper Z-filtration, a k-derivation D of B is

said to respect the filtration if there exists an integer τ such that D(Fi) ⊂ Fi+τ for all i ∈ Z. The smallest
integer τ , such that D(Fi) ⊂ Fi+τ for all i ∈ Z, is called the degree of D with respect to F = {Fi}i∈Z and
denoted by degF D.
Note that if D respects the filtration F = {Fi}i∈Z then degF D is well-defined. Indeed, denote by deg the
Z-degree function corresponding to F = {Fi}i∈Z and let U be the non-empty subset of Z∪{−∞} defined by
U := {deg (D(b))− deg (b) ; b ∈ B \ {0}}. Since D respects the filtration F , the set U is bounded above by
τ0. Thus it has a greatest element τ which coincides with degF D by definition.

Suppose that D respects the filtration F = {Fi}i∈Z and let τ = degF D. We define a k-linear map D̂ :

Gr(B) −→ Gr(B) as follows: If D = 0, then D̂ = 0 the zero map. Otherwise, if D 6= 0 then we define

D̂ : Fi/Fi−1 −→ Fi+τ/Fi+τ−1

by the rule D̂(a + Fi−1) = D(a) + Fi+τ−1. Now extend D̂ to all of Gr(B) by linearity. One checks that D̂

satisfies the Leibniz rule, therefore it is a homogeneous k-derivation of Gr(B) of degree τ , that is, D̂ sends
homogeneous elements of degree i to either the zero element in Gr(B) or to homogeneous elements of degree

i+ τ . Note that D̂ = 0 if and only if D = 0, and that gr(kerD) ⊂ ker D̂.
3



1.3. Z-weight degree functions.

Let b be a prime ideal in k[n], in this paper we are interested in Z-degree functions deg on k[n]/b, which
are induced by Z-weight degree functions on the polynomial algebra k[n]. Degree functions deg that satisfy
deg(λ) = 0 for every λ ∈ k\{0} is referred to as degree functions over k.

Definition 1.6. A Z-weight degree function on the polynomial algebra k[n] = k[X1, . . . , Xn] is a Z-degree
function (over k) ω such that ω(P ) = max{ω(M) ; M ∈ M(P )}, where P ∈ k[n] is a non-zero polynomial,
and M(P ) is the set of non-zero monomials of P . Clearly, ω is uniquely determined by the weights ω(Xi) ∈

Z, i ∈ {1, . . . , n}. A Z-weight degree function ω defines a grading k[n] = ⊕l∈Zk
[n]
l where k

[n]
l \ {0} consists

of all the ω-homogeneous polynomials of ω-degree l. Accordingly, for any P ∈ k[n]\{0} we have a unique
decomposition P = Pl1 + · · · + Plj into a sum of ω-homogeneous components Pli of ω-degree li where

l1 < l2 < · · · < lj = ω(P ). We call P̂ := Plj the highest homogeneous component of P or the principal

component of P . It is clear that P̂Q = P̂ Q̂.

Given a finitely generated k-domain B ≃ k[n]/b where b is a prime ideal in k[n], let π : k[n] −→ B be the

natural projection. Denote by b̂ the (graded) ideal in k[n] generated by the highest homogeneous components
of all elements of b.

Definition 1.7. We say that a Z-weight degree function ω on k[n] is appropriate for an ideal b if the following
conditions hold:

(a) b ⊂ 〈X1, . . . , Xn〉.

(b) The ideal b̂ is prime and Xi /∈ b̂ ; ∀i = 1, . . . , n.
Assume that ω on k[n] is appropriate for the ideal b, for every non-zero p ∈ B set

ωB(p) := min
P∈π−1(p)

ω(P ).

The next Proposition 1.8, which is due to Kaliman andMakar-Limanov, ensures that ωB is a Z-degree function
on B. Therefore, the filtration FωB = {Fi}i∈Z induced by ωB is a proper Z-filtration of B ≃ k[X1, . . . , Xn]/b.
Moreover, the proposition provides a description of the associated graded algebra Gr(B). Finally, it asserts
in particular that every locally nilpotent derivation respects the proper filtration FωB .

Proposition 1.8. [11, Lemma 3.2, Proposition 4.1, and Lemma 5.1] Let B = k[x1, . . . , xn] ≃ k[X1, . . . , Xn]/b
be a finitely generated k-domain and let ω be a Z-weight degree function on k[X1, . . . , Xn]. Suppose that ω
is appropriate for the ideal b, then:

(1) ωB is a Z-degree function on B and ωB(xi) = ω(Xi) ; i = 1, . . . , n.

(2) The graded algebra Gr(B) associated to the proper Z-filtration FωB = {Fi}i∈Z is isomorphic to k[n]/b̂.
(3) Every derivation ∂ of B respects the ωB-filtration FωB = {Fi}i∈Z, that is, there exists τ such that

∂(Fi) ⊂ Fi+τ for every i ∈ Z. Consequently, degωB
(∂) <∞ and ∂ induces a derivation ∂̂ of Gr(B) which is

locally nilpotent whenever ∂ is.

2. A New Class of Examples

In this section, we consider a family of commutative finitely generated k-domains of the following form:

B := k[x, y, z, t] ≃ k[X,Y,Z, T ]/〈XnY − (Y m −XeZ)d − T r −X Q(X,Y m −XeZ, T )〉,

where e ≥ 0, n ≥ 1 such that (n, e) 6= (1, 0), m, d, r ≥ 2 such that gcd(d, r) = 1, and Q(X,S, T ) ∈ k[X,S, T ].

2.1. Algebraic construction.

Here, we explain how to construct the new class B from Russell k-domains:

Definition 2.1. Given an integer n ∈ N and a polynomial F (X,S, T ) ∈ k[X,S, T ] such that P (S, T ) :=
F (0, S, T ) /∈ k, we define the Russell k-domain corresponding to the pair (n, F ) to be the k-domain;

R(n,F ) := k[x, y, s, t] ≃ k[X,Y, S, T ]/〈XnY − F (X,S, T )〉.

Consider the Russell k-domain R = R(n,Sd+T r+X Q(X,S,T )) corresponding to the pair (n, Sd + T r +

X Q(X,S, T )). It is isomorphic to k[X,Y, Z, T ]/〈XnY − (Y m − Z)d − T r − X Q(X,Y m − Z, T )〉, which
is a member of the new family 2 that corresponds to e = 0.
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Denote by z the element z := x−nm−e((sd + tr + xQ(x, s, t))m − xnms) ∈ k[x, x−1, s, t]. That is, z is an
algebraic element over k[x, s, t] that has the following minimal polynomial;

xnm+eZ − (sd + tr + xQ(x, s, t))m + xnms ∈ k[x, s, t][Z].

Thus,

k[x, s, t, z] ≃ k[X,S, T, Z]/〈Xnm+eZ − (Sd + T r +X Q(X,S, T ))m +XnmS〉.

The ring k[x, s, t, z] is the Russell k-domain corresponding to the pair (nm+ e, (Sd+T r +XQ(X,S, T ))m−
XnmS).

Extend R to B := R[z], the sub-algebra of k[x, x−1, s, t] generated by z and R ⊂ k[x, x−1, s, t], where the
inclusion is induced be the localization homomorphism with respect to x. Then,

B = k[x, y, s, t, z] ≃ k[X,Y, Z, S, T ]/〈XnY − Sd − T r −X Q(X,S, T ), Ym −XeZ − S〉.

Hence,

B ≃ k[X,Y, Z, T ]/〈XnY − (Y m −XeZ)d − T r −X Q(X,Y m −XeZ, T )〉.

Note that R,k[x, s, t, z] ⊂ B = R.k[x, s, t, z], where R.k[x, s, t, z] is by definition the sub-algebra of
k[x, x−1, s, t] consists of all finite sums of elements ab where a ∈ R and b ∈ k[x, s, t, z]. This simply means
that B can be realized as the sub-algebra of k[x, x−1, s, t] generated by both R and k[x, s, t, z].

2.2. Z -degree functions, Z -filtrations, and associated graded algebras.

Given a k-domain A ≃ k[X1, . . . , Xn]/a, we consider proper Z-filtrations on A induced by Z-weight degree
functions on k[X1, . . . , Xn, Yn+1, . . . , YN ] = k[N ] for certain choices of N ∈ N together with ideals b ⊂ k[N ]

such that the ring A can be identified with k[N ]/b and the ideal b̂ is prime. We refer to this technique as the
twisted embedding technique, see [1, Sub-section 2.2.2]. It is also convenient to apply the homogeneization
technique to proper filtrations {Fi}i∈Z which give raise to graded algebras with one dimensional graded pieces,
that is, the corresponding graded pieces A[i] := Fi/Fi−1 are generated by one element as A[0]-modules. In
particular, this is the case for filtrations {Fi}i∈Z that satisfy the condition: for every i ∈ Z, the F0-module
Fi is generated by |i|+ 1 element.

Note that the k-domain

B := k[x, y, z, t] ≃ k[X,Y, Z, T ]/〈XnY − (Y m −XeZ)d − T r −X Q(X,Y m −XeZ, T )〉

is isomorphic to k[X,Y, Z, S, T ]/b, where b the ideal in k[5] = k[X,Y, Z, S, T ] defined by

b = 〈XnY − Sd − T r −X Q(X,S, T ), Y m −XeZ − S〉.

That is, B = k[x, y, z, t] = k[x, s, t, y, z] ≃ k[5]/b, where s = ym − xez.

Definition 2.2. Let ω be the Z-weight degree function on k[5] defined by

ω(X,Y, Z, S, T ) = (−1, n, nm+ e, 0, 0).

Let b̂ be the ideal in k[5] generated by highest homogeneous components, relative to ω, of all elements
in b. The highest homogeneous components of XnY − Sd − T r − X Q(X,S, T ) and Y m − XeZ − S are
the irreducible polynomials XnY − Sd − T r and Y m −XeZ (respectively) in k[5]. Using properties of the

graded map grω : k[5] −→ k[5] presented in [1, Lemma 1.4], one checks that the ideal b̂ coincides with

〈XnY −Sd−T r, Y m−XeZ〉, see also Remark 2.3 below. Furthermore, the ideal b̂ = 〈XnY −Sd−T r, Y m−

XeZ〉 is prime. Indeed, note that k[5]/b̂ ≃ R(n,Sd+T r)[Z]/〈y
m − xeZ〉, where R(n,Sd+T r) = k[x, s, t, y] ≃

k[X,Y, S, T ]/〈XnY − Sd − T r〉 is the Russell k-domain corresponding to the pair (n, Sd + T r). Since a
polynomial of degree one P (Z) = aZ + b ∈ R(n,Sd+T r)[Z] is irreducible if and only if a and b have no
common factors in R(n,Sd+T r), we conclude that ym − xeZ ∈ R(n,Sd+T r)[Z] is irreducible. Furthermore, by
Gauss’s Lemma, ym − xeZ is prime as R(n,Sd+T r)[Z] is factorial (since R(n,Sd+T r) is factorial by virtue of

[20, Lemma 1]). Therefore, we deduce that R(n,Sd+T r)[Z]/〈y
m − xeZ〉 ≃ k[5]/b̂ is a k-domain and hence b̂ is

prime.

Remark 2.3. Let a = 〈P,Q〉 be the ideal (not necessary prime) generated by elements P,Q ∈ k[N ], and let

ω be a weight degree on k[N ]. Recently Moser-Jauslin informed us that â = 〈P̂ , Q̂〉 whenever gcd(P̂ , Q̂) = 1
and provided the following argument. Given H ∈ b there exist f, g ∈ k[N ] such that H = fP +gQ. Note that
the pair (f, g) can be chosen such that ω(fP ) ≤ ω(H). Indeed, if not then for every such pair (f, g) we have
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ω(fP ), ω(gQ) > ω(H). Thus ω(f) bounded below by ω(H) − ω(P ). So f can be chosen to be of minimal

degree. On the other hand, condition ω(fP ), ω(gQ) > ω(H) implies that ω(fP ) = ω(gQ) and f̂ P̂ + ĝQ̂ = 0,

see [1, Lemma 1.4 (4)]. Since gcd(P̂ , Q̂) = 1, we conclude Q̂ divides f̂ . Write f̂ = uQ̂ and let f0 = f − uQ.
Then we get H = f0P + (g + uP )Q with ω(f0) < ω(f). This contradicts the minimality of the degree of f .

Therefore, since ω(fP ) ≤ ω(H), we conclude that Ĥ is either ĝQ̂ (if ω(fP ) < ω(gQ)), see [1, Lemma 1.4

(2)], or f̂ P̂ + ĝQ̂ (if ω(fP ) = ω(gQ)), see [1, Lemma 1.4 (3)]. Hence, â = 〈P̂ , Q̂〉.

Thus, we conclude that ω is appropriate for the ideal b and hence ω induces ωB a Z-degree function on B,
see Proposition 1.8 (1), where

ωB(p) := min
P∈π−1(p)

{ω(P )}.

Noting that the proper Z-filtration of k[X,Y, Z, S, T ] induced by ω is given by

ℑα = ⊕
α=(nm+e)i+nj−l

k[S, T ].X lY jZi ⊕ℑα−1 ; i, j, l ∈ Z,

we obtain the following.

Proposition 2.4. Let F = {Fα = π(ℑα)}α∈Z be the proper Z-filtration on B induced by ωB. Then:

(1) F−i = k[s, t]xi + F−i−1 for every i > 0,
(2) F0 = k[s, t] + F−1 = k[x, s, t],
(3) Fnj−l = k[s, t]xlyj + Fnj−l−1 for l ∈ {0, . . . , n− 1} and j ∈ N,
(4) F(nm+e)i−l = k[s, t]xlzi + F(nm+e)i−l−1 for l ∈ {0, . . . , e− 1} and i ∈ N,

(5) F(nm+e)i+nj−l = k[s, t]xlyjzi + F(nm+e)i+nj−l−1 for l ∈ {0, . . . ,min{n, e} − 1} and i, j ∈ N\{0}.

Corollary 2.5. The graded algebra Gr(B) associated to F = {Fα = π(ℑα)}α∈Z is isomorphic to

Gr(B) ≃ k[X,Y, Z, S, T ]/b̂ = k[X,Y, Z, S, T ]/〈XnY − Sd − T r, Y m −XeZ〉.

Furthermore, denote by B[i] = Fi/Fi−1. Then:

(1) B[−i] = k[ŝ, t̂]x̂i for i > 0,

(2) B[0] = k[ŝ, t̂],

(3) B[nj−l] = k[ŝ, t̂]x̂lŷj for l ∈ {0, . . . , n− 1} and j ∈ {0, . . . ,m− 1},

(4) B[(nm+e)i−l] = k[ŝ, t̂]x̂lẑi for l ∈ {0, . . . , e− 1} and i ∈ N,

(5) B[(nm+e)i+nj−l] = k[ŝ, t̂]x̂lŷj ẑi, for l ∈ {0, . . . ,min{n, e} − 1} and i, j ∈ N\{0}.

2.3. The Derksen invariant and degree of derivations.

Recall that the Derksen invariant of a k-domain A is defined to be the sub-algebra D(A) ⊂ A generated by
the kernels of all non-zero locally nilpotent derivation of A. That is, D(A) := k[∪∂∈LND(A)\{0} ker ∂] ⊂ A.
The following theorem determines the Derksen invariant for the class 2.

Theorem 2.6. Let B be the k-domain defined by B := k[x, y, z, t] ≃ k[X,Y, Z, T ]/〈XnY − (Y m −XeZ)d −
T r−X Q(X,Y m−XeZ, T )〉. Then D(B) = k[x, s, t] where s = ym−xez. In particular, B is not algebraically

isomorphic to A3
k
.

Proof. Given a non-zero ∂ ∈ LND(B), by Proposition 1.8 (3) and (4), it respects the ωB-filtration determined

in Proposition 2.4. Therefore, it induces a non-zero locally nilpotent derivation ∂̂ := grωB
(∂) of Gr(B).

Suppose that f ∈ ker ∂, then f̂ := gr(f) ∈ ker ∂̂ is an homogenous element of Gr(B).

Assume that f̂ /∈ k[x̂, ŝ, t̂], then, by Corollary 2.5, ŷ or ẑ must divides f̂ . This yields a contradiction as
follows.

If ẑ divides f̂ , then ∂̂(ẑ) = 0 as ker ∂̂ is factorially closed. On the other hand, if ŷ divides f̂ , then ŷ ∈ ker ∂̂.

Thus, the relation ŷm − x̂eẑ implies that ẑ ∈ ker ∂̂ as ker ∂̂ is factorially closed. Therefore, either way the

assumption f̂ /∈ k[x̂, ŝ, t̂] implies that ∂̂(ẑ) = 0.

The case where e = 1 is particular since then ∂̂ extends to a locally nilpotent derivation of the k(ẑ)-domain
k(ẑ)[X,Y, S, T ]/〈XnY − Sd − T r, Y m −Xẑ〉, which is isomorphic to

k(ẑ)[Y, S, T ]/〈
1

ẑn
Y nm+1 − Sd − T r〉.

Since the latter is a rigid ring, see [3, Section 7.1], we get ∂̂ = 0, a contradiction.
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For the case where e > 1, let ̟ ∈ Z5 be another weight degree function on Gr(B) defined by:

̟(X) = q, ̟(Y ) = −n0, ̟(Z) = −mn0 − eq, ̟(S) = r, ̟(T ) = d,

where rd = nq−n0, q ∈ Z, and n0 ∈ {0, . . . , n−1}. Then, Gr̟(Gr(B)) = Gr(B), that is, ̟ is a Z-grading of

Gr(B). Hence, ∂̂ induces ∂̃ := gr̟(∂̂) a non-zero locally nilpotent derivation of Gr(B), such that ∂̃(ẑ) = 0.

Choose H ∈ ker ∂̃ which is a non-constant homogeneous, relative to both grading of B, and algebraically

independent of ẑ, which is possible since ker ∂̃ is generated by homogeneous elements and it is of transcendence

degree 2 over k, see [18]. Then, the only possibility for H is H = h(ŝ, t̂ ) otherwise we get ∂̃ = 0.

Since gcd(d, r) = 1, there exists a standard homogeneous polynomial h0 ∈ k[2] such that h(ŝ, t̂ ) = h0(ŝ
d, t̂r),

see [10, Lemma 4.6]. Thus we have h0(ŝ
d, t̂r) ∈ ker ∂̃, which implies that either ∂̃(ŝ) = 0 or ∂̃(t̂) = 0 (or

both), see [10, Prop. 9.4]. But if ∂̃(t̂) = 0, then ∂̃ extends to a locally nilpotent derivation of

A := k(ẑ, t̂)[X,Y, S]/〈XnY − Sd − t̂r, Y m −Xeẑ〉.

It follows from the Jacobian criterion that Spec(A) has a non-empty set of singular points as e > 1. Since

A is an integral domain of transcendence degree one over k(ẑ, t̂ ), [10, Corollary 1.29] implies that A is rigid,

and therefore ∂̃ = 0, a contradiction. In the same way we get a contradiction if ∂̃(ŝ) = 0.

Therefore, the only possibility is that f̂ ∈ k[x̂, ŝ, t̂], which yields f ∈ k[x, s, t]. This proves that D(B) ⊆
k[x, s, t] ≃ k[3]. To complete the proof, define D1, D2 ∈ LND(B) by:

D1(x) = D1(t) = 0, D1(s) = xn+e, D1(y) = xe(dsd−1 + x
∂Q

∂s
), D1(z) = mym−1(dsd−1 + x

∂Q

∂s
)− xn

and

D2(x) = D2(s) = 0, D2(t) = xn+e, D2(y) = xe(rtr−1 + x
∂Q

∂t
), D2(z) = mym−1(rtr−1 + x

∂Q

∂t
).

Then obviously k[x, s, t] ⊆ D(B). �

What we did establish in the proof of Theorem 2.6 is actually more than the assertion announced in the
Theorem itself. Indeed,

Lemma 2.7. Let ωB be the degree function on B defined as in Theorem 2.6, then:

degωB
∂ ≤ −n− e ; for every non-zero ∂ ∈ LND(B).

Proof. Let ∂ ∈ LND(B) be non-zero. Continuing the notation of the proof of Theorem 2.6, ∂ induces

∂̂ := gr(∂) a non-zero locally nilpotent derivation of Gr(B). We have established that ∂̂(ẑ) 6= 0. Denote by
τ the degree of ∂ with respect to ωB, τ := degωB

∂.
Assume for contradiction that τ = degωB

∂ > −(n+e). Then, for every b ∈ B such that ωB(b) = i, we have

by definition of ∂̂ that ∂̂(b̂) =

{
0 ; if ωB(∂(b)) < i+ τ

∂̂(b) ; if ωB(∂(b)) = i+ τ
. Thus we conclude that either ∂̂(ẑ) = 0, which

is excluded, or ∂̂(ẑ) = ∂̂(z). But since ωB(z) = nm+ e, we see that ∂(z) ∈ Fnm+e+τ , and ∂̂(z) ∈ B[nm+e+τ ].

So ẑ divides ∂̂(ẑ) by Corollary 2.5, which implies that ∂̂(ẑ) = 0 by reasons of degree, see [10, Corollary 1.20],
which is absurd. Therefore, the only possibility is that τ = degωB

∂ ≤ −n− e. And we are done. �

Consider the following chain of inclusions:

D(B) = k[x, s, t] →֒ R = k[x, s, t, y] →֒ B = k[x, s, t, y, z],

where R is the Russell k-domain corresponding to the pair (n, Sd+T r+X Q(X,S, T )), we have the following.

Corollary 2.8. Every ∂ ∈ LND(B) restricts to a locally nilpotent derivation of k[x, y, s, t] = R (resp.
k[x, s, t] = D(B)). Furthermore,

∂(R) ⊆ 〈xe〉R and ∂(D(B)) ⊆ 〈xn+e〉D(B) ,

where 〈xe〉R (resp. 〈xn+e〉D(B)) is the principle ideal of R (resp.D(B)) generated by xe (resp. xn+e).
7



Proof. Let ∂ ∈ LND(B) be non-zero. By Lemma 2.7, we have τ = degωB
∂ ≤ −n − e. This means

∂(Fi) ⊆ Fi+τ ⊆ Fi, and hence, ∂(D(B)) ⊆ D(B) and ∂(R) ⊆ R. Furthermore,

∂(k[x, s, t]) ⊆ F−n−e = k[x, s, t]xn+e + F−n−e−1 = 〈xn+e〉k[x,s,t].

Finally,

∂(y) ∈ k[x, s, t]xe + F−e−1 = 〈xe〉k[x,s,t].

The latter implies that ∂(R) ⊆ 〈xe〉R, as desired. �

2.4. The Makar-Limanov invariant and LND.

Recall that the Makar-Limanov invariant ML(A) of a k-domain A is defined to be the intersection of the
kernels of all locally nilpotent derivations of A. That is, ML(A) := ∩∂∈LND(A) ker ∂.
The observation that every locally nilpotent derivation of B must restrict to a locally nilpotent derivation of
the sub-algebra R, introduce a consecutive way to compute the Makar-Limanov invariant. That is, consider
the inclusion R →֒ B. It is well-known that ML(R) = k[x]; n ≥ 2, see [12, 11, 17]. On the other hand,
by Theorem 2.8, every ∂ ∈ LND(B) restricts to ∂|R a locally nilpotent derivation of R. Therefore, since
ML(R) = ∩D∈LND(R) kerD ⊆ ∩∂∈LND(B) ker ∂|R, we immediately obtain ML(R) = k[x] ⊆ ML(B). Finally,
since ML(B) ⊆ kerD1 ∩ kerD2 = k[x] where D1, D2 ∈ LND(B) define as in the proof of Theorem 2.6, we
get Corollary 2.9, in the cases n ≥ 2, for free.

Nevertheless, for the general case, we present an alternative approach to compute the Makar-Limanov
invariant for the class of examples 2. That is, it can be deduced from Corollary 2.8 as follows.

Corollary 2.9. ML(B) = k[x].

Proof. Let ∂ ∈ LND(B), then Theorem 2.8 in particular, asserts that ∂(k[x, s, t]) ⊆ 〈xn+e〉k[x,s,t]. This
implies that ∂(x) is divisible by x, thus by reasons of degree, see also [10, Corollary 1.20 ], we conclude that
∂(x) = 0 and k[x] ⊆ ML(B). Finally, noting that ML(B) ⊆ k[x] = kerD1 ∩ kerD2 where D1, D2 ∈ LND(B)
define as in the proof of Theorem 2.6, we have ML(B) = k[x], as desired. �

The following Corollary, which is a consequence of Corollary 2.8, describes the set LND(B). Denote by
LNDk[x](k[x, s, t]) the set of locally nilpotent derivations of k[x, s, t] ≃ k[3] that have x in their kernels, then:

Corollary 2.10. LND(B) = xe (LND(R)) = xn+e
(
LNDk[x](k[x, s, t])

)
.

Proof. Let δ be a locally nilpotent derivation of R (resp. k[x, s, t] that annihilates x), then the derivation
xeδ (resp. xn+eδ) extends to a locally nilpotent derivation of B by taking

(xeδ)(z) =
(xeδ)(ym)− (xeδ)(s)

xe
= δ(ym)− δ(s)

resp.

(xn+eδ)(y) =
(xn+eδ)(sd + tr + xQ)

xn
= xeδ(sd + tr + xQ) , and

(xn+eδ)(z) =
(xn+eδ)(ym − s)

xe
= mym−1δ(sd + tr + xQ)− xnδ(s).

We denote δ̃ = xeδ (resp. δ̃ = xn+eδ). Conversely, Corollary 2.8 ensures that every ∂ ∈ LND(B) restricts
to ∂|R ∈ LND(B) as well as ∂|k[x,s,t] ∈ LNDk[x](k[x, s, t])], such that ∂|R = xeδ1 and ∂|k[x,s,t] = xn+eδ2 for
some δ1 ∈ LND(R) and δ2 ∈ LNDk[x](k[x, s, t]), hence δ1|k[x,s,t] = xnδ2. This establishes the correspondence.

Finally, it is straightforward to check that the latter is a one-to-one correspondence, that is, ∂̃|R = ∂ and

δ̃ |R = δ (resp. ∂̃|
k[x,s,t] = ∂ and δ̃ |k[x,s,t] = δ). And we are done. �

The next Corollary describes the kernels of locally nilpotent derivations of B. The proof of [10, Corollary
9.8] also applies here.

Corollary 2.11. Let ∂ ∈ LND(B) be non-zero, then there exists F ∈ k[x, s, t] ⊂ B such that F is a

k(x, x−1)-variable of k(x, x−1)[s, t], and ker ∂ = k[x, F ] = k2.
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3. Exponential Modifications

3.1. Definitions and basic properties.

Let A be a finitely generated domain over a field k of characteristic zero, I be an ideal in A and f be a
non-zero element of I.

Definition 3.1. By the affine modification of A along f with center I, see [15, 13, 21], we mean the sub-
algebra A′ := A[I/f ] of Af (the localization of A with respect to f) generated by A and the sub-set I/f .
Similarly, for any k-domain A, the sub-algebra A′ := A[I/f ] of Af is called the modification of A along f with
center I. The pair (f, I) is called the locus of the modification and A is called the base of the modification.

If the ideal I is finitely generated, say I = 〈f, b1, . . . , br〉A, then A
′ is the sub-algebra of Af ⊂ Frac(A) which

is generated by A and the elements b1/f, . . . , br/f . That is,

A[I/f ] = {P (b1/f, . . . , br/f); P (X1, . . . , Xr) ∈ A[X1, . . . , Xr]}.

Therefore, we get

A[I/f ] = {a/fd ∈ Af ; a ∈ Id and d ∈ N}.

The extension of the ideal I in A′ = A[I/f ] coincides with the principal ideal generated by f , that is,
I.A[I/f ] = 〈f〉A[I/f ].

The next lemma manifests the universal property of modifications, see [13, Proposition 2.1 and Corollary
2.2].

Lemma 3.2. Let Ψ : A −→ B be an isomorphism between domains A and B, I be an ideal in A, and f ∈ I.

Then Ψ extends in a unique way to an isomorphism Ψ̃ : A[I/f ] −→ B[Ψ(I)/Ψ(f)].

Proof. Define Ψ̃ : A[I/f ] −→ B[Ψ(I)/Ψ(f)] by Ψ̃(a) = Ψ(a) for every a ∈ A and Ψ̃(P (b1/f, . . . , bs/f)) =

PΨ(Ψ(b1)/Ψ(f), . . . ,Ψ(bs)/Ψ(f)), where P (X1, . . . , Xs) =
∑

finite aiX
n(1,i)

1 . . .X
n(s,i)
s ∈ A[X1, . . . , Xs] and

PΨ(X1, . . . , Xs) =
∑

finiteΨ(ai)X
n(1,i)

1 . . .X
n(s,i)
s ∈ B[X1, . . . , Xs]. Then Ψ̃ is an isomorphism with in-

verse Ψ̃−1 : B[Ψ(I)/Ψ(f)] −→ A[I/f ] defined by Ψ̃−1(Ψ(a)) = Ψ−1(Ψ(a)) = a for every Ψ(a) ∈ B

(i.e., Ψ̃−1|B = Ψ−1) and Ψ̃−1(H(Ψ(b1)/Ψ(f), . . . ,Ψ(bs)/Ψ(f)) = HΨ−1(b1/f, . . . , bs/f). Finally, let Φ
be an isomorphism between A[I/f ] and B[Ψ(I)/Ψ(f)], such that Φ|A = Ψ, then Φ(P (b1/f, . . . , bs/f)) =
PΦ|A(Φ(b1/f), . . . ,Φ(bs/f)). Since Φ(bi) = Φ(fbi/f) = Φ(f)Φ(bi/f), we conclude that Φ(bi/f) = Φ(bi)/Φ(f)
for every i. Hence Φ(P (b1/f, . . . , bs/f)) = PΦ|A(Φ(b1)/Φ(f), . . . ,Φ(bs)/Φ(f)) = PΨ(Ψ(b1)/Ψ(f), . . . ,Ψ(bs)/Ψ(f))

and hence Φ = Ψ̃, as desired. �

3.2. Exponential modifications .

We are interested in modifications of A along elements of the form f = an; n ∈ N\{0} for some element a in
A.

Definition 3.3. Let A be an integral domain, I be an ideal in A, and a be an irreducible element in A such
that an ∈ I. The modification A[I/an] of A along an with center I will be called the exponential modification

of A with respect to a. The contraction of 〈aN 〉A[I/an] with respect to the inclusion A
ι
→֒ A[I/an] (also called

the contraction of 〈aN 〉A[I/an] in A) is 〈a
N 〉cA[I/an] := {b ∈ A; ι(b) ∈ 〈aN 〉A[I/an]}.

The principal ideal 〈aN 〉A[I/an] will be denoted simply by 〈aN 〉 (not to be confused with 〈aN 〉A the principle

ideal in A generated by aN , i.e., 〈aN 〉A[I/an] 6= 〈aN 〉A in general). Note that the contraction of 〈aN 〉 in A
coincides with

〈aN 〉c = A ∩ 〈aN 〉.

Also, the extension of I to A[I/an] (i.e., the ideal in A[I/an] generated by I) coincides with the principle
ideal generated by an, that is, I.A[I/an] = 〈aN 〉.

Consider the following chain of principal ideals in A[I/an]:

A[I/an] = 〈1〉 ⊃ 〈a〉 ⊃ 〈a2〉 ⊃ · · · ⊃ 〈an〉,

it induces the following chain of ideals in A.

A = 〈1〉c ⊃ 〈a〉c ⊃ 〈a2〉c ⊃ · · · ⊃ 〈an〉c.
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Note that 〈an〉c = I. To the latter chain of ideals we associate the following chain of sub-algebras of
A[I/an] ⊂ A[a−1]:

A ⊂ A[〈a〉c/a] ⊂ A[〈a2〉c/a2] ⊂ · · · ⊂ A[〈an〉c/an] = A[I/an].

Note that A[〈aN 〉c/aN ] is the exponential modification of A, along aN with center 〈aN 〉c for every N ∈ N.

Definition 3.4. The chain A = 〈1〉c ⊃ 〈a〉c ⊃ 〈a2〉c ⊃ · · · ⊃ 〈an〉c = I of ideals in A will be called the
contraction chain associated to A[I/an] and the chain A ⊂ A[〈a〉c/a] ⊂ A[〈a2〉c/a2] ⊂ · · · ⊂ A[〈an〉c/an] =
A[I/an] of sub-algebras of A[I/an] will be called the exponential chain of A[I/an].

The next theorem shows in particular that isomorphisms between exponential modifications, which pre-
serve bases of modifications together with their principal ideals generated by their centers, respect the asso-
ciated contraction and exponential chains.

Theorem 3.5. Let Ψ : A[I/an] −→ B′ be an isomorphism between the exponential modifications A[I/an]
and B′. Assume that Ψ(A) = B ⊂ B′ and Ψ(a) = b. Then:

(1) Ψ respects the contraction chains, that is, Ψ(〈aN 〉cA[I/an]) = 〈bN 〉cB′ for every N ∈ N.

(2) Ψ respects the exponential chains, that is, Ψ(A[〈aN 〉cA[I/an]/a
N ]) = B[〈bN 〉cB′/bN ] for every N ∈ N.

In particular, B′ can be realized as the exponential modification of B with locus (bn, 〈bn〉cB′), that is,

B′ = B[〈bn〉cB′/bn].

Proof. Assertion (1), since Ψ(a) = b, Ψ(A) = B and 〈aN 〉cA[I/an] = A∩〈aN 〉A[I/an], we have Ψ(〈aN 〉cA[I/an]) =

B∩〈bN 〉B′ for every N ∈ N. Since B∩〈bN 〉B′ = 〈bN 〉cB′ , we conclude that Ψ(〈aN 〉cA[I/an]) = 〈bN 〉cB′ for every

N ∈ N.
Assertion (2), since Ψ(A) = B and Ψ(a) = b, Lemma 3.2 asserts that the restriction Ψ|A of Ψ to A extends to

an isomorphism ΦN := Ψ̃|A between A[〈aN 〉cA[I/an]/a
N ] and B[Ψ(〈aN 〉cA[I/an])/Ψ(a)N ] for every N ∈ N. By

assertion (1), the latter ring coincides with B[〈bN 〉cB′/bN ]. Moreover, noting that this extension is unique, ΦN

coincides with the restriction Ψ|A[〈aN 〉c
A[I/an]

/aN ] of Ψ to A[〈aN 〉cA[I/an]/a
N ], i.e., ΦN = Ψ|A[〈aN 〉c

A[I/an]
/aN ].

Hence, Ψ(A[〈aN 〉cA[I/an]/a
N ]) = B[〈bN 〉cB′/bN ], for every N ∈ N, and in particular B′ = B[〈bn〉cB′/bn], as

desired. �

The previous theorem asserts that if A[I/an] ≃ B′, then there exist an element b ∈ B′, a sub-algebra
B ⊂ B′, and an ideal J ⊂ B contains bn, such that A ≃ B and B′ can be realized as the modification of B
with locus (bn, J := 〈bn〉cB′). Furthermore, every k-isomorphism Ψ : A[I/an] −→ B′ such that Ψ(A) = B,
restricts to a k-isomorphism between A[〈aN 〉cA[I/an]/a

N ] and B[〈bN 〉cB′/bN ] for every N , where Ψ(a) = b and

Ψ(I) = J . Therefore, we have the following commutative diagram:

A[I/an]
Ψ
−→ B′ = B[〈bn〉cB′/bn]

∪ � ∪
...

...
...

∪ � ∪

A[〈a2〉cA[I/an]/a
2]

∼
−→ B[〈b2〉cB′/b2]

∪ � ∪

A[〈a〉cA[I/an]/a]
∼
−→ B[〈b〉cB′/b]

∪ � ∪

A
∼
−→
Ψ|

A

B

4. Isomorphism classes and Automorphism groups

Let m, d, r ≥ 2 be fixed such that gcd(d, r) = 1. For every e ≥ 0, n ≥ 1 such that (n, e) 6= (1, 0), and every
Q ∈ k[X,S, T ], we denote by B(n,e,Q) the following k-domain:

B(n,e,Q) := k[x, y, z, t] ≃ k[X,Y, Z, T ]/〈XnY − (Y m −XeZ)d − T r −X Q(X,Y m −XeZ, T )〉

which is isomorphic to

k[X,Y, Z, S, T ]/〈XnY − Sd − T r −X Q(X,S, T ), Y m −XeZ − S〉.
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Also, we denote by R(n,Sd+T r+XQ) the Russel k-domain:

R(n,Sd+T r+XQ) := k[x, y, s, t] ≃ k[X,Y, S, T ]/〈XnY − Sd − T r −X Q(X,S, T )〉

Consider the following two chains of inclusions, for i ∈ {1, 2}:

k[x, s, t] →֒ R(ni,Sd+T r+XQi) = k[x, s, t, yi] →֒ B(ni,ei,Qi) = k[x, s, t, yi, zi] →֒ B(ni,ei,Qi)[x
−1] = k[x, x−1, s, t].

The last inclusion is realized by the localization homomorphism with respect to x, where

yi = x−ni(sd + tr + xQi), zi = x−nim−ei((sd + tr + xQi)
m − xnims) ∈ k[x, x−1, s, t] ; i ∈ {1, 2}.

Theorem 2.6 and Corollary 2.9 implies that D(B(ni,ei,Qi)) = D(R(ni,Sd+T r+XQi)) = k[x, s, t] ≃ k[3] and
ML(B(ni,ei,Qi)) = ML(R(ni,Sd+T r+XQi)) = k[x].

4.1. Basic facts.

Some conditions that two k-domains, with the same Derksen and Makar-Limanov invariants, must verify to be
isomorphic can be deduced from properties of their locally nilpotent derivations. Indeed, the next proposition
shows how a prior knowledge of degrees of all locally nilpotent derivations relative to some degree function
can be used to obtain some conditions that two k-domains must satisfy to be isomorphic.

Proposition 4.1. Let Ψ : B(n1,e1,Q1) −→ B(n2,e2,Q2) be a k-isomorphism. Then:

(1) There exists λ ∈ k \ {0} such that Ψ(x) = λx.
(2) n1 + e1 = n2 + e2.

Proof. Since every k-isomorphism Ψ between B(n1,e1,Q1) and B(n2,e2,Q2) must preserve the Makar-Limanov
and the Derksen invariants, we deduce by virtue of Corollary 2.9 and Theorem 2.6 that Ψ restricts to a
k-automorphism of k[x] (resp. k[x, s, t] ≃ k[3]). This implies that Ψ(x) = λx + c for some λ ∈ k\{0} and
c ∈ k, and that Ψ(s),Ψ(t) ∈ k[x, s, t].
Let ∂1 ∈ LND(B(n1,e1,Q1)) be a non-zero, then ∂2 := Ψ∂1Ψ

−1 is also a non-zero locally nilpotent derivation
of B(n2,e2,Q2). On the other hand, Corollary 2.8 ensures that ∂i restricts to k[x, s, t] in such a way that

∂i(k[x, s, t]) ⊆ 〈xni+ei〉k[x,s,t] = xni+ei .k[x, s, t] for every i ∈ {1, 2}.
Define ∂1 ∈ LND(B(n1,e1,Q1)) by:

∂1(x) = ∂1(t) = 0, ∂1(s) = xn1+e1 , ∂1(y1) = xe1(dsd−1 + x
∂Q1

∂s
), ∂1(z1) = mym−1

1 (dsd−1 + x
∂Q1

∂s
)− xn1 .

Then ∂2 := Ψ∂1Ψ
−1 ∈ LND(B(n2,e2,Q2)) and we have ∂2Ψ = Ψ∂1. Therefore, we obtain the relation

(∂2Ψ) (s) = (Ψ∂1) (s), where the second part is Ψ∂1(s) = Ψ(xn1+e1) = (λx + c)n1+e1 . As discussed before
Ψ(s) ∈ k[x, s, t] and ∂2(k[x, s, t]) ⊆ xn2+e2 .k[x, s, t], thus the first part of the forgoing relation is ∂2(Ψ(s)) =
xn2+e2g(x, s, t) for some g ∈ k[x, s, t]. Therefore, we get xn2+e2g(x, s, t) = (λx + c)n1+e1 in k[x, s, t], which
means that xn2+e2 divides (λx + c)n1+e1 in k[x]. This is possible if and only if c = 0, hence (1) follows, and
n2 + e2 ≤ n1 + e1. Finally, by symmetry we get n1 + e1 = n2 + e2, as desired. �

As a special case of Proposition 4.1, we have the following.

Corollary 4.2. Let Ψ : R(n1,Sd+T r+XQ1) −→ R(n2,Sd+T r+XQ2) be a k-isomorphism. Then:

(1) There exists λ ∈ k \ {0} such that Ψ(x) = λx.
(2) n1 = n2.

Remark 4.3. Assertion (1) of Corollary 4.2 is well-known due to P. Russell. Nevertheless, assertion (2) is
new. The proof of Proposition 4.1 present an alternative proof for assertion (1), using properties of locally
nilpotent derivation, that delivers assertion (2) for free.

4.2. The chain of invariant sub-algebras associated to B(n,e,Q).

Let I be the ideal in k[x, s, t] generated by xnm+e, xn(m−1)+e(sd + tr + xQ), and (sd + tr + xQ)m − xnms,
that is,

I =
〈
xnm+e, xn(m−1)+e(sd + tr + xQ), (sd + tr + xQ)m − xnms

〉
k[x,s,t]

.

Then, the affine modification of D(B(n,e,Q)) = k[x, s, t] along xnm+e with center I is by definition

k[x, s, t]
[
I/xnm+e

]
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where I/xnm+e = x−nm−e.I is the sub-set of k[x, x−1, s, t] consists of elements x−nm−eb where b ∈ I.
Therefore,

k[x, s, t]
[
I/xnm+e

]
= k[x, s, t][(sd + tr + xQ)/xn, ((sd + tr + xQ)m − xnms)/xnm+e] = k[x, s, t, y, z] = B.

That is,

Proposition 4.4. The k-domain B(n,e,Q) is the exponential modification of its Derksen invariant k[x, s, t]

along xnm+e with center I.

The contraction chain associated to B(n,e,Q) is

k[x, s, t] = 〈1〉c ⊃ 〈x〉c ⊃ 〈x2〉c ⊃ · · · ⊃ 〈xnm+e〉c.

The exponential chain of B(n,e,Q) ⊂ k[x−1, x, s, t] is

k[x, s, t] ⊂ k[x, s, t][〈x〉c/x] ⊂ · · · ⊂ k[x, s, t][〈xnm+e〉c/xnm+e] = B(n,e,Q) ⊂ k[x−1, x, s, t].

Consider again the following two chains of inclusions, for i ∈ {1, 2}:

k[x, s, t] →֒ B(ni,ei,Qi) = k[x, s, t, yi, zi] →֒ B(ni,ei,Qi)[x
−1] = k[x, x−1, s, t].

Denote by

Ii =
〈
xnimi+ei , xni(mi−1)+ei(sd + tr + xQi), (s

d + tr + xQi)
mi − xnimis

〉
k[x,s,t]

,

and 〈xN 〉cB(n1,e1,Q1)
(resp. 〈xN 〉cB(n2,e2,Q2)

) the contraction of the ideal 〈xN 〉B(n1,e1,Q)
(resp. 〈xN 〉B(n2,e2,Q)

) in

k[x, s, t].
Via the previous description, we have the following.

Theorem 4.5. Let Ψ : B(n1,e1,Q1) −→ B(n2,e2,Q2) be a k-isomorphism, then Ψ respects their contraction and

exponential chains, that is,

(1) Ψ
(
〈xN 〉cB(n1,e1,Q1)

)
= 〈xN 〉cB(n2,e2,Q2)

for every N ∈ N. In particular, Ψ(I1) = I2.

(2) Ψ(k[x, s, t][〈xN 〉cB(n1,e1,Q1)
/xN ]) = k[x, s, t][〈xN 〉cB(n2,e2,Q2)

/xN ] for every N ∈ N. In particular,

B(n2,e2,Q2) = k[x, s, t][〈xn1m1+e1〉cB(n2,e2,Q2)
/xn1m1+e1 ].

Proof. Theorem 2.6 and Proposition 4.1 imply that Ψ restricts to a k-automorphism of k[x, s, t] and that
Ψ(x) = λx. Therefore, assertion (1) and (2) follow directly from Theorem 3.5. �

Therefore, we have the following commutative diagram:

B(n1,e1,Q1) = k[x, s, t, y1, z1]
Ψ

−→ B(n2,e2,Q2) = k[x, s, t, y2, z2]
∪ � ∪
...

...
...

∪ � ∪

k[x, s, t][〈x2〉cB(n1,e1,Q1)
/x2]

∼
−→ k[x, s, t][〈x2〉cB(n2,e2,Q2)

/x2]

∪ � ∪

k[x, s, t][〈x〉cB(n1 ,e1,Q1)
/x]

∼
−→ k[x, s, t][〈x〉cB(n2 ,e2,Q2)

/x]

∪ � ∪

k[x, s, t]
∼
−→ k[x, s, t]

In particular, the exponential chain k[x, s, t] ⊂ k[x, s, t][〈x〉c/x] ⊂ · · · ⊂ k[x, s, t][〈xnm+e〉c/xnm+e] = B(n,e,Q)

characterizes B(n,e,Q). That is,

Corollary 4.6. The exponential chain k[x, s, t] ⊂ k[x, s, t][〈x〉c/x] ⊂ · · · ⊂ k[x, s, t][〈xnm+e〉c/xnm+e] =
B(n,e,Q) of B(n,e,Q) is invariant by every k-automorphism Ψ of B(n,e,Q). That is, every Ψ ∈ Autk(B(n,e,Q))
restricts to a k-automorphism of every member of the exponential chain.
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4.3. Computing contraction and exponential chains associated to B(n,e,Q).

The next lemma describes the contraction of the ideal 〈xN 〉 in k[x, s, t] for every N ∈ N.

Lemma 4.7. Denote F := sd + tr + xQ, and G := (sd + tr + xQ)m − xnms = Fm − xnms. Then,

(1) 〈xn0 〉c = 〈F, xn0〉k[x,s,t] for every n0 ∈ {1, . . . , n}.

(2) 〈xnm0+e0〉c = 〈Fm0+1, xn0Fm0 , . . . , x(m0−1)n+n0F, xnm0+n0〉k[x,s,t] for every m0 ∈ {1, . . . ,m−1} and

n0 ∈ {1, . . . , n}.
(3) 〈xnm+e0 〉c = 〈G, xe0Fm, xn+e0Fm−1, . . . , x(m−1)n+e0F, xnm+e0 〉k[x,s,t] for every e0 ∈ {1, . . . , e}.

Proof. We only prove (3) for the special case where e0 = e, the rest can be proved in the same way. The
proof is basically a consequence of the full description of the proper Z-filtration defined on B(n,e,Q) as in
Definition 2.2.
Let ωB(n,e,Q)

be the degree function on B(n,e,Q) defined as in Definition 2.2, and suppose that f ∈ 〈xnm+e〉c.

Then f ∈ k[x, s, t] ∩ 〈xnm+e〉 and there exists b ∈ B(n,e,Q) such that f = xnm+eb. On the other hand,

since f ∈ k[x, s, t], we have ωB(n,e,Q)
(f) ≤ 0. Noting that ωB(n,e,Q)

(xnm+e) = −nm − e, we deduce that

ωB(n,e,Q)
(b) ≤ nm+ e. Therefore, by Proposition 2.4, b can be expressed as follows.

b = z (

e−1∑

i=0

xifi(s, t)) +

m∑

j=1

yj(

n−1∑

l=0

xl g(j,l)(s, t)) + h(x, s, t).

Hence,

xnm+eb = xnm+e z (
e−1∑

i=0

xifi(s, t)) + xe
m∑

j=1

xnm−nj xnjyj(
n−1∑

l=0

xl g(j,l)(s, t)) + xnm+e h(x, s, t).

Thus,

xnm+eb = G (

e−1∑

i=0

xifi(s, t)) + xe
m∑

j=1

xn(m−j) F j(

n−1∑

l=0

xl g(j,l)(s, t)) + xnm+eh(x, s, t).

Therefore, we conclude that

xnm+eb ∈ 〈xnm+e, xiG, x(m−j)n+e+lF j; i ∈ {0, . . . , e− 1}, l ∈ {0, . . . , n− 1}, and j ∈ {1, . . . ,m}〉k[x,s,t]

Finally,

〈xnm+e〉c = 〈xnm+e, G, x(m−j)n+eF j ; j ∈ {1, . . . ,m}〉k[x,s,t].

�

The next lemma determines the sub-algebra k[x, s, t][〈xN 〉c/xN ] for every N ∈ N.

Lemma 4.8. The sub-algebra k[x, s, t][〈xN 〉c/xN ] ⊂ B(n,e,Q) is given by:

(1) k[x, s, t][〈xn0 〉c/xn0 ] = k[x, s, t, xn−n0y] = R(n0,Sd+T r+XQ) for every n0 ∈ {1, . . . , n− 1}.
(2) k[x, s, t][〈xn〉c/xn] = · · · = k[x, s, t][〈xnm〉c/xnm] = k[x, s, t, y] = R(n,Sd+T r+XQ).

(3) k[x, s, t][〈xnm+e0 〉c/xnm+e0 ] = k[x, s, t][y, xe−e0z] = B(n,e0,Q) for every e0 ∈ {1, . . . , e}.
Consequently, the exponential chain of B(n,e,Q) is

k[x, s, t] ⊂ R(1,Sd+T r+XQ) ⊂ · · · ⊂ R(n,Sd+T r+XQ) ⊂ B(n,1,Q) ⊂ · · · ⊂ B(n,e,Q)

where R(n0,Sd+T r+XQ) is the Russell k-domain corresponding to the pair (n0, S
d + T r +XQ).

Proof. For (1), by Lemma 4.7, 〈xn0〉c = 〈F, xn0〉k[x,s,t] for every n0 ∈ {1, . . . , n}. Therefore,

k[x, s, t][〈xn0 〉c/xn0 ] = k[x, s, t][F/xn0 ] = k[x, s, t][xn−n0y] = R(n0,Sd+T r+XQ).

For (2), it is enough to show that k[x, s, t][〈xn〉c/xn] = k[x, s, t][〈xnm〉c/xnm]. Lemma 4.7, asserts that
〈xnm〉c = 〈Fm, xnFm−1, . . . , x(m−1)nF, xnm〉k[x,s,t]. Therefore,

k[x, s, t][〈xnm〉c/xnm] = k[x, s, t][Fm/xnm, xnFm−1/xnm, . . . , x(m−1)nF/xnm].

Thus, we get

k[x, s, t][〈xnm〉c/xnm] = k[x, s, t][ym, . . . , y] = k[x, s, t, y] = k[x, s, t][In/x
n] = R(n,Sd+T r+XQ).
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For (3), Lemma 4.7, assets that Inm+e0 = 〈G, xe0Fm, xn+e0Fm−1, . . . , xn(m−1)+e0F, xnm+e0 〉k[x,s,t]. There-
fore,

k[x, s, t][〈xnm+e0 〉c/xnm+e0 ] = k[x, s, t][G/xnm+e0 , xe0Fm/xnm+e0 , . . . , xn(m−1)+e0F/xnm+e0 ].

Thus, we get

k[x, s, t][〈xnm+e0 〉c/xnm+e0 ] = k[x, s, t][G/xnm+e0 , F/xn] = k[x, s, t][xe−e0z, y] = B(n,e0,Q).

�

Remark 4.9. Lemma 4.7 and Lemma 4.8 show that the contraction chain k[x, s, t] ⊃ 〈x〉c ⊃ 〈x2〉c ⊃ · · · ⊃
〈xnm+e〉c, associatrd to B(n,e,Q), consists of nm+ e distinct ideals in k[x, s, t], while the induced exponential
chain k[x, s, t] ( R(1,Sd+T r+XQ) ( · · · ( R(n,Sd+T r+XQ) ( B(n,1,Q) ( · · · ( B(n,e,Q) has only n+ e distinct
(even non-isomorphic by virtue of Proposition 4.1) sub-algebras. This will be a key observation to prove
Proposition 4.11 and Theorem 5.3, that is, to distinguish B(n,e,Q); e 6= 0 from Russell domains. As we
will see, the contraction chain of a Russell domain R(n′,F ) consists of n

′ distinct ideals in k[x, s, t], and the
exponential chain consists also of n′ non-isomorphic sub-algebras. Therefore, in a sense, the number of non-
isomorphic sub-algebras of the exponential chain, represents a numeric characterization for these k-domains.

The following corollary is a consequence of Theorem 4.5 and Lemma 2.7.

Corollary 4.10. The exponential chain k[x, s, t] ⊂ k[x, s, t][〈x〉c/x] ⊂ · · · ⊂ k[x, s, t][〈xnm+e〉c/xnm+e] =
B(n,e,Q) of B(n,e,Q) is invariant by every locally nilpotent derivation of B(n,e,Q). That is, every ∂ ∈ LND(B(n,e,Q))
restricts to a locally nilpotent derivation of every member of the exponential chain

4.4. Isomorphism classes and Automorphism groups.

In the following proposition we give the necessary conditions that B(n1,e1,Q1) and B(n2,e2,Q2), where n1 +
e1 = n2 + e2, must satisfy to be isomorphic. This will be done by comparing their exponential chains
k[x, s, t] ( R(1,Sd+T r+XQ1) ( · · · ( R(n1,Sd+T r+XQ1) ( B(n1,1,Q1) ( · · · ( B(n1,e1,Q1) and k[x, s, t] (
R(1,Sd+T r+XQ2) ( · · · ( R(n2,Sd+T r+XQ2) ( B(n2,1,Q2) ( · · · ( B(n2,e2,Q2).

Proposition 4.11. Suppose that B(n1,e1,Q1) ≃ B(n2,e2,Q2), then n1 = n2, and e1 = e2.

Proof. Let Ψ : B(n1,e1,Q1) −→ B(n2,e2,Q2) be a k-isomorphism, and assume for contradiction that n1 < n2.
By Theorem 4.5 and Lemma 4.8, Ψ restricts to a k-isomorphism between k[x, s, t][〈xn1 〉cB(n1,e1,Q1)

/xn1 ] =

R(n1,Sd+T r+XQ1) and k[x, s, t][〈xn1 〉cB(n2,e2,Q2)
/xn1 ] = R(n1,Sd+T r+XQ2).

Consider the sub-algebra k[x, s, t][〈xn1+1〉cB(n1,e1,Q1)
/xn1+1], it coincides with R(n1,Sd+T r+XQ1) by virtue

of Lemma 4.8. On the other hand, by Theorem 4.5 k[x, s, t][〈xn1+1〉cB(n1,e1,Q1)
/xn1+1] is isomorphic to

k[x, s, t][〈xn1+1〉cB(n2,e2,Q2)
/xn1+1] which coincides with R(n1+1,Sd+T r+XQ2). However, the latter is not iso-

morphic to R(n1,Sd+T r+XQ2) by virtue of Corollary 4.2, a contradiction. Thus n1 ≥ n2 and by symmetry we
deduce that n = n1 = n2. Since n1 + e1 = n2 + e2 by virtue of Proposition 4.1, we get e = e1 = e2, and we
are done. �

Denote by Isok
(
B(n1,e1,Q1), B(n2,e2,Q2)

)
the set of all k-isomorphisms from B(n1,e1,Q1) to B(n2,e2,Q2).

Proposition 4.11 implies that this set is empty whenever (n1, e1) 6= (n2, e2). The next proposition describes
the set Isok

(
B(n,e,Q1), B(n,e,Q2)

)
in terms of a sub-set of Autk(k[x, s, t]) (the group of k-automorphisms of

k[x, s, t]). Let A be the sub-set of Autk(k[x, s, t]) of automorphisms which preserve the ideal 〈x〉k[x,s,t] and

map I = 〈xnm+e〉cB(n,e,Q1)
isomorphically to J = 〈xnm+e〉cB(n,e,Q2)

, that is,

A := {ψ ∈ Autk(k[x, s, t]); ψ(x) = λx ; λ ∈ k \ {0}, ψ(I) = J}.

Then,

Theorem 4.12. There is a one-to-one correspondence between the set Isok
(
B(n,e,Q1), B(n,e,Q2)

)
and the set

of k-automorphisms A.

Proof. Every k-isomorphisms Ψ : B(n,e,Q1) −→ B(n,e,Q2) restricts to Ψ|k[x,s,t] a k-automorphism of the
Derksen invariant k[x, s, t]. On the other hand, Proposition 4.1 and Theorem 4.5 ensure that Ψ preserves the
ideal 〈x〉k[x,s,t] and that Ψ(I) = J . Conversely, every k-automorphism ψ of k[x, s, t] that preserves the ideal

〈x〉k[x,s,t] and satisfies ψ(I) = J extends, by virtue of Lemma 3.2, in a unique way to ψ̃ a k-isomorphism
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between k[x, s, t][I/xnm+e] and k[x, s, t][J/xnm+e]. These rings coincide with B(n,e,Q1) and B(n,e,Q2) by
virtue of Lemma 4.8. And we are done. �

The next corollary is a direct consequence of Theorem 4.12. It describes the k-automorphism group of
B(n,e,Q) as a sub-group of the k-automorphism group of the Derksen invariant k[x, s, t].

Corollary 4.13. The group Autk(B(n,e,Q)) is isomorphic to the group A via the group isomorphism:

k : Autk(B(n,e,Q))
∼
−→ A ; k(Ψ) = Ψ|k[x,s,t]

where Ψ|k[x,s,t] is the restriction of Ψ ∈ Autk(B(n,e,Q)) to the sub-algebra k[x, s, t] ⊂ B(n,e,Q).

Consider the exponential chain of B(n,e,Q)
1

k[x, s, t] →֒ R(1,Sd+T r+XQ) →֒ · · · →֒ R(n,Sd+T r+XQ) →֒ B(n,1,Q) →֒ · · · →֒ B(n,e,Q).

Every member of this chain represents an invariant sub-algebra of B(n,e,Q), and we have the following.
Autk(R(1,Sd+Tr+XQ))

∪
Autk(B(n,e,Q)) ⊂ · · · ⊂ Autk(B(n,1,Q)) ⊂ Autk(R(n,Sd+Tr+XQ)) ⊂ . . . ⊂ Autk(R(2,Sd+Tr+XQ)) ⊂ Autk(k[x, s, t]),

LND(B(n,e,Q)) = x
(

LND(B(n,e−1,Q))
)

= · · · = xe
(

LND(R(n,Sd+Tr+XQ))
)

= xn+e
(

LNDk[x](k[x, s, t])
)

and

LND(R(n,Sd+Tr+XQ)) = x
(

LND(R(n−1,Sd+Tr+XQ))
)

= · · · = xn−2
(

LND(R(2,Sd+Tr+XQ))
)

= xn
(

LNDk[x](k[x, s, t])
)

.

5. New Exotic Structures on C3

Let m, d, r ≥ 2 be fixed such that gcd(d, r) = 1. For every e ≥ 0, n ≥ 1 such that (n, e) 6= (1, 0), and every
Q ∈ k[X,S, T ], we denote by B(n,e,Q) the following k-domain:

B(n,e,Q) := k[x, y, z, s, t] ≃ k[X,Y, Z, S, T ]/〈XnY − Sd − T r −X Q(X,S, T ), Y m −XeZ − S〉.

Definition 5.1. Recall that a smooth affine variety which is diffeomorphic to R2N but not isomorphic to
CN is called an exotic CN .

5.1. A class of exotic threefolds.

Let k = C and assume that Q(0, 0, 0) 6= 0 and e  1, then, by the Jacobian criterion, the variety V ′ =
Sped(B(n,e,Q)) is the smooth threefold xny− (ym − xez)d − tr − xQ in C4, which birationally dominates the

affine space V = C3 under the blowup morphism σI : V ′ −→ V = C3 ; σI(x, y, z, t) 7→ (x, ym − xez, t). The
exceptional divisor of the affine modification σI : V ′ −→ V , see Proposition 4.4, coincides with Spec(A) :=
{x = 0} ⊂ V ′ where A := C[s, t, y, z] ≃ C[S, T, Y, Z]/〈Sd + T r, Y m − S〉 ≃ C[T, Y, Z]/〈Ymd + T r〉, hence
Spec(A) ≃ C × Γmd,r where Γmd,r = Spec(C[Y, T ]/〈Ymd + T r〉). Assume in addition that gcd(m, r) = 1.
Since every irreducible singular curve of the form ΓN1,N2 = Spec(C[Y, T ]/〈Y N1 +TN2〉) where gcd(N1, N2) =
1, N1 > N2 ≥ 2, is contractible, see [16]. We conclude that the necessary conditions, see [21, Proposition
4.2], for preserving the topology under affine modifications are fulfilled. Therefore, by [21, Theorem 4.3],
the variety V ′ is contractible as a complex threefold, which yields that V ′ is diffeomorphic to R6 by virtue
of the Dimca-Ramanujam Theorem [21, Theorem 3.2]. Since B(n,e,Q) is not isomorphic to C[3] by virtue

of Theorem 2.6 or Corollary 2.9, we deduce that V ′ is not isomorphic to the affine space C3. Therefore,
V ′ = Spec(B(n,e,Q)) is an exotic A3

C
.

Note that since B(n,e,Q)/〈x〉 ≃ k[Y, Z, S, T ]/〈Sd + T r, Y m − S〉 ≃ k[Y, Z, T ]/〈Ymd + T r〉, the principle

ideal 〈x〉 is prime whenever gcd(m, r) = 1. On the other hand, B(n,e,Q)[x
−1] = k[x−1, x, s, t] the localization

of B with respect to x, is a unique fraction domain, therefore B(n,e,Q) is also a unique fraction domain by
virtue of [20, Lemma 1].

We put together the previous observations in the following.

Theorem 5.2. Under the conditions: (k = C, gcd(m, r) = 1, e ≥ 2, and Q(0, 0, 0) 6= 0). The smooth

factorial variety Spec(B(n,e,Q)) is diffeomorphic to R6 but not isomorphic to C3. Hence, Spec(B(n,e,Q)) is an

exotic C3.

1Particular members of the exponential chain of B(n,e,Q) are k[x, s, t] →֒ R(n,Sd+Tr+XQ) →֒ B(n,e,Q). They correspond to

AL0(B(n,e,Q)) →֒ ALα(B(n,e,Q)) →֒ ALmα(B(n,e,Q)) for α = min{d, r}, see [1, Section 2] for definitions and some properties of

ALi∈N-invariants.
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5.2. Comparing the class B(n,e,Q) with Russell domains.

Here, we prove that domains of the form B(n,e,Q); e 6= 0 are not isomorphic to any of Russell k-domains.
Denote by R(n′,F ) the Russell k-domain corresponding to the pair (n′, F ), that is,

R(n′,F ) := k[x, s, t, y] ≃ k[X,Y, S, T ]/〈Xn′

Y − F (X,S, T )〉.

Theorem 5.3. Suppose that B(n,e,Q) ≃ R(n′,F ), then e = 0 and n = n′.

Proof. Suppose that B(n,e,Q) ≃ R(n′,F ), then both rings have the same Derksen and Makar-Limanov in-
variants. Therefore, by Theorem 2.6 and Corollary 2.9, the Derksen and Makar-Limanov invariant of
R(n′,F ) is k[x, s, t] and k[x] respectively, where we realize both k-domains as sub-algebras of B(n,e,Q)[x

−1] =

R(n′,F )[x
−1] = k[x−1, x, s, t].

Let Ψ : B(n,e,Q) −→ R(n′,F ) be a k-isomorphism between B(n,e,Q) and R(n′,F ), then it restricts to a k-
automorphism of the Makar-Limanov invariant k[x]. Hence, Ψ(x) = λx + c for some λ ∈ k\{0} and c ∈ k.
Therefore, Ψ induces Ψ an isomorphism between B(n,e,Q)/〈x〉 and R(n′,F )/〈λx+c〉, which implies that c = 0.

Indeed, assume that c 6= 0, then R(n′,F )/〈λx + c〉 ≃ k[S, T ] ≃ k[2]. On the other hand, B(n,e,Q)/〈x〉 ≃

k[Y, T, Z]/〈Ymd + T r〉 is either a non-domain (if gcd(m, r) 6= 1) or a semi-rigid k-domain with ML-invariant
equal to k[Y, T ]/〈Y md − T r〉, see [18, Lemma 21]. Either way B(n,e,Q)/〈x〉 is not isomorphic to k[2] and
hence the only possibility for c is that c = 0. Thus we have Ψ(x) = λx. Furthermore, since R(n′,F )/〈x〉 ≃

k[S, T, Y ]/P (S, T ) where P (S, T ) := F (0, S, T ), we can assume that P (S, T ) = Smd + T r. Observe that

R(n′,F ) is the exponential modification of k[x, s, t] with locos (xn
′

, 〈xn
′

, F 〉k[x,s,t]) and exponential chain
k[x, s, t] ⊂ R(1,F ) ⊂ · · · ⊂ R(n′,F ).
The same argument, as in the proof of Proposition 4.1 or Theorem 3.5, shows that n + e = n′. Assume for
contradiction that e 6= 0, then n < n′. Theorem 3.5 asserts that Ψ maps the contraction of 〈xN 〉B(n,e,Q)

iso-

morphically to the contraction of 〈xN 〉R(n′,F )
, and that Ψ maps the sub-algebra k[x, s, t][〈xN 〉cB(n,e,Q)

/xN ] ⊂

B(n,e,Q) isomorphically to the sub-algebra k[x, s, t][〈xN 〉c
R(n′,F )

/xN ] ⊂ R(n′,F ), for every N ∈ N. In partic-

ular, Ψ restricts to a k-isomorphism between R(n,Sd+T r+XQ) = k[x, s, t][〈xn〉cB(n,e,Q)
/xn] ⊂ B(n,e,Q) and

k[x, s, t][〈xn〉c
R(n′,F )

/xn] = R(n,F ) ⊂ R(n′,F ). Consider the sub-algebra k[x, s, t][〈xn+1〉cB(n,e,Q)
/xn+1] ⊂

B(n,e,Q), it is equal to R(n,Sd+T r+XQ) by virtue of Lemma 4.8. On the other hand, the sub-algebra

k[x, s, t][〈xn+1〉c
R(n′,F )

/xn+1] = R(n+1,F ) is not equal (even non-isomorphic) to R(n,F ), a contradiction.

Therefore, the only possibility is e = 0 and n = n′, as desired. �

As a consequence of Theorem 5.3, we have the following.

Corollary 5.4. Under the conditions: (k = C, gcd(m, r) = 1, e ≥ 2, and Q(0, 0, 0) 6= 0). The variety

Spec(B(n,e,Q)) is not isomorphic to Spec(R(n′,F )). Consequently, Spec(B(n,e,Q)) represents a new exotic C3.
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