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Abstract. A drillstring is a long column under rotation, composed by a sequence of
connected drill-pipes and auxiliary equipment, which is used to drill the soil in oil prospect-
ing. During its operation, this column presents a three-dimensional dynamics, subjected
to longitudinal, lateral, and torsional vibrations, besides the effects of friction, shock, and
bit-rock interaction. The study of the dynamics of this equipment is very important in
many engineering applications, especially to reduce costs in the oil exploration process.
In this sense, this work aims to formulate and solve a robust optimization problem that
seeks to maximize horizontal drillstrings rate of penetration into of the soil, subjected to
the restriction imposed by the structural limits of the column. To analyze the nonlinear
dynamics of drillstrings in horizontal configuration, a computational model, which uses
a nonlinear beam theory of Timoshenko type is considered. This model also takes into
account the effects of friction and shock, induced by the lateral impacts between the drill-
string and borehole wall, as well as bit-rock interaction effects. The uncertainties of the
bit-rock interaction model are taken into account using a parametric probabilistic approach.
Two optimizations problems (one deterministic and one robust), where the objective is to
maximize the drillstring rate of penetration (ROP) into the soil, respecting its structural
limits, are formulated and solved. In order to optimize the ROP, it is possible to vary
the drillstring velocities of translation and rotation. The solutions of these optimization
problems provided two different strategies to maximize the ROP.
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1 INTRODUCTION

The process of oil exploration involves very high costs, particularly during the drilling
of a well. An effective way to reduce these costs is to optimize the drillstring rate of
penetration into the soil, where a drillstring is a long column under rotation, composed
by a sequence of connected drill-pipes and auxiliary equipment, which is used to drill the
soil until the reservoir level. For this reason, and also because of the complex dynamics
of this equipment, several recent studies have devoted attention to its study [12, 13, 1,
10, 4]. Some papers, in particular, focusing their attention on drillstrings in horizontal
configuration, such as [14, 5, 11].

In the present work the objective is to formulate and solve a robust optimization prob-
lem that seeks to maximize horizontal drillstrings rate of penetration into of the soil,
subjected to the restriction imposed by the structural limits of the column. For this pur-
pose, a nonlinear beam theory of Timoshenko type is considered to analyze the nonlinear
dynamics of drillstrings in horizontal configuration. Also, the mathematical model also
takes into account the effects of friction and shock, induced by the lateral impacts between
the drillstring and borehole wall, as well as bit-rock interaction effects. The uncertainties
of the bit-rock interaction model are taken into account using a parametric probabilistic
approach.

The rest of the paper is organized as follows. Section 2 presents the mathematical
modeling of the nonlinear dynamics and the system efficiency analysis. In section 3 it is
presented the probabilistic modeling of system parameters uncertainties. The formula-
tion and solution of optimization problems that seek to maximize the drillstring rate of
penetration into the soil can be seen in section 4. Finally, in section 5, the conclusions of
the work are emphasized.

2 MODELING THE NONLINEAR DYNAMICS

2.1 Mechanical system of interest

The mechanical system of interest is sketched in Figure 1. It consists of a pair of
stationary rigid walls, that emulates a horizontal rigid pipe, perpendicular to gravity
acceleration g, which contains in its interior a deformable tube under rotation (rotating
beam), subjected to three-dimensional displacements. This deformable tube has a length
L, cross section area A, and is made of a material with mass density ρ, elastic modulus
E, and shear modulus G. It loses energy through a mechanism of viscous dissipation,
proportional to the mass operator, with damping coefficient c. Concerning the boundary
conditions, the rotating beam is blocked for transversal displacements in both extremes;
blocked to transversal rotations on the left extreme; and, on the left extreme, has a
constant angular velocity around x equal to Ω, and an imposed longitudinal velocity V0.

x

L

y

z

Rext

Rint

Figure 1: Schematic representation of the rotating beam which models the horizontal drillstring.
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The beam theory adopted takes into account the rotatory inertia and shear deformation
of beam cross section. Also, it is assumed that the beam is undergoing small rotations
in the transverse directions, large rotation in x, and large displacements the three spatial
directions, which couples the longitudinal, transverse and torsional vibrations.

In this way, the following kinematic hypothesis is adopted

ux(x, y, z, t) = u− yθz + zθy, (1)

uy(x, y, z, t) = v + y (cos θx − 1)− z sin θx,

uz(x, y, z, t) = w + z (cos θx − 1) + y sin θx,

where ux, uy, and uz respectively denote the displacement of a beam point in x, y, and
z directions, at the instant t. Also, u, v, and w are the displacements of a beam neutral
fiber point in x, y, and z directions, respectively, while θx, θy, and θz represent rotations
of the beam around the x, y, and z axes respectively. Note that the physical quantities
of interest are the fields u, v, w, θx, θy, and θz, which depend on the position x and the
time t.

2.2 Friction and shock effects

This beam is also able to generate shocks and friction effects in random areas of the rigid
tube, which are described by the Hunt and Crossley shock model [7], and the standard
Coulomb friction model [2].

The normal force of shock is given by

F n
FS = −kFS1 δFS − kFS2 δ

3
FS − cFS |δ|3δ̇FS, (2)

where kFS1 , kFS2 and cFS are constants of the shock model. The ˙ is an abbreviation
for time derivative, and the parameter δFS = r − gap, where r =

√
v2 + w2, is dubbed

indentation, and is a measure of penetration in the wall of a beam cross section, such as
illustrated in Figure 2.

Once the column is rotating and moving axially, an impact also induces a frictional
force in axial direction, F a

FS, and a torsional friction torque, TFS. Both are modeled by
Coulomb friction law [2], so that

F a
FS = −µFS F

n
FS sgn (u̇) , (3)

and

TFS = −µFS F
n
FSRbh sgn

(
θ̇x

)
, (4)

being µFS the friction coefficient, sgn (·) the sign function, and the radius of the borehole
is Rbh = Rext + gap.

2.3 Bit-rock interaction effects

At the beam right extreme act a force and a torque, which emulate the effects of
interaction between the drill-bit and soil. They are respectively given by
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gap

r
gap

r

δFS = r − gap ≤ 0 δFS = r − gap > 0

Figure 2: Illustration of indentation parameter in a situation without impact (left) or with impact (right).

FBR =

ΓBR

(
e−αBR u̇bit − 1

)
for u̇bit > 0, (5)

0 for u̇bit ≤ 0,

and

TBR = −µBR FBRRbh ξBR (ωbit) , (6)

where ΓBR is the bit-rock limit force; αBR is the rate of change of bit-rock force; u̇bit =
u̇(L, ·); µBR bit-rock friction coefficient; ωbit = θ̇x(L, ·); and ξBR is a regularization func-
tion. The expression for the bit-rock interaction models above were, respectively, proposed
by [11] and [9].

2.4 Variational formulation of the nonlinear dynamics

Using a modified version of the extended Hamilton’s principle, to include the effects of
dissipation, one can write the weak equation of motion of the mechanical system as

M
(
ψ, Ü

)
+ C

(
ψ, U̇

)
+K (ψ,U) = F

(
ψ,U , U̇ , Ü

)
, (7)

whereM is the mass operator, C is the damping operator, K is the stiffness operator, and
F is the force operator. Also, the field variables and their weight functions are lumped in
the vectors fields U =

(
u, v, w, θx, θy, θz

)
, and ψ =

(
ψu, ψv, ψw, ψθx , ψθy , ψθz

)
. To see the

definitions of the above operator the reader is referred to [8, 3].
The weak form of the initial conditions reads

M
(
ψ,U(0)

)
=M (ψ,U0) , (8)

and

M
(
ψ, U̇(0)

)
=M

(
ψ, U̇0

)
, (9)

where U0 and U̇0, respectively, denote the initial displacement, and initial velocity fields.
In order to simulate the nonlinear dynamics of the mechanical system, the physical

parameters presented in Table 1 are adopted, as well as L = 100 m, the rotational and
axial velocities in x, respectively given by Ω = 2π rad/s, and V0 = 1/180 m/s.
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Table 1: Physical parameters of the mechanical system that are used in the simulation.

parameter value unit

ρ 7900 kg/m3

g 9.81 m/s2

ν 0.3 —
κs 6/7 —
c 0.01 —
E 203× 109 Pa
Rbh 95× 10−3 m
Rint 50× 10−3 m
Rext 80× 10−3 m

2.5 Discretization of the model equations

After the discretization of Eqs.(7), (8) and (9), by means of finite element method [6],
one arrives the following initial value problem

[M] Q̈(t) + [C] Q̇(t) + [K]Q(t) = F
(
Q, Q̇, Q̈

)
, (10)

and

[M]Q(0) = Q0, and [M] Q̇(0) = Q̇0. (11)

where Q(t) is the generalized displacement vector, Q̇(t) is the generalized velocity vector,
Q̈(t) is the generalized acceleration vector, [M] is the mass matrix, [C] is the damping
matrix, [K] is the stiffness matrix, and F is a nonlinear force vector, which contains
contributions of an inertial force and a force of geometric stiffness.

The discretization of the structure uses a finite element mesh with 500 elements. As
each element has 6 degrees of freedom per node, this results in a semi-discrete model
with 3006 degrees of freedom. To reduce the computational cost of the simulations, the
initial value problem of Eqs.(10) and (11) is projected in a vector space of dimension 49 to
generate a reduced order model, which is integrated for the time interval [t0, tf ] = [0, 10] s
using the Newmark method [6], and the nonlinear system of algebraic equations, resulting
from the time discretization, is solved by a fixed point iteration. Further details can be
seen in [3].

2.6 Analysis of drilling process efficiency

The drilling process efficiency is defined as

E =

∫ tf
t0
Pout dt∫ tf

t0
Pin dt

, (12)

where Pout is the useful (output) power used in the drilling process, and Pin is the total
(input) power injected in the system. The output power is due to drill-bit movements of
translation and rotation so that

Pout = u̇+bit (−FBR)+ + ω+
bit (−TBR)+ , (13)
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Figure 3: Illustration of efficiency function contour plot, for an “operating window” defined by
1/360 m/s ≤ V0 ≤ 1/120 m/s and 3π/2 rad/s ≤ Ω ≤ 2π rad/s. The maximum is indicated with a
blue cross.

where the upper script + means the function positive part. The input power is defined as

Pin = u̇(0, t)+ (−λ1)+ + θ̇x(0, t)
+ (−λ4)+, (14)

where the first and the fourth Lagrange multipliers, respectively, represent the drilling
force and torque on the beam origin.

One can observe the contour map of E , for an“operating window”defined by 1/360m/s ≤
V0 ≤ 1/120 m/s and 3π/2 rad/s ≤ Ω ≤ 2π rad/s, in Figure 3.

Accordingly, it can be noted in Figure 3 that the optimum operating condition is
obtained at the point (V0,Ω) = (1/144 m/s, 5π/3 rad/s), which is indicated with a
blue cross in the graph. This point corresponds to an efficiency of approximately 16%.
Suboptimal operation conditions occur in the vicinity of this point, and some points near
the “operating window” boundary show lower efficiency.

3 MODELING OF SYSTEM-PARAMETER UNCERTAINTIES

The bit-rock interface law is given by Eqs.(5) and (6), so that this model is characterized
by three parameters, namely, αBR, ΓBR, and µBR. A parametric probabilistic approach
[15, 16] is employed to construct the probabilistic model for each one parameter of these
parameters, which are respectively modeled by random variables �BR, �BR, and �BR. In this
approach, the maximum entropy principle is used to specify the probability distribution
of the random parameters, taking into account only the known information about them.

For �BR, it is assumed that ∫ +∞

α=0

p�BR
(α) dα = 1, (15)

E [�BR] = m�BR
> 0, (16)

and

E
[
ln (�BR)

]
= q�BR

, |q�BR
| < +∞. (17)

6



Americo Cunha Jr, Christian Soize, and Rubens Sampaio

Thus, the maximum entropy distribution is given by

p�BR
(α) = 1]0,∞[(α)

1

m�BR

(
1

δ2�BR

)1/δ2
�BR

× 1

Γ(1/δ2�BR
)

(
α

m�BR

)1/δ2
�BR
−1

exp

(
−α

δ2�BR
m�BR

)
, (18)

which corresponds to the gamma distribution. Similar information are assumed to �BR,
so that this random variable also presents gamma distribution.

On the other hand, for the variable �BR one assumes∫ 1

µ=0

p�BR
(µ) dµ = 1, (19)

E
[
ln (�BR)

]
= q1�BR

, |q1�BR
| < +∞, (20)

and

E
[
ln (1− �BR)

]
= q2�BR

, |q2�BR
| < +∞, (21)

which implies in a maximum entropy distribution of the form

p�BR
(µ) = 1[0,1](µ)

Γ(a+ b)

Γ(a) Γ(b)
µa−1 (1− µ)b−1 , (22)

that corresponds to the beta distribution.
For the probabilistic analysis of the dynamic system, the random variables of interest

are characterized by the mean values m�BR
= 400 1/m/s, m�BR

= 30 × 103 N , and
m�BR

= 0.4, and the dispersion factors δ�BR
= 0.5%, δ�BR

= 1%, and δ�BR
= 0.5%.

4 OPTIMIZATION OF THE RATE OF PENETRATION

4.1 Deterministic optminization problem

The instantaneous rate of penetration is given by the function u̇bit(t), defined for all
instants of analysis. Meanwhile, only contributes to the column advance, the positive part
of this function u̇+bit(t). In addition, as objective function, it is more convenient to consider
a scalar function. Thus, the temporal mean of u̇+bit(t) is adopted as rate of penetration,
and, consequently, objective function of the optimization problem

rop(Ω, V0) =
1

tf − t0

∫ tf

t=t0

u̇+bit(t) dt. (23)

Furthermore, respect the material structural limits is indispensable to avoid failures
in drillstring during the drilling process. For this reason, von Mises criterion of failure is
considered, where it is established that, for all pairs (Ω, V0) in the “operating window”,
one has

UTS− max
0≤x≤L
t0≤t≤tf

{
σVM(V0, Ω, x, t)

}
≥ 0, (24)

where UTS is the material ultimate tensile strength, and σVM is the von Mises equivalent
stress.
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Figure 4: Illustration of maximum von Mises stress contour plot, for an “operating window” defined by
1/360 m/s ≤ V0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s.
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Figure 5: Illustration of rate of penetration function contour plot, for an “operating window” defined by
1/360 m/s ≤ V0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s. The maximum is indicated with a blue
cross.

Regarding the rate of penetration analysis, “operating window” is defined by the in-
equations 1/360 m/s ≤ V0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s, and
UTS = 650× 106 Pa.

The contour map of constraint (24), is shown in Figure 4. From the way (24) is
written, the Mises criterion is not satisfied when the function is negative, which occurs in
a“small neighborhood”of the upper left corner of the rectangle that defines the“operating
window”. It is noted that all other points respect the material structural limits. In this
way, then, the “operating window” admissible region consists of all points that satisfy the
constraint.

In Figure 5 the reader can see the contour map of rop function. Taking into ac-
count only points in the admissible region, the maximum of rop occurs at (V0,Ω) =
(7/720 m/s, 2π rad/s), which is indicated on the graph with a blue cross. This point cor-
responds to a mean rate of penetration, during the time interval analyzed, approximately
equal to 90 “meters per hour”.
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4.2 Robust optminization problem

Taking into account the uncertainties, through the parametric approach presented in
section 3, drill-bit velocity becomes the stochastic process Ubit(t, θ), so that the random
rate of penetration is defined by

ROP(V0, Ω, θ) =
1

tf − t0

∫ tf

t=t0

U̇+
bit(t, θ) dt. (25)

In the robust optimization problem, who plays the role of objective function is the
expected value of the random variable ROP(V0, Ω, θ), i.e., E

[
ROP(V0, Ω, θ)

]
.

Regarding the restriction imposed by the von Mises criteria, now the equivalent stress
is the random field �VM(V0, Ω, x, t, θ), so that the inequality is written as

UTS− max
0≤x≤L
t0≤t≤tf

{
�VM(V0, Ω, x, t, θ)

}
≥ 0. (26)

However, the robust optimization problem considers as restriction a probability of the
event defined by inequality (26),

P

UTS− max
0≤x≤L
t0≤t≤tf

{
�VM(V0, Ω, x, t, θ)

}
≥ 0

 ≥ 1− Prisk, (27)

where 0 < Prisk < 1 is the risk percentage acceptable to the problem.
A robust optimization problem very similar to this one, in the context of a vertical

drillstring dynamics, is considered in [13].
To solve this robust optimization problem it is employed a trial strategy which dis-

cretizes the “operating window” in a structured grid of points and then evaluates the
objective function E

[
ROP(V0, Ω, θ)

]
and the probabilistic constraint (27) in these points.

Accordingly, it is considered the same “operating window” used in the deterministic
optimization problem solved above, i.e., 1/360 m/s ≤ V0 ≤ 1/90 m/s and 3π/2 rad/s ≤
Ω ≤ 7π/3 rad/s, in addition to UTS = 650×106 Pa and Prisk = 10%. Each MC simulation
in this case used 128 realizations to compute the propagation of uncertainties.

Concerning the simulation results, the probabilistic constraint (27) is respected in all
grid points that discretize the “operating window”. Thus, the admissible region of ro-
bust optimization problem is equal to the “operating window”. In what follows, the
contour map of function E

[
ROP(V0, Ω, θ)

]
can be see in Figure 6. Note that the max-

imum, which is indicated on the graph with a blue cross, occurs at the point (V0,Ω) =
(1/90 m/s, 7π/3 rad/s). This point is located in the boundary of the admissible region,
in the upper right corner, and corresponds to a expected value of the mean rate of pene-
tration, during the time interval analyzed, approximately equal to 58 “meters per hour”.

This result says that, in the “operating window” considered here, increasing drillstring
rotational and translational velocities provides the most robust strategy to maximize its
ROP into the soil. This is in some ways an intuitive result, but is at odds with the result
of the deterministic optimization problem, which provides another strategy to achieve
optimum operating condition.
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Figure 6: Illustration of the contour plot of the mean rate of penetration function, for an “operating
window” defined by 1/360 m/s ≤ V0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s. The maximum is
indicated with a blue cross in the upper right corner.

5 CONCLUDING REMARKS

In this work a model that uses a beam theory, with effects of rotatory inertia and shear
deformation, which is capable of reproducing large displacements effects, is employed to
describe the nonlinear dynamics of horizontal drillstrings. This model also considers the
friction and shock effects due to transversal impacts, as well as, the force and torque
induced by bit-rock interaction. The uncertainties of the bit-rock interaction model were
taken into account using a parametric probabilistic approach. A study aiming to max-
imize drilling process efficiency, varying drillstring velocities of translation and rotation
was presented. The optimization strategy used a trial approach to seek for a local max-
imum, which was located within “operating window” and corresponds to an efficiency
of approximately 16%. Two optimizations problems, one deterministic and one robust,
where the objective was to maximize drillstring rate of penetration into the soil, respect-
ing its structural limits, were formulated and solved. The solutions of these problems
provided two different strategies to optimize the ROP.
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