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Abstract

Most robots are today controlled as being entirely rigid. But often, as for HRP-2 robot,
there are flexible parts, intended for example to absorb impacts. The deformation of this flex-
ibility modifies the orientation of the robot and endangers balance. Nevertheless, robots have
usually inertial sensors (IMUs) to reconstruct their orientation based on gravity and inertial
effects. Moreover, humanoids have usually to ensure a firm contact with the ground, which
provides reliable information on surrounding environment. We show in this study how impor-
tant it is to take into account these information to improve IMU-based position/orientation
reconstruction. We use an extended Kalman filter to rebuild the deformation, making the
fusion between IMU and contact information, and without making any assumption on the
dynamics of the flexibility. We show how, with this simple setting, we are able to compensate
for perturbations and to stabilize the end-effector’s position/orientation in the world reference
frame. We show also that this estimation is reliable enough to enable a closed-loop stabiliza-
tion of the flexibility and control of the CoM position with the simplest possible model.

balance; compliance; state observation; sensor fusion; inertial measurement unit; force sensors;
stabilization

1 PROBLEM STATEMENT

Many current humanoid robots are controlled as rigid systems, even if there are compliant and
flexible parts in it. A good example of such a system is the robot HRP-2. Between the ankle and
the sole of the robot, there lies a flexible bush (see Fig 1), designed to absorb foot impacts in order
to protect force sensors and leg actuators[1]. However, this flexible part acts also as an angular
spring and generates important deviation of the whole body, including the center of mass (CoM),
which is not modeled in the rigid system.

Therefore, this flexibility can threaten the balance of the robot, for example if the deformation
deviates the CoM enough. Moreover, it may also jeopardize environment-related tasks. For
example, in the case of drilling a wall, a robot has to apply forces on the wall. These forces will
create a deformation of the compliant material and will deviate the robot’s tool from its reference
position and/or orientation.

The problem of HRP-2 flexibility is currently tackled by a robot stabilizer. The stabilizer
drives the deformation of the flexible material to produce the desired forces and moments at
feet, using a model of elasticity of the flexible material[2, 3]. At the same time, the upper-body
orientation is maintained vertical, in order to minimize unwanted angular momentum and to enable
to respect orientation-related upper-body tasks (manipulation, gaze, etc.). The orientation of the
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Figure 1: The foot of HRP-2. Between the ankle joint and the sole of the robot, there is a rubber
bush.

upper body is obtained using an inertial measurement unit at the chest of the robot. However,
with this stabilizer, in the case of upper-body tasks, even if the torso is maintained upright,
there is no guarantee that upper-body limbs are at their reference position, which is usually
important when the robot is interacting with the environment. Moreover, the use of controllers
based on force/torque sensors raises two main issues. First, these solutions are sensitive to sensors’
calibration errors[4], which can even appear during operation of the robot (e.g. due to impacts,
under constraints, etc). Second, these approaches can obviously not apply to robots which are
not equipped with these expensive force sensors at contact points, such as Aldebaran’s Romeo
robot[5].

By contrast, inertial measurement sensors are cheap, relatively reliable and more robust. In
addition, they provide important data on the real kinematics of the robot in the inertial frame.
We show in this paper that, if we couple these sensors with contact point positions, we can afford
a real-time fine estimation of the flexibility state, without any model of its compliance dynamics.
We show also that these measurements can enable a stabilization of the robot’s end-effector in
the presence of external perturbations. Finally, we demonstrate that this flexibility estimation is
reliable enough to drive a stable closed-loop second order control of the robot’s center of mass in
order to stabilize the flexibility and avoid robot’s oscillation.

This study aims at proving the efficiency of inertial sensors for whole body pose estimation,
and perturbations detection. In the next section, we describe the theoretical guarantees and im-
provements provided by contact information to IMU measurements. Section III shows an example
of implementation of such an observer with minimum prior knowledge. Section IV presents an
experimental setting where we use our method for end-effector stabilization and compensation of
perturbations. Section V demonstrate that a stable closed loop flexibility stabilizer can use the
state feedback of our observer. Experimental results of this stabilization are showed afterwards.
Finally, Section VI concludes the paper.

2 THEORETICAL GROUNDING

In the case of humanoid locomotion, the contact forces have usually to respect center of pressure
(CoP) and friction cone constraints in order to maintain balance[6]. That means that the con-
tacts are firmly fixed to the environment. However, most methods for humanoid-robots attitude-
estimation using inertial measurements do not consider contacts information, even for stabilizing
the robots on their feet[7, 8]. Fixed contact positions provide coupling between the rotation and
translation, transforming the inertial measurement unit (IMU) into a much more efficient sensor
for reconstructing position/orientation. We show next a simple example of what this coupling
provides to a simple pendulum.

2.1 The inverted pendulum

Let’s consider a simple 3D inverted pendulum of 1 m length, connected to the ground with a 3
degrees of freedom (DoF) ball joint, and with an IMU, rigidly aligned at the top of the pendulum
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(see Fig. 2). The configuration of the pendulum is the rotation matrix R. This orientation defines
the position p of the IMU in the global frame:

p = Rez, (1)

where ez =
[
0 0 1

]t
is the unit vector along vertical z axis. If we consider that an unknown

external source u provides the control of the pendulum’s acceleration, we can write the following
state dynamics:

ẋ =
[
([ω]×R)t ω̇t 0

]t
+
[
0 0 I

]t
u, (2)

where x =
[
Rt ωt ω̇t

]t
is the state vector formed by orientation, the angular velocity vector

and the angular acceleration1, and [·]× is the skew symmetric operator, i.e.:xy
z


×

=

 0 −z y
z 0 −x
−y x 0



Figure 2: On the left, 3D inverted pendulum. On the right, 2D inverted pendulum

The IMU at the top is composed of a gyrometer providing the angular rate yg and an ac-

celerometer providing the gravity and the linear acceleration ya. Let y =
[
ytg yta

]t
be the whole

measurements vector:

y =

[
Rtω

Rt(p̈ + g0ez)

]
, (3)

with g0 the standard gravity constant. This measurement provides partial data on the config-
uration, but we show next that observable parts of the vector differ significantly depending on
whether we consider the contact coupling or not.

2.2 Without translation/rotation coupling

In the case we do not take into account the coupling, we have to consider that the linear acceleration
p̈ is a free input to the system for which we do not have any model. So, let’s consider the case of
an input acceleration p̈ = −gez, we have then yta = 0, and the measurements provide only angular
velocities, which are insufficient to reconstruct the orientation. Therefore, the configuration of the
pendulum itself is not observable with these hypotheses.

Indeed, most today’s approaches to reconstruct orientations with a gyrometer/accelerometer
sensors without contact information, have to put an erroneous model on the linear acceleration,
for example considered as Gaussian white noise for Kalman Filtering[9] or as high-frequency signal
for complementary filtering[10]. These method lead to ignore translation accelerations, which may
carry important and redundant information on the dynamics of the pendulum.

1For simplicity, we keep a matrix representation of the orientation despite the heterogeneous nature of this state
vector, in the next section we use vector representation for the actual implementation.
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2.3 With translation/rotation coupling

If we use the rotation/translation coupling provided by Equation (1), we have then

y =

[
Rtω

[Rtω̇]×ez + [Rtω]2×ez + g0R
tez

]
, (4)

and let’s consider the first derivative of the gyrometer measurements

ẏg = Rtω̇, (5)

with these three vectors yg, ya and ẏg, we can reconstruct Rtez and then the roll and pitch
components of the configuration R. The yaw is unfortunately not observable with these sensors
when there is only one contact with the environment, since the system is invariant with respect
to rotations around the z axis.

2.4 The case of multiple contacts

If the number of contacts with the environment is 3 or more, the sensor is fully constrained and
cannot move. So let’s consider the 2 contact situation. There remains only one degree of freedom,
which is the rotation around the axis (c1c2) passing by the two contact points c1 and c2. The
system is equivalent to a 2D pendulum for which the configuration is defined by one angle θ, and
the state becomes x =

[
θ θ̇ θ̈

]
(see Fig. 2). There are two possibilities, (i) the axis (c1c2) is

vertical, and in that case, the sensors can observe only angular velocities and accelerations around
this axis, or (ii) the contact points are not vertically aligned and, without loss of generality, we
can consider them at the same height and that the IMU is at 1 meter from the axis. If it is not
the case, we only need to project the dynamics on the plane orthogonal to the axis (c1c2) with
minor adaptations to find the same developments.

The measurements vector is three-dimensional: angular velocity around the axis (c1c2), and
bi-dimensional accelerations orthogonal to it. All other measurements have constant values, the
new measurement vector becomes:

y =

 θ̇

θ̈ + g0 sin(θ)

θ̇2 + g0 cos(θ)

 , (6)

which can straightforwardly reconstruct all the state vector.
We see with the pendulum example that rotation/translation coupling, deduced from contact

points information, can be taken into account to observe the sensor attitude and position, without
resorting to erroneous modeling of the state dynamics. In the next section, we show how we use
this idea to reconstruct the state of the flexible part of the robot.

3 FLEXIBILITY DEFORMATION OBSERVATION

3.1 Modeling the flexibility

HRP-2 is a 30+6 DoF robot controlled as being rigid. The configuration q is supposed to define
perfectly for each limb i the 6D position in the world, represented by a homogeneous transformation
matrix CMi (C superscript is for “control”).

However, there is a flexible part in HRP-2 which is a small compliant material between the
sole and the ankle joint of the robot[1]. It can be compressed, bent and twisted according to
applied forces/moments. Therefore, when the robot is on its feet, the compliance modifies the
configuration of the robot in rotation and translation, even when the contacts are balanced and
immobile. We depict the flexibility deformation by a SE(3) transformation represented by a
homogeneous transformation matrix

WMC =

[WRC WpC
0 0 0 1

]
, (7)
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with WRC and WpC are the rotation matrix and translation vector associated to the flexibility
deformation.

Any limb i at position/orientation CMi in the “control” reference frame lies in fact at posi-
tion/orientation WMi = WMC

CMi in the world actual reference frame (see Fig. 3). Therefore,
WMC is not the matrix associated to a sole-ankle joint, but a virtual joint between the world and
the free-flier root joint of the robot. The choice of this representation is valid for any number of
supports and to guarantee continuity regardless of changes in contacts.

Figure 3: Left, the rigid robot model in the “control” reference frame and the head position at
CM〉. Right, the flexibility WMC transforms the configuration of the robot and the real position
of the head WM〉 = WMC

CM〉 in the world reference frame. We see that WMC is composed of a
rotation and a translation.

To simplify notations, we omit the world frame W upper left superscript for the next develop-

ments. Let’s then define the 18 dimensional second order state vector x =
[
ptC ΩtC ṗtC ωtC p̈tC ω̇tC

]t
where ΩC is the rotation vector representation of RC , such that exp([ΩC ]×) = RC , (i.e. ‖ΩC‖ is
the angle or rotation and ΩC

‖ΩC‖ is the axis) and ωC is the vector of angular velocity.

Our study aims at showing that the measurements alone are able to provide accurate estimation
of the flexibility state. Hence, we do not model the response of the flexibility to external forces.
Instead we take the model of constant acceleration M̈C , which is a classical choice for pose and
attitude estimation[11, 12, 13]. The discrete-time model of the state dynamics is then:

xk+1 = f(xk) + vk, (8)

where f is a simple integrator with constant accelerations and vk is Gaussian white noise which is
used to model the differences between the real dynamics of the state and the constant-acceleration
model.

It is important to note that this dynamical system is chosen only for demonstration purposes,
so it is deliberately erroneous and unstable. In fact, for a real use of the proposed observer, we
suggest to replace this dynamical model by a model that is closer to the natural dynamics of the
studied system, for example by a spring/damper or an inverted pendulum dynamical models. This
would increase the precision of the estimation as modeling error is reduced.

3.2 The sensor system

This system is not stable and relies only on the measurements to correct it. We use the stock
IMU sensor in HRP-2 which is located at the chest, and is composed of an accelerometer and a
gyrometer. The measurement vector is then classically:

y =

[
yg
ya

]
=

[
Rtsωs

Rts(p̈s + g0ez)

]
, (9)
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where yg and ya are gyrometer and accelerometer measurements, and Rs, ωs and ps are respec-
tively the rotation matrix, the angular velocity vector and the position of the IMU in the world
reference frame.

We suppose that we know perfectly the robot configuration q and its derivatives, we know then
the position CRs, the angular velocity Cωs, the position Cps of the IMU, and their derivatives,
in the control reference frame. On the other hand, we have the relationships due to flexibility:
Rs = RC

CRs and ps = RC
Cps + pC . All that leads to:

yg = CRts
Cωs + CRtsR

t
CωC (10)

ya = CRtsR
t
C(([ω̇C ]× + [ωC ]

2
×)RC

Cps + 2[ωC ]×RC
Cṗs)

+ CRts(
Cp̈s +RtCp̈C) + g0

CRtsR
t
Cez (11)

Since the measurements are noisy and our dynamics is discretized, we model the sensors dynamics
as following

yk = g(xk,qk, q̇k, q̈k) + wsk, (12)

where g is the measurement function summarizing equations (10) and (11) and wsk is a Gaussian
white noise.

3.3 The contact points

We have seen that the flexibility provides six supplementary degrees of freedom to the robot.
However, the size of the flexible bush and the magnitude of the linear forces exerted on it make
linear translations of the compliance almost negligible. In other words, we can consider that
globally the contact point positions in the world and in the control reference frame are almost
identical: MC

Cpci ' Cpci , where Cpci is the position of the i-th contact in the control reference
frame, which is considered as perfectly known for all the contacts. We put then an approximation
instead of an equality constraint. This allows us to leave some freedom to violate the constraint and
to detect for example sideways perturbations during double support. Thus, instead of constraining
the contact points to be fixed in the environment, we add fake measurements to our dynamical
system. These measurement claim that the contacts are fixed in the environment MC

Cpcik −
Cpcik = 0, but we model these measurements as being noisy to allow some freedom. So for each
contact ci, the sensors model is:

rik = MCk
Cpcik −

Cpcik + wik (13)

where wik is a Gaussian white noise.
We can gather then the measurements of a n contacts configuration in a 6+(3×n) dimensional

vector:
zk = h(xk,qk, q̇k, q̈k,

Cpc1k, ...,
Cpcnk) + wk (14)

where h stacks all the measurements described earlier (IMU + fake measurements) and wk stacks
all the measurement noises.

It is worth mentioning that, for the continuous-time system, the measurements described here
provide the same observability properties as the inverted pendulum example of the previous sec-
tion. In the case of one contact, the orientation is observable except in yaw, which leads to a
partial observability of the position pC (constrained to a circle around the vertical line passing by
the contact point). In the case of multiple contacts, everything is observable.

3.4 Extended Kalman Filtering

We use for the estimation of the state vector a classical Extended Kalman Filter (EKF). This
observer works in two steps for each time sample: the prediction and the update.
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3.4.1 Prediction

Let’s suppose that at instant k+ 1, we have already an estimation of xk which we denote x̂k. We
model the error ek = xk − x̂k as a random variable following a centered Gaussian distribution for
which we suppose that we know the covariance matrix Pk. The prediction consists in simulating
the modeled dynamics of the system if it were neither noisy nor perturbed. We define x̄k+1 the
predicted state as:

x̄k+1 =f(x̂k) (15)

This prediction commits also an error ēk+1 = xk+1 − x̄k+1 which is due to the transport of ek
by f in addition to the process noise vk+1. We model also the error ēk+1 as a Gaussian random
variable and we linearize f to approximate its covariance matrix:

P̄k+1 = Fk+1PkF
t
k+1 +Qk+1, (16)

where Qk+1 is the covariance matrix of vk+1, and

Fk+1 =
∂f

∂x

∣∣∣∣
x=x̂k

(17)

This prediction enables us to estimate the measurements obtained if the state was equal to the
prediction:

z̄k+1 = h(x̄k+1,qk+1, q̇k+1, q̈k+1,
Cpc1k+1, . . . ,

Cpcnk+1), (18)

where z̄k+1 is the predicted measurement vector.

3.4.2 Update

The update consists in using the actual measurements to correct, to some extent, the prediction of

the previous step. The actual measurement vector is zk+1 =
[
yt
gk+1

yt
ak+1 01×3n

]t
. We define

the measurements innovation as
ezk+1 = zk+1 − z̄k+1 (19)

Again, this error is modeled as a Gaussian random variable, and the covariance matrix is approx-
imated as follows:

Pzk+1 = Hk+1P̄k+1H
t
k+1 +Rk+1, (20)

where Rk+1 is the covariance matrix of wk+1, and

Hk+1 =
∂h

∂x

∣∣∣∣ x = x̄k+1, q = qk+1, q̇ = q̇k+1, q̈ = q̈k+1,
Cpc1 = Cpc1k+1, . . . ,

Cpcn = Cpcnk+1

(21)

This enables us to compute the near-optimal gain Kk+1 minimizing the quadratic error expectation
for the estimation error ek+1 = xk+1 − x̂k+1, where

x̂k+1 = x̄k+1 +Kk+1ezk+1 (22)

The near-optimal gain Kk+1 is obtained as follows:

Kk+1 = P̄k+1H
t
k+1Pz

−1
k+1 (23)

And the corresponding covariance matrix of ek+1 is then

Pk+1 = (I −Kk+1Hk+1)P̄k+1 (24)

The size of the measurement vector zk may change if a contact on environment is removed or
added, but this does change neither the state value nor the extended Kalman filter developments.

We have now an estimator of the flexibility deformation in its 6 DoF and its derivatives. This
estimation can be directly used for example in order to correct the position of the end effector as
we show in the next section.
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4 HAND POSITION COMPENSATION

4.1 The hand position in the world frame

When a humanoid robot interacts with the environment, the end-effector has usually to follow
trajectories in the control reference frame. We have seen that because of flexible parts of the
robot, these trajectories may differ in the world reference frame. Moreover, if the robot has to
exert forces on the environment in some tasks, such as drilling a wall, the reaction force will create
a deformation of the flexible parts and will move the end effector from its reference position.

We propose here to show a direct use of the flexibility observer. We put HRP-2 on its feet, we
ask the robot to keep the right hand at a given reference position/orientation, summarized in a
homogeneous matrix Mr, and we push the robot to excite flexibility. However, the hand controller
takes only references expressed in C. So, the classical solutions consists in working in the control
reference frame C, giving a reference CMr = Mr. Obviously the hand will swing with all the robot,
and will not keep its reference position, when the flexibility is deformed. Instead, we propose to
ask for another reference of hand position and orientation CMr = M−1

C Mr, with the flexibility
deformation MC estimated using the extended Kalman filter described in the prevous section. If
the flexibility is efficiently reconstructed, the hand will stay at the same position in the world
reference frame (see Fig. 4 top left).
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Figure 4: Top left, an illustration of the hand compensation. A) the hand compensation in the
world reference frame and B) shows what happens at the same time in the control reference frame.
The other figures show the signals of accelerometer along x, the gyrometer around y, and flexibility
orientation ΩC around y, in the case of the three experiments. In top right, the first experiment
(the external perturbations on the upright robot). In bottom left, the second experiment (the
robot’s trunk is oscillating without external perturbations). In bottom right, the third experiment
(trunk oscillation and external perturbations are combined).

4.2 Experimental setting

To achieve this setting, we use the Stack of Tasks framework[14, 15], which is a task-based hier-
archical inverse kinematics solver. The tasks were set, in a decreasing priority order, to (i) keep
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both feet on the ground and the center of mass above the middle of them, in the control reference
frame (ii), keep the height Cpt and the orientation CRt of the trunk (waist, chest and head), (iii)
keep the right hand at CMr = WM−1

C Mr and (iv) reproduce with the left hand the motion of the
right hand. The last task is just to play the role of counterweight and avoid unstable dynamical
effects of hand compensation.

The stack of tasks (SoT) enables also to introduce a feed-forward term which is the desired
velocity of the task in the control reference frame. We introduce then also the following desired
hand linear and angular velocities:

Cṗr =[RtCωC ]×R
t
C(pC − pr)− RtC ṗC (25)

Cωr =− RtCωC , (26)

where pr is the reference position of the hand in the world reference frame.
To show the performances of the observer, three experiments are conducted:

• the reference orientation of the trunk CRt is constant at upright position, and the robot
is pushed to excite flexibility. The expected result is that the hand stays at the reference
position while the whole robot is displaced.

• the reference orientation of the trunk CRt oscillates in time. The IMU is then excited and
provides oscillating measurements. The flexibility is excited as well, due to torques that
move the upper-body, but the excitation is of much smaller magnitude than when the robot
is pushed.

• the oscillation of the trunk and the external perturbations are combined. The estimator
has to distinguish between the signals due to the oscillation and those due to flexibility
deformation.

4.3 Results

During the first experiment, the external perturbations made the robot oscillate of up to 0.175
rad (about 10◦). The hand position, being at 1.1 m distance to the contact point, if it was
not compensated, would move by about 20 cm. Instead, the hand moves by less than 2.0 cm.
During the second experiment, the flexibility was slightly excited and observed by the Kalman
filter. However the oscillation of the upper-body created vibrations, detected particularly by the
gyrometer, leading to small estimation error, the hand moved by about 1.5 cm. During the third
experiment, the combination of oscillation and the perturbation did not degrade the performances
and the hand moved still by less than 2.0 cm. The results are summarized in Fig. 5, and the relevant
signals and observations in Fig. 4. The video of the experiments[16] presents also the performances
under several angles, including the ankle of the robot, and shows responses to lateral perturbations.
We remind that only the right hand is stabilized and the left hand is just a counterweight.

5 FLEXIBILITY STABILIZATION

5.1 Balance and flexibility

Bipedal locomotion enables us to move through various kinds of environments, because it relies
on small contact surfaces. However, this property requires the walking system to be carefully
balanced, because the dynamics of the whole upright body only depends on the forces at these
contacts[6]. Several criteria were developed to ensure balance of biped robots. The most prominent
criterion is the ability to keep a point on the ground called zero moment point (ZMP) or center of
pressure (CoP) strictly inside the convex hull of supporting surfaces[17]. This criterion is usually
guaranteed by a controller which generates trajectories of feet and center of mass (CoM)[18].

However, when the robot structure contains flexible parts, the compliance modifies the con-
figuration of the whole robot, including its center of mass. This modification occurs not only on
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Figure 5: From left to right: (i) a photo of the robot’s hand during the compensation experiment.
(ii) A superimposition of the two pictures of the extreme points of hand stabilization during the
excitation of the flexibility. (iii) A superimposition of extreme positions during oscillation. And
(iv) a superimposition of extreme positions during combined oscillation and excitation of the
flexibility. For each superimposition, the position displacement for the hand is shown.

the position of the CoM, but also on its velocity and acceleration in the world reference frame.
However, the position and acceleration of the CoM are the most important parameters to describe
the CoP of the humanoid robot. Therefore if the flexibility dynamics exceeds some threshold, even
if it is only in acceleration, the center of pressure may leave the safe area, and lead the robot to
flip and fall.

Furthermore, it is not sufficient to reconstruct only the CoM motion in the world reference
frame to guarantee balance. Indeed, depending on the compliance response to deformation, contact
forces may be modified, even for the same CoM position. Fig. 6 shows an example of two inverted
pendulums with torsional elasticity at contact having the same CoM position but with completely
different contact forces. Therefore, this property may lead the robot fall because the CoP position
is entirely defined by contact forces. Moreover, an elasticity of the compliance will store energy. If
inappropriate frequencies appear in the control of the robot, the spring will resonate and conduce
to unstable and dangerous kinematics.

Figure 6: On the left, An inverted pendulum with elastic torsion at rest position. On the right,
the elasticity is not at rest position generating a torque t at contact point. This difference occurs
even if the center of mass position is the same for both pendulums.

Nevertheless, if we are able to rebuild reliably the robot kinematics and the flexibility state, we
can correct the motion of the robot to minimize the energy stored in the elasticity and to improve
the tracking of the CoM reference position in the world reference frame. We call stabilization the
robot control with this two wise objective. We show next a demonstration of the possibility to
design a stable closed-loop stabilizer that takes as state feedback the estimation of the observer
presented in Section 3.

5.2 A model of flexibility

The main purpose of a flexibility-deformation state-observer should go beyond simply stabilizing
end-effectors. Indeed, estimating efficiently the flexibility deformation means that (i) we know the
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actual kinematics of the center of mass in the world reference frame and (ii) we have an estimation
of the ground reaction forces if we have a model of the force-response to deformations of the
flexible part of the robot. Both estimations are precious information on the dynamic balance of
the humanoid robot. Therefore, the main long term objective of this study is to open the way to
balancing and stabilizing techniques that could run on robots that are not equipped with force
sensors and to improve the estimation quality of robots that do have these sensors.

The example of Fig. 6 shows clearly that the kinematics of the CoM by itself cannot be enough
to estimate the balance state of the robot. Contact forces have to be estimated to make sure the
feet are not about to flip because of the deviation of the CoP due to deformation reaction forces.
The force response of flexibility deformation has to be modeled.

To emphasize on the quality of observation, we take the simplest imaginable model of HRP-2
with its flexible bush. The model is an inverted pendulum with the mass of the robot concentrated
at the CoM position. We decouple the rotation around y axis from the rotation around x axis.
The deformation is simplified then with two angles θy and θx respectively. The model boils down
to two 2D inverted pendulums. We consider the CoM height as constant in the control frame,
similarly to the cart-table model except that the flexibility may modify the CoM height in the
world frame. Then we control separately the CoM acceleration along x and y separately.

Without loss of generality, we show the dynamic model of the single 2D pendulum related to
the x axis, and we will apply this model and the outcoming control on both axes. The model is
described in Fig. 7. The flexibility is a simple angle θ which rotates the control reference frame
relative to the world frame. The center of rotation is the contact point at (0, 0) of both frames.
The position of the CoM in the control frame is (ξ, ζ) and in the world frame is (x, z) such that :

x = ξ cos θ − ζ sin θ and z = ξ sin θ + ζ cos θ (27)

By considering that ζ is constant, this leads to

ẋ = ξ̇ cos θ − θ̇z and ż = ξ̇ sin θ + θ̇x (28)

ẍ = ξ̈ cos θ − 2θ̇ż + θ̇2x− θ̈z and z̈ = ξ̈ sin θ + 2θ̇ẋ+ θ̇2z + θ̈x (29)

Figure 7: Our model of the flexibility. It is a cart table model of mass m defined in control
reference frame, which is moved by the flexibility consisting in an angle θ. The center of mass is
represented by the center of the cart. Its position is (x, z) in the world frame and (ξ, ζ) in the
control frame. The contact force and torques are denote fc and tc respectively.

The dynamics of this system is described by

fc,x = mẍ (30)

fc,z = m(z̈ + g0) (31)

tc = zfc,x − xfc,z, (32)
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leading to

tc = m(zẍ− xz̈ − xg0) (33)

= m(z(ξ̈ cos θ − 2θ̇ż + θ̇2x− θ̈z)− x(ξ̈ sin θ + 2θ̇ẋ+ θ̇2z + θ̈x)− xg0) (34)

= m(ξ̈(z cos θ − x sin θ)− 2θ̇(zż + θxẋ)− θ̈(z2 + x2)− xg0) (35)

We model the flexibility as a relation between the angle θ and the torque tc. The simplest possible
model is the rotational spring: tc = kθθ where kθ is the stiffness of the spring. Therefore Eq. (35)
provides us with the following flexibility dynamics

θ̈ =
m(ξ̈(z cos θ − x sin θ)− 2θ̇(xẋ+ zż) + xg0)− kθθ

m(x2 + z2)
(36)

This relation together with Eq. (29) and the straightforward dynamics of x, ẋ, z and ż constitute
the dynamic model of the system.

We denote now by s = (x θ ẋ θ̇)t the state vector and u = (ξ̈) the control vector. For our
demonstration, we show the stabilization of the robot in stance position on both parallel feet. We
consider as a desirable state of the robot the position where the center of mass above the origin and
the flexibility is still, i.e. x = ẋ = θ = θ̇ = ζ̈ = 0 and z = ζ. We assume that the flexibility angle
remains small, therefore the described dynamics can be approximated by linearization around this
desired equilibrium: ṡ = As +Bs, with

A =


0 0 1 0
0 0 0 1
−g0
ζ

−kθ
mζ 0 0

−g0
ζ2

−kθ
mζ2 0 0

 B =


0
0
0
1
ζ

 (37)

The controllability matrix

[B AB A2B A3B] =


0 0 0 −kθ

mζ2

0 1
ζ 0 −kθ

mζ3

0 0 −kθ
mζ2 0

1
ζ 0 −kθ

mζ3 0


is defined and full rank as long as ζ and kθ are positive.

An interesting note is that the described system can be seen as a forth order linear system to
control the CoM position in the world frame. With this consideration, the control boils down to
a snap control.2 Using a linear quadratic regulator (LQR) we obtain the optimal control vector u
which minimize the angle θ and the position error in CoM position x.

5.3 Stabilization of HRP-2

We apply the control described earlier on HRP-2. The flexibility stiffness around y axis was
identified[19] to be roughly around kθ,y = 500 Nm/rad. The elasticity around x axis is only due
to the small linear compliance of the bushes since the robot is on its both feet. Therefore, the
equivalent angular spring has a very high stiffness. We set it to kθ,x = 50000 Nm/rad and around
x axis. The state feedback of each axis is a part of the estimation vector provided by the state
observer implemented earlier: the angle θ and its time-derivative are the components of vectors Ω
and ω, and the positions of the CoM in the global frame are simply obtained by transformation
from its known position in the control frame using also the estimation of the flexibility. We use
the stack of tasks framework [15] to generate the joint motion to track reference positions of the
CoM.

2The snap is the fourth order time-derivative of the position, i.e. the time-derivative of the jerk
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The experiment is divided in two steps: (i) the robot is standing and receives external pushes,
(ii) the reference position of the CoM is modified discontinuously 1 cm forward and after few
seconds 1 cm backward. Both experiments are performed with and without stabilizer.

We restricted the results on rotations around y axis, because it has much more amplitude and
there can be significant improvement compared to a rigid robot. The results are shown in Fig. 8.
The stabilizer provides much more reduced dynamics of the flexibility and lower convergence time.
What is remarkable is the fact that the state feedback did not use force sensors, and does not
have any model of the forces, it gives no prediction on the real dynamics of the system, but it
still provides the controller with reliable estimation enabling stable control of the CoM and the
flexibility. The video of this experiment [16] shows all these presented results including sideways
perturbations. It demonstrates clearly the benefits of the stabilizer.
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Figure 8: These four figures show over time the flexibility state around y axis and the position of
the CoM in the control frame (denoted ξ in the model described earlier). The two top figures show
the responses the first experiment (external pushes), without stabilizer (left) and with stabilizer
(right). Additionally, there is a plot of measured linear forces along x axis at feet. This force
is measured with force sensor, so we do not use it to stabilize the robot, we display it to show
that the pushing forces are comparable between both cases. In the bottom figures, we show the
second experiment (discontinuous steps in the reference position of the CoM) without (left) and
with stabilizer (right). In both cases, the stabilizer guarantees lower amplitudes of the flexibility
and much faster convergence to stationary state.

The performances of the stabilizer are obviously not perfect. They are not sufficient to enable
HRP-2 to walk. But this controller is the simplest possible implementation of a flexibility stabilizer,
and we intended use it as a proof of concept of the reliability of our flexibility estimation, and the
relevance of the observer formulation.

6 DISCUSSION AND CONCLUSION

We have seen through this paper that the contact with the environment enables us to take profit
from the position-orientation coupling, in order to better distinguish between body accelerations
and gravitational component in accelerometer measurements. The separation of these two signals
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have two benefits: it increases the precision in verticality estimation (pitch and roll), but also it
provides information on the acceleration of the attitude and position. This estimation allows to
compensate for the displacement of the end effector due to the deformation, and even to give a
state feedback to a stable closed-loop flexibility and CoM stabilizer.

The combination of the inertial measurements and legs kinematics is already a subject of active
research, but almost exclusively on multi-legged robots for odometry and localization purposes[20,
21, 22, 23, 24, 25]. These methods provide reliable information on the position in the world.
However, none of them took profit of the accelerations-gravity decoupling, even when attitude
reconstruction was an important component of the reconstructed state vector[24, 25].

To our best knowledge, only one method takes this advantage, which is presented by Bloesch et
al.[26, 27] for a multi-legged robot. They used the contact information provided by proprioceptive
sensors and kinematics model and merged them with IMU signals in a multiplicative/additive
extended Kalman filter. They constrained the dynamics of the state to respect contact kinematics,
and use translation-rotation coupling to improve their estimation. However, their model considers
the IMU signals as inputs to the system and not measurements. So their model of the dynamics
is an integration of the measurements. This prevents having another model of the state dynamics
(e.g. inverted pendulum, spring damper, etc) because this would remove IMU information from
models. They also consider slipping contacts as measurements, which may be adapted to walk
on uncertain or slippery environments, but which leads to the non-observability of the position as
aknowledged by the authors. That means that the position may drift for long observation periods.
This would lead for example the hand compensation experiment to deviate eventually from the
reference positions. This issue could possibly be partially solved by reducing the covariance of the
noise model of the measurements, but Kalman filtering is likely to have numerical issues with too
certain or perfect measurements[28]. In fact, for humanoid robots in known environments, we can
consider the contacts as firmly linked to the ground and this should be exploited to constrain the
dynamics of the reconstructed attitude as presented in our study. Finally, Bloesch et al. model
a rigid contact with the ground while our model enables small deviation in translation from the
contact point. This deviation may happen in the case of a flexibility in translation, but this is
different from slipping contact because in our case average contact position is assumed constant
which it is guaranteed by our observer.

Some issues may arise and be considered as limitations of our approach. First, if there is more
than one flexible part in the robot, one single IMU does not guarantee the observability of the
flexibility. In that case, a solution may be to use several IMUs[29]. Second, in the case the joint
positions are not perfectly known, the estimation errors would be proportional to errors in contact
positions and to errors in the position/orientation of the IMU and their derivatives in the control
frame.

Finally, we do not believe that the presented flexibility observer has reached its optimal poten-
tial performances. We have seen in the design of the stabilizer that we can build a model of the
force response to flexibility deformation. This may provide us with a better state predictor than
the simple double integrator. If the position estimation is reliable and the model good enough,
the estimated forces will enable a much cleaner prediction of the velocity and especially the accel-
eration components of the flexibility vector. Furthermore, this model will provide us with force
measurements, which is precisely what is missing in our scheme. This is already in our ongoing
research[30]. This simulated measurement can be used to achieve much better stabilizers and even
if the robot has already force sensors, they can be used as a new feedback to the observer in order
to improve again the estimation.
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