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Abstract

We design an importance sampling scheme for backward stochastic differential equa-

tions (BSDEs) that minimizes the conditional variance occurring in least-squares Monte

Carlo (LSMC) algorithms. The Radon-Nikodym derivative depends on the solution of

BSDE, and therefore it is computed adaptively within the LSMC procedure. To allow

robust error estimates w.r.t. the unknown change of measure, we properly randomize the

initial value of the forward process. We introduce novel methods to analyze the error:

firstly, we establish norm stability results due to the random initialization; secondly, we

develop refined concentration-of-measure techniques to capture the variance of reduction.

Our theoretical results are supported by numerical experiments.

Keywords: Backward stochastic differential equations, empirical regressions, impor-

tance sampling

MSC Classification: 49L20, 60H07, 62Jxx, 65C30, 93E24

1 Introduction

Importance sampling can be important for accelerating the convergence of Monte-Carlo ap-

proximation. To name a few examples and references, it has applications in numerical inte-

gration [26, 19, 20] and in rare event simulation [9, 25, 7]. The idea is to direct the simulations
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to important regions of space through an appropriate change of measure. In this work, we

propose a fully implementable least-squares Monte-Carlo (LSMC, a.k.a. Regression Monte-

Carlo or Empirical Regression) scheme with importance sampling for Backward Stochastic

Differential Equations (BSDEs). BSDEs are usually associated to stochastic control problems

[21, 12]. In the Markovian case with fixed terminal time T > 0, the BSDE takes the form

Yt = g(XT ) +

∫ T

t
f(s,Xs,Ys,Zs)ds−

∫ T

t
ZsdWs (1)

where the unknown processes are (Y,Z) and X is a given forward (d-dimensional) SDE driven

by the (q-dimensional) Brownian motion W :

Xt = x0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs. (2)

In the recent years, there have been many contributions to their numerical approximations

(see references in [6, 8, 10, 16, 15]). Loosely speaking, the current work extends [15] by

incorporating an importance sampling that minimizes the variance of the LSMC algorithm

for computing the value functions y and z – defined as Yt = y(t,Xt) and Zt = z(t,Xt) – using

a suitable Dynamic Programming Equation (DPE for short).

The work closest to ours is the one by Bender and Moseler [5] where they propose a

importance sampling method for BSDEs for a general (but known) Radon-Nikodym derivative.

In our setting, the change of measure is not given but sought within the algorithm. Indeed,

the optimal Radon-Nikodym derivative depends on the solution (Y,Z) – see Proposition 2.1 –

therefore it too must be approximated. In fact, the change of probability measure implies that

traditional simulation and error analysis techniques cannot be applied to establish convergence

of the approximations of y and z. In [15], the simulations of X for the LSMC scheme were

generated from a fixed point at time 0. The error was analyzed using the L2-norm related to

the law of simulations. Propagation of error terms due to dynamic programming were treated

using BSDE estimates and an extension of Gronwall’s inequality. In importance sampling, the

simulations used in LSMC scheme have a modified drift because of the change of probability

measure. The drift term depends on the solution of the BSDE or its approximation. This

creates two novel difficulties. Firstly, one cannot generate the simulations starting from a fixed

point at time 0. Indeed, the drift changes depend on the BSDE solution, which is computed

recursively backwards in time, and therefore not available for simulation from time zero. To

overcome this issue, we initialize the simulations at each time point i using a generic random

variable. However, in doing so, in general we lose the ability to treat the DPE error with

the usual Gronwall technique, see Remark 5.1. To retrieve the algorithm convergence, the

initializing random variable is required to satisfy the Uniform Sub-Exponential Sandwiching

(USES) property, see Proposition 3.1. This allows the distribution of simulations to have

equivalent L2-norms, under different changes of measure and at every time-point. Secondly,

the error due to the approximation of the Radon-Nikodym derivative must be treated.
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Another significant contribution of this work is in the field of nonparametric statistics and

it is crucial for capturing the effect of variance reduction in our scheme. In [15], the error

analysis makes use of classical regression theory [17, Theorems 11.1 and 11.3]. In this theory,

error estimates are not sufficiently tight to observe impact of variance reduction. In particular,

uniform concentration-of-measure techniques are used, which only observe the diameter of the

approximation space and cannot observe low variance. We make a non-trivial continuation of

the recent work of [4] in order to improve concentration-of-measure techniques in the case of

regression problems, so that we can recover the variance reduction effect. These results are

novel, to the best of our knowledge, and may bring insights in problems beyond the immediate

concern of BSDE approximation.

Overview. In Section 2.1, we identify the optimal importance sampling probability measure

starting from the continuous time BSDE (1). In Section 2.2, we introduce the discrete-

time approximation of (1) in the form of the importance sampling DPEs. We also state the

assumptions on the data g and f , and summarize some key properties of the resulting discrete

time BSDE. In Section 3, we define USES and give nontrivial, fully implementable examples

(Proposition 3.3) relevant to practical problems. In Section 4, we detail the regression scheme

(LSMC) on piecewise constant basis functions in a general setting (unrelated to BSDEs). We

provide explicit nonparametric error estimates which do not require uniform concentration-of-

measure techniques (Theorem 4.1). In Section 5, we apply the regression method of Section

4 in order to approximate the conditional expectations in the importance sampling DPEs.

Explicit error estimates for this fully implementable scheme are derived. We conclude the

paper in Section 6 with numerical examples that illustrate the performance of the scheme.

Model restrictions. Due to the novel nature of this scheme, we make simplified as-

sumptions on the BSDE model and on the numerical method, with the aim of highlighting

the main ideas rather than technical results. In particular, we assume that the function

f(t, x, y, z) ≡ f(t, x, y) is independent of the z component. Of course considering such an f

is a restriction for applications, but nonetheless it still serves a significant interest since it

allows to handle reaction-diffusion equations [27] and nonlinear valuations in finance [11]. We

discuss more serious reasons for this simplification in Subsection 2.3, in the hope to motivate

further investigation.
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2 Derivation of the importance sampling Dynamic Program-

ming Equations

2.1 Derivation of optimal Radon-Nikodym derivative

We are concerned with BSDEs driven by a q-dimensional Brownian motion W , supported

by a standard filtered probability space (Ω,F , (Ft)0≤t≤T ,P) with the usual conditions on the

filtration. The solution (Y,Z) is progressively measurable, takes values in R × (Rq)>, and

satisfies

Yt = ξ +

∫ T

t
f(s,Ys,Zs)ds−

∫ T

t
ZsdWs (3)

with the process Y being continuous; the operator > denotes the vector transpose, i.e. Z is a

row vector. Here, the BSDE is not necessarily of Markovian type.

Before introducing our numerical scheme, we first identify the optimal change of measure.

This is inspired by the continuous time equation (3). Assume for discussion that the solution

(Y,Z) of (3) is unique in L2-spaces, so that the above solutions satisfy E
[
supt≤T |Yt|2 +

∫ T
0 |Zt|

2dt
]
<

+∞; this is valid under fairly general conditions on the data ξ and f [21, 12]. We start from

the representation of Y as conditional expectation under P:

Yt = EP

[
ξ +

∫ T

t
f(s,Ys,Zs)ds | Ft

]
.

Let h be a (Rq)>-valued progressively measurable process, such that one can define the process

(W
(h)
t )0≤t≤T and the P-martingale (1/L(h)

t )0≤t≤T by

W
(h)
t := Wt −

∫ t

0
h>r dr, L(h)

t := e−
∫ t
0 hrdWr+

1
2

∫ t
0 |hr|

2dr = e−
∫ t
0 hrdW

(h)
r − 1

2

∫ t
0 |hr|

2dr, (4)

L(h)
t,s :=

L(h)
s

L(h)
t

for 0 ≤ t ≤ s ≤ T.

Then we can set a new equivalent measure Qh|Ft = [L(h)
t ]−1P|Ft by the Girsanov theorem, and

under Qh, W (h) is a Brownian motion. Moreover, we can express Y under the new measure

Yt=
EQh

[
ξL(h)

T +
∫ T
t f(s,Ys,Zs)L(h)

s ds | Ft
]

EQh
[
L(h)
T | Ft

] = EQh

[
ξL(h)

t,T +

∫ T

t
f(s,Ys,Zs)L(h)

t,s ds | Ft
]
.

(5)

To obtain variance reduction in the Monte-Carlo based algorithm, the Ft-conditional variance

under Qh of S(t, h) := ξL(h)
t,T +

∫ T
t f(s,Ys,Zs)L(h)

t,s ds has to be small; we see this later in

Corollary 4.2. Under the assumptions

(Ha) there exists ε > 0 such that P(∀t ∈ [0, T ] : Yt ≥ ε) = 1,
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(Hb)
∫ .

0 ZsdWs is a BMO martingale,

we determine an optimal Radon-Nikodym derivative in the following proposition.

Proposition 2.1. Assume the existence of a unique solution (Y,Z) to (3) which satisfies

E(supt≤T |Yt|2 +
∫ T

0 |Zt|
2dt) < +∞ and (Ha)–(Hb). Then the equivalent probability measure

Qh such that the random variable S(t, h) has zero Ft-conditional variance in (5) is given by

the drift hs = Zs/Ys.

The above result extends [24] to BSDEs.

Remark 2.2. The assumptions (Ha)–(Hb) can be satisfied under quite general conditions on

the data ξ and f . In fact, even if (Ha) is not immediately satisfied, a trivial transformation

may permit the application of Proposition 2.1: if Yt ≥ c for any t ∈ [0, T ] a.s. for some

possibly non-positive constant c ∈ R, the shifted BSDE (Y − c + 1,Z) associated to data

ξ − c + 1 and f(t, y + c − 1, z) satisfies the assumption (Ha) with ε = 1; likewise, if Yt ≤ c,

one can apply similar arguments with an additional sign flip of Y. The BMO-condition (Hb)

is satisfied in many situations, in particular when the terminal condition ξ is bounded [3].

Proof of Proposition 2.1. Let h be a progressively measurable process such that 1/L(h) is an

exponential martingale under P. By Itô’s formula applied to Y.L(h)
. between on [t, T ] combined

with (3), we readily obtain

S(t, h) = (L(h)
t )−1

(
YTL(h)

T +

∫ T

t
f(s,Ys,Zs)L(h)

s ds

)
= Yt + (L(h)

t )−1

∫ T

t

(
L(h)
s [−f(s,Ys,Zs)ds+ ZsdWs] + YsL(h)

s (−hs)dW (h)
s − L(h)

s hs · Zsds
)

+ (L(h)
t )−1

∫ T

t
f(s,Ys,Zs)L(h)

s ds

= Yt + (L(h)
t )−1

∫ T

t
L(h)
s (Zs − Yshs)dW (h)

s .

Therefore, if we can set hs = Zs/Ys and ensure that 1/L(h) is an exponential martingale

under P, then S(t, h) has zero Ft-conditional variance under Qh; this follows readily from

(Ha)–(Hb).

2.2 Assumptions and discrete-time scheme

The resolution of (Y,Z) usually requires the time-discretization of (3). A possible approach

is to use the Malliavin integration-by-parts formula to represent Z [22], which leads to the

Malliavin weights DPE [15, 28] (MWDP) given by

for i ∈ {0, . . . , N − 1},


Yi = EP,i

[
ξ +

∑N−1
k=i f(tk, Yk+1)∆k

]
,

Zi = EP,i

[
ξΘ

(i)
N +

∑N−1
k=i+1 f(tk, Yk+1)Θ

(i)
k ∆k

] (6)
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where (Yi, Zi) approximates (Yti ,Zti) along the time-grid π = {0 := t0 < · · · < ti < · · · <
tN := T}, ∆i := ti+1 − ti, EP,i [.] := EP [. | Fti ], and where {Θ(i)

k : k = i + 1 . . . , N} is a

suitable sequence of square integrable random variables. For reasons detailed in Section 2.3,

we consider functions f that are independent of z from here on; this is not the case of [15].

It is important to assume that, for all i and k, Θ
(i)
k satisfies

EP,i

[
Θ

(i)
k

]
= 0, EP,i

[
|Θ(i)

k |
2
]1/2
≤ CM√

tk − ti
,

for some finite constant CM .

Remark. In fact, the MWDP is known to be a ‘good’ discrete time approximation of (3) in

the Markovian framework (1) [28]. We choose a DPE based on Malliavin weights since we

know from [15] that it allows better control on convergence. Nevertheless, the subsequent

importance sampling scheme could be designed with other DPEs, and this would not greatly

affect the arguments of this section which follow.

We now introduce the discrete-time importance sampling scheme on which we base the

LSMC scheme later. As will be explained in Subsection 2.3, we assume that f does not depend

on z. We first define simplified notation to deal with the discrete-time counterpart of the

importance sampling inverse Radon-Nikodym derivative (4). For a given piecewise constant

(in time), bounded, adapted process h with h|(tk,tk+1]
:= hk ∈ (Rq)> Ftk -measurable, let

L
(h)
j := exp

(
−
j−1∑
k=0

hk∆Wk +
1

2

j−1∑
k=0

|hk|2∆k

)
, 0 ≤ j ≤ N,

where we write ∆Wk = Wtk+1
−Wtk . We also define

L
(h)
i,j :=

L
(h)
j

L
(h)
i

= exp

(
−
j−1∑
k=i

hk∆Wk +
1

2

j−1∑
k=i

|hk|2∆k

)
.

As indicated in Proposition 2.1, h will be computed backward in time using the processes

(Y, Z). In principle, we would now set hk = Zk/Yk and define Qh|Fti =
[
L

(h)
i

]−1
P|Fti and

Yi = EQh,i

[
ξL

(hN )
i,N +

N−1∑
k=i

f(tk, Yk+1)L
(h)
i,k+1∆k

]
,

as we did in Section 2.1. However, at time point i, the solution (Yi, Zi) is not known explicitly,

therefore it isn’t possible to compute L
(h)
i,k+1 explicitly. In order to have an explicit formulation,

we use a modified probability measure defined as follows: for 0 ≤ i, j ≤ N , set

Qh
i |Ftj :=

([
L

(h)
i+1,j

]−1
1j>i+1 + 1j≤i+1

)
P|Ftj .
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Since h is bounded, the Girsanov theorem implies that Qh
i is a probability measure. Observe

that the change of measure is effective after i + 2 instead of i + 1. We denote by WQhi the

new Brownian motion under Qh
i , so that the Radon-Nikodym derivative dP

dQhi
restricted to Ftj

writes

dP
dQh

i

|Ftj := L
(h)
i+1,j1j>i+1 + 1j≤i+1

= 1j>i+1 exp

(
−

j−1∑
k=i+1

{
hk∆W

Qhi
k +

1

2
|hk|2∆k

})
+ 1j≤i+1

for j ≥ i. Now, we are in a position to represent the MWDP (6) with the above change of

probability measure: for i = N − 1, . . . , 0, set

Yi = EQhNi ,i

[
ξL

(hN )
i+1,N +

N−1∑
k=i

f(tk, Yk+1)L
(hN )
i+1,k+1∆k

]
,

Zi = EP,i

[
ξΘ

(i)
N +

∑N−1
k=i+1 f(tk, Yk+1)Θ

(i)
k ∆k

]
,

hNi = Zi/Yi,

EQhNi ,i
[.] = EQhNi

[. | Fti ]


(7)

The importance sampling DPEs (7) are the natural discrete-time approximation of (5). They

are solved recursively backwards in time using the pseudo-algorithm[
YN (= ξ)

]
→
[
ZN−1 → YN−1 → hNN−1 → QhN

N−2

]
→
[
ZN−2 → YN−2 → hNN−2 → QhN

N−3

]
→ . . .

Observe that there is no importance sampling for the Z component of the solution; we will

digress on this in Section 2.3.

In the sequel, we specialize the subsequent algorithm (fully detailed in Section 5) to a

Markovian setting. The standing assumptions are the following.

(HX) The drift coefficient b : [0, T ]×Rd → Rd of (2) is bounded and the diffusion coefficient

σ : [0, T ] × Rd → Rd ⊗ Rq is bounded, uniformly η-Hölder continuous in space, η > 0,

uniformly in time. Furthermore, σ is uniformly elliptic. There exists a constant CX ≥ 1

such that for any t ∈ [0, T ], any x 6= y ∈ Rd, any ζ ∈ Rq, we have

|b(t, x)|+ |σ(t, x)− σ(t, y)|
|x− y|η

≤ CX , C−1
X |ζ|

2 ≤ ζ.σ(t, x)σ(t, x)>ζ ≤ CX |ζ|2.

The time grid π = {0 := t0 < · · · < ti < · · · < tN := T} is uniform, i.e. ti = Ti/N and

∆i = T/N for all i. The Euler scheme associated to X with time-step ∆i is denoted by

XN
ti := Xi and defined iteratively by X0 = x0 and Xi+1 = Xi + bi(Xi)∆i + σi(Xi)∆Wi

for i ≥ 0, where we set bi(.) = b(ti, .) and σi(.) = σ(ti, .).
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(Hf ) In (6), f(ti, y, ω) = fi(Xi, y) a.s., where fi(x, y) is a deterministic function, globally

Lipschitz continuous in y uniformly in i and x (with a Lipschitz constant Lf ), and

|fi(x, 0)| ≤ Cf uniformly in i and x;

(Hξ) ξ(ω) = g(XN ), where g is a bounded globally Lipschitz continuous function (with

Lipschitz constant Lg);

(HC) 1 ≤ Yi ≤ Cy and |Zi| ≤ Cz for any i.

(HΘ) For any i, the Malliavin weights Θ(i) := (Θ
(i)
i+1, . . . ,Θ

(i)
N ) in (6) are squared integrable

(Rq)>-valued random variables and there exist measurable functions θ
(i)
j such that

Θ
(i)
j = θ

(i)
j (Xi, . . . , XN ,∆Wi, . . . ,∆WN−1).

There is a finite constant CM ∈ (0,+∞) such that, for any 0 ≤ i < k ≤ N ,

E
[
Θ

(i)
k | Xi

]
= 0, E

[
|Θ(i)

k |
2 | Xi

]1/2
≤ CM√

tk − ti
.

(HC) is a reinforcement of (Ha)-(Hb), which ensures that hN is bounded. The latter property

is frequently used in the subsequent analysis. Observe also that the above assumptions are

stronger than those for the MWDP scheme with no importance sampling [15] (for the time

grid, ∆i = T/N and Rπ = 1); this is in the spirit of simplifying the paper.

In the case where X is a Brownian motion, we can take Θ
(i)
k =

Wtk
−Wti

tk−ti (see [15, Section

1.4]), which obviously satisfies (HΘ). From [22], we know that the continuous time Malliavin

weight Θ
(t)
s is a Brownian stochastic integral between t and s with the integrand depending

on the SDE. Thus, the assumption (HΘ) is an adaptation of this property to a discrete time

setting. We allow Θ
(i)
j to depend on the processes between j and N , although this dependence

does not appear in explicit examples we are aware of [28], and this dependence is treated in

the subsequent analysis.

Under (Hf ) and (Hξ), one can derive the upper bounds in (HC) from [15, Corollary 2.6];

in particular, one needs the Lipschitz continuity of the function g to ensure that the bound on

|Zi| is uniform in i. (HC) assumes additionally a lower bound on Y that can be obtained as

described in Remark 2.2. Moreover, one can easily obtain the following Markovian property,

which follows by applying a reverse change of measure in the expression of Yi and using the

results of [15, Section 3.1].

Lemma 2.3. Assume (HX), (Hf ), (Hξ), (HΘ). For each i, there exist measurable functions

yi : Rd → R and zi : Rd → (Rq)> such that Yi = yi(Xi) and Zi = zi(Xi).

June 27, 2015 at 18:21 8



2.3 Discussion on the driver not depending on z

In Section 2.1, the optimal importance sampling for computing the conditional expectation of

Y is obtained using the drift Z/Y. It is not clear how to efficiently transfer these arguments

to Z. Below, we suggest two possible approaches. Both approaches have some potential, but

suffer from technical difficulties which we do not know how to solve at present. We explore

these difficulties to encourage future research on this topic.

1. First, from the representation of Z in (6) using the Malliavin integration-by-parts for-

mula, we obtain the l-th component of Zti (or its approximation Zi) as the conditional

expectation of ξl,i := ξΘ
(ti)
l,T +

∫ T
ti

Θ
(ti)
l,s f(s,Ys,Zs)ds. Therefore, it can be interpreted as

a new BSDE problem on the interval [ti, T ] with zero driver and terminal condition ξl,i.

Denote its solution by (Yξl,i ,Zξl,i). Using the techniques of Proposition 2.1 we obtain

that the optimal drift for changing the measure for the evaluation of Zl,ti is (formally)

hξl,i := Zξl,i/Yξl,i . This leads to significant difficulties: first from the theoretical point

of view, there is no clear set of checkable assumptions ensuring we can reduce to (Ha)-

(Hb) for the new BSDE. Second, from the numerical point of view, one must solve a

BSDE (Yξl,i ,Zξl,i) for every time-point ti in order to obtain the optimal probability

measure. Computationally, this is extremely expensive and it seems a priori that there

is no way such an algorithm may be efficient.

2. Second, instead of the representation of Zti or Zi using integration by parts formula,

we could take advantage of the BSDE-type equation satisfied by (Zt)t (see [18] for a

recent account on the subject). However, these equations involve “the Z of the Z”,

i.e. Gamma processes. We must add DPEs to (7) to approximate the Gamma (like in

2BSDE [13]). However, a complete error analysis of these DPEs in the context of LSMC

algorithms seems especially difficult. Therefore, this approach is beyond the scope of

this work.

Finally, if f(t, y, z) depends on z and if the Monte-Carlo estimation of Z in (7) is made

without appropriate variance reduction (suited to Z specifically), we would obtain a propa-

gation of “lack of variance reduction” on the Y component due to the Z component through

f . Therefore, we would lose the variance reduction on Y . Thus, to keep track of the benefit

of importance sampling for Y , it seems necessary to consider a driver independent of z.

3 Stability of L2-norm under USES

Let ρ be a probability density w.r.t. the Lebesgue measure on Rd, and R be a random variable

with such a density. Set

‖ϕ‖ρ :=

(∫
Rd
ϕ2(x)ρ(x)dx

)1/2

=
(
E
[
ϕ2(R)

])1/2
(8)
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for any measurable function ϕ : Rd 7→ R in L2(Rd, ρ). We now introduce the USES assump-

tion.

(Hρ) ρ is a continuous density and there is a positive continuous function Cρ : R→ [1,+∞)

such that, for any Λ ≥ 0, any λ ∈ [0,Λ] and any y ∈ Rd, we have

ρ(y)

Cρ(Λ)
≤
∫
Rd
ρ(y + z

√
λ)
e−|z|

2/2

(2π)d/2
dz ≤ Cρ(Λ)ρ(y). (9)

Observe that (9) implies that ρ must be strictly positive. Examples of such distributions are

given later in Proposition 3.3, all having sub-exponential tails. The acronym USES stands

for Uniform Sub-Exponential Sandwiching and it can be summerized shortly as follows: by

initializing a Euler scheme with a density ρ, the marginal density of the process remains

equivalent to ρ (up to constant which is uniform locally w.r.t. time). This stability property

is stated as follows.

Proposition 3.1. Assume (HX). Let h := (h0, . . . , hN−1) be a vector of functions, where

hk : Rd → (Rq)> are bounded and measurable. Let i ∈ {0, . . . , N − 1}, and R(i) be a random

variable satisfying (Hρ) which is independent of the Brownian motion W . Define by X
(i)
· (h)

be the Markov chain

X
(i)
i (h) := R(i), (10)

X
(i)
j+1(h) := X

(i)
j (h) +

[
bj(X

(i)
j (h)) + σj(X

(i)
j (h))h>j (X

(i)
j (h))

]
∆j + σj(X

(i)
j (h))∆Wj ,

for i ≤ j ≤ N−1. Then, there exist finite positive constants c(11) and c(11) (depending only on

d, q, T , |h|∞, CX , ρ, but not on i) such that, for any j ∈ {i, . . . , N} and any square integrable

function ϕ : Rd 7→ R, we have

c(11) ‖ϕ‖ρ ≤
(
E
[
ϕ2(X

(i)
j (h))

])1/2
≤ c(11) ‖ϕ‖ρ . (11)

Our main interest in this result is for having equivalent L2-norms despite the importance

sampling drift, see Remark 5.1. Moreover, randomizing the initial condition is easy to imple-

ment in practice. We present tractable examples of ρ in Proposition 3.3, and state how to

simulate the corresponding random variable R.

Similar equivalence-of-norm results are established in [2, Proposition 5.1] but they have

been derived for time-homogenous diffusion processes (and not Euler schemes) with smooth

coefficients. For an extension to time-inhomogeneous diffusion process with smooth in space

coefficients, see [14, Proposition 3.8]. Moreover, [14, Proposition 3.9] partially extends this to

the Euler scheme, still with smooth coefficients. Our contribution is to consider drift coeffi-

cients b and h without smoothness condition in space and time, and only Hölder continuity in
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space for the diffusion coefficient σ. The main application of this is to piecewise-continuous

h, as we encounter in the LSMC scheme (see (48)-(50) later).

The reader will easily check from the proof below that the above equivalence of L2-norms

immediately extends to Lp-norms, p ≥ 1; however, in this work, only the case p = 2 is used.

Proof of Proposition 3.1. Let 0 ≤ i < j ≤ N and x ∈ Rd. Denote by pxi,j(y) the density at

y ∈ Rd of the random variable Xx
j defined iteratively by

Xx
i := x, Xx

j+1 := Xx
j +

[
bj(X

x
j ) + σj(X

x
j )h>j (Xx

j )
]
∆j + σj(X

x
j )∆Wj for j ≥ i.

It is easy to check that, under the ellipticity assumption (HX), this density exists; actually it

can be written as a convolution of Gaussian densities. In view of (10), observe that XR(i)

j :=

X
(i)
j (h). The following lemma, proved in [23], provides upper and lower bounds on pxi,j(y)

using a Gaussian density (i.e. Aronson-like estimates).

Lemma 3.2 ([23, Theorem 2.1]). Under the assumptions and notation of Proposition 3.1,

there exists a finite constant C(12) ≥ 1 (depending only on d, q, T and CX) such that

1

C(12)

e
−C(12)

|y−x|2
2(tj−ti)

(2π(tj − ti))d/2
≤ pxi,j(y) ≤ C(12)

e
− |y−x|2

2C(12)(tj−ti)

(2π(tj − ti))d/2
, (12)

for any 0 ≤ i < j ≤ N and any x, y ∈ Rd.

The upper bound of (11) can now be proved as follows:

E
[
ϕ2(X

(i)
j (h))

]
=

∫
Rd

∫
Rd
ρ(x)pxi,j(y)ϕ2(y)dxdy

≤ C1+d/2
(12)

∫
Rd

∫
Rd
ρ
(
y + z

√
C(12)(tj − ti)

) e−|z|2/2
(2π)d/2

ϕ2(y)dzdy

≤ C1+d/2
(12) Cρ(C(12)T )

∫
Rd
ρ(y)ϕ2(y)dy.

The lower inequality is proved similarly.

To conclude this section, we provide a list of distributions satisfying the USES property

(Hρ). The proof is postponed to Appendix A.

Proposition 3.3. The following densities/distributions satisfy Assumption (Hρ); in addition

their coordinates (R1, . . . , Rd) are i.i.d. and each coordinate can be simply sampled using a

Rademacher r.v. ε (taking ±1 with equal probability) and a [0, 1]-uniformly distributed r.v.

U , both being independent.
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(a) Laplace distribution: For µ > 0 set

ρ(x) :=
d∏
i=1

[
(µ/2)e−µ|xi|

]
. (13)

Each coordinate can be sampled as ε ln(U)/µ.

(b) Pareto-type distribution: For µ > 0 and k > 0, set

ρ(x) :=
d∏
i=1

[
(µk/2)(1 + µ|xi|)−k−1

]
. (14)

Each coordinate can be sampled as ε(U−1/k − 1)/µ.

(c) Twisted Exponential-type distribution: For µ > 0 and α > 2 set

ρ(x) :=
d∏
i=1

[
(µe/α)e−(1+µ|xi|)2/α

(1 + µ|xi|)2/α−1
]
. (15)

Each coordinate can be sampled as ε[(1− ln(U))α/2 − 1]/µ.

4 Regression on piecewise constant basis functions and non-

parametric estimates

In this section, we develop a fully explicit, nonparametric error analysis for LSMC scheme

on piecewise constant functions for a single-period problem. These results are not specific

for BSDEs. For a probability space (Ω,F ,P), let (Y,X) : Ω → R × Rd be random variables

satisfying E
[
|Y |2

]
< +∞. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. copies of these random variables,

with n > 1. The pair (Y,X) is termed the response/observation, and ensemble of the i.i.d

copies termed the sample from now on. We aim at estimating the regression function m(x) =

E [Y | X = x] using the sample. The function m is generally unknown. Nonetheless, we

assume that |m(x)| ≤ L for a known constant L > 0.

We denote by ν the joint law of (Y,X) and let νn be the empirical measure associated

to the sample. Whenever there is no conflict, ν (resp. νn) will stand for (by slight abuse of

notation) the law of X (resp. the empirical measure associated to the data (X1, . . . , Xn)).

For K ∈ N∗ disjoint sets H1, . . . ,HK in Rd, let K := span{1H1 , . . . ,1HK} be the linear

space of functions that are piecewise constants on each Hk. We estimate the function m using

sample and the class of functions K on the domain D :=
⋃K
i=1Hi ⊂ Rd with least-squares

regression and truncation:

m(·) ≈ mn(·) := TL
[
arg min

ϕ∈K

∫
R×Rd

|y − ϕ(x)|2νn(dy,dx)

]

June 27, 2015 at 18:21 12



where y ∈ R 7→ TL [y] = −L ∨ y ∧ L is the soft-thresolding operator. Observe that mn(·) is

not the optimal approximation of m(·) in L2(νn). This role is played by the function m?
n(·)

defined below:

m(·) ≈ m?
n(·) := arg min

ϕ∈K

∫
Rd
|m(x)− ϕ(x)|2νn(dx).

We emphasize that functions mn and m?
n are piecewise constant on the sets Hk. Thanks to

the orthogonal structure of the class K, the functions mn and m?
n are available in closed form

[17, Ch. 4]: on each set Hk, k ∈ {1, . . . ,K}, the approximating functions are defined by

mn(·)|Hk = TL

[∫
R×Rd y1Hk(z)νn(dy,dz)

νn(Hk)

]
, m?

n(·)|Hk =

∫
Rdm(z)1Hk(z)νn(dz)

νn(Hk)
(16)

with the convention 0/0 = 0. In particular, if νn(Hk) = 0 (no data in Hk), we set mn(·)|Hk =

m?
n(·)|Hk = 0.

The error of the LSMC scheme is given by the expected risk

R(mn) := E
[∫

Rd
|m(x)−mn(x)|2ν(dx)

]
. (17)

The inner integral is taken with respect to the true law ν rather than the empirical law νn.

One can define the empirical version of (17), i.e.

Rn(mn) := E
[∫

Rd
|m(x)−mn(x)|2νn(dx)

]
. (18)

For various reasons, it is important to have switching estimates between R(mn) and Rn(mn),

i.e. to estimate R(mn) in terms of Rn(mn) up to errors, and vice-versa. This is usually

achieved using concentration-of-measure inequalities. Let us recall the classical technique to

estimate the error. First, estimates on the empirical risk (18) are known [17, Theorem 11.1],

and usually take the form

Rn(mn) ≤ const×

{
K∑
k=1

[osc
(m)
k ]2ν(Hk) + L2ν(Dc) +K

supx∈Rd Var(Y | X = x)

n

}
(19)

where osc
(m)
k is the oscillation of m on Hk, i.e.

osc
(m)
k := sup

x,y∈Hk
|m(x)−m(y)|. (20)

Then, to complete the estimate, one addresses the difference

E
[(∫

Rd
|m(x)−mn(x)|2ν(dx)− 2

∫
Rd
|m(x)−mn(x)|2νn(dx)

)
+

]
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≤ E

[
sup

ϕ∈K,|ϕ|∞≤L

(∫
Rd
|m(x)− ϕ(x)|2ν(dx)− 2

∫
Rd
|m(x)− ϕ(x)|2νn(dx)

)
+

]

≤ 2028(K + 1) log(3n)L2

n
, (21)

where L is the uniform bound on m. These results are obtained using concentration-of-

measure inequalities [16, Propositions 4.9 and 4.10], which force the L2 to appear by the use

of Hoeffding-type inequalities. In the above, we can interchange the roles of ν and νn and

the upper bound (21) keeps the same form, see the arguments in [16]. The main point to

observe is that the estimate from concentration-of-measure (21) is less tight with respect to n

than the estimate (19) on Rn(mn), because the conditional variance supx∈Rd Var(Y | X = x)

may be substantially smaller than L2. This is particularly true in the context of variance

reduction algorithms, such as the importance sampling scheme presented in Section 5, where

the aim is to minimize the conditional variance term. Therefore, if one were to use usual

concentration-of-measure results like (21), the impact of variance reduction would be lost.

The main result of this section is to demonstrate that, thanks to the structure of the

approximation space K, one can obtain switching estimates on the risks for which estimate on

the left-hand side of (21) is much smaller than L2K log(n)
n , and therefore for which the impact

of variance reduction is not lost.

Theorem 4.1. Assume that m is bounded by L > 0. For each k ∈ {1, . . . ,K}, define osc
(m)
k

as in (20). Define also the upper bound σ2 := supx∈Rd Var(Y | X = x). Then

R(mn) ≤ 8Rn(mn) + 10

K∑
k=1

[osc
(m)
k ]2ν(Hk) +

8σ2

n

K∑
k=1

exp

(
−3nν(Hk)

104

)

+ L2
K∑
k=1

ν(Hk) exp (−nν(Hk)) , (22)

Rn(mn) ≤ 8R(mn) + 10

K∑
k=1

[osc
(m)
k ]2ν(Hk) +

4σ2

n

K∑
k=1

exp

(
−3nν(Hk)

8

)
. (23)

Note that the switching-estimates from R(mn) to Rn(mn) and from Rn(mn) to R(mn) are

not symmetric: this reflects that νn(Hk) > 0 implies ν(Hk) > 0 but the converse is false. This

will become evident in the proof. Putting (22) together with (19) gives a bound (Corollary

4.2) that improves known estimates (like [17, Theorem 11.3] for instance). The improvement

comes from the statistical error which is now essentially K σ2

n as soon as the mean number

nν(Hk) of simulations in each Hk is large enough:

L2ν(Hk) exp (−nν(Hk)) ≤ L2 supu≥0 ue
−u/2

n
exp (−nν(Hk)/2)� σ2

n
.
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Corollary 4.2. Assume that m is bounded by L > 0, that σ2 := supx∈Rd Var(Y | X =

x) < +∞ and that (H1, . . . ,HK) are disjoint subsets of Rd, with
⋃
kHk =: D. For universal

constant C(24) > 0, we have

R(mn) ≤ C(24)

[
K∑
k=1

[osc
(m)
k ]2ν(Hk) +K

σ2

n
+ L2

K∑
k=1

ν(Hk) exp (−nν(Hk)) +L2ν(Dc)

]
. (24)

Proof of Theorem 4.1. Recall that mn = 0 on Dc; thus both risks admit the decomposition

over disjoint sets

R(mn) =
K∑
k=1

E
[∫

Hk

|m(x)−mn(x)|2ν(dx)

]
+

∫
Dc
|m(x)|2ν(dx)

:=

K∑
k=1

R(mn, Hk) +R(0, Dc), (25)

Rn(mn) =
K∑
k=1

E
[∫

Hk

|m(x)−mn(x)|2νn(dx)

]
+ E

[∫
Dc
|m(x)|2νn(dx)

]

:=
K∑
k=1

Rn(mn, Hk) +R(0, Dc) (26)

where we have used at the last equality that (X1, . . . , Xn) are i.i.d. with distribution ν. Thus,

it is enough to compare R(mn, Hk) and Rn(mn, Hk) for any k.

We start by proving (22). Assume first νn(Hk) > 0. Using Cauchy’s inequality,∫
Hk

(m(x)−mn(x))2ν(dx) ≤ 2

∫
Hk

(m(x)−m?
n(x))2ν(dx) + 2

∫
Hk

(m?
n(x)−mn(x))2ν(dx).

(27)

In view of (16), for any x ∈ Hk,

|m(x)−m?
n(x)| ≤ 1

νn(Hk)

∫
Hk

|m(x)−m(z)| νn(dz) ≤ osc
(m)
k . (28)

Thus, the first integral on the right hand side of (27) is bounded by [osc
(m)
k ]2ν(Hk). For the

second integral, observe that, for an arbitrary point xk ∈ Hk,∫
Hk

(m?
n(x)−mn(x))2ν(dx) = (m?

n(xk)−mn(xk))
2ν(Hk).

Combining the above results, it follows that∫
Hk

(m(x)−mn(x))2ν(dx) ≤ 2[osc
(m)
k ]2ν(Hk) + 2(m?

n(xk)−mn(xk))
2ν(Hk)
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≤ 2[osc
(m)
k ]2ν(Hk) + 4(m?

n(xk)−mn(xk))
2νn(Hk)

+ 2(m?
n(xk)−mn(xk))

2(ν(Hk)− 2νn(Hk))+. (29)

For the second term on the right hand side above, we again make use of (28):

(m?
n(xk)−mn(xk))

2νn(Hk) =

∫
Hk

(m?
n(x)−mn(x)±m(x))2νn(dx)

≤ 2

∫
Hk

(m?
n(x)−m(x))2νn(dx) + 2

∫
Hk

(m(x)−mn(x))2νn(dx)

≤ 2[osc
(m)
k ]2νn(Hk) + 2

∫
Hk

(m(x)−mn(x))2νn(dx).

Collecting the different inequalities and taking the expectation in (29) gives (using also

E [νn(Hk)] = ν(Hk)) that

E
[∫

Hk

(m(x)−mn(x))2ν(dx)1νn(Hk)>0

]
≤ 10[osc

(m)
k ]2ν(Hk) + 8E

[∫
Hk

(m(x)−mn(x))2νn(dx)1νn(Hk)>0

]
+ 2E

[
(m?

n(xk)−mn(xk))
2(ν(Hk)− 2νn(Hk))+1νn(Hk)>0

]
. (30)

It remains to estimate the last expectation term on the right hand side of (30). Write

m̃n(x) := arg min
ϕ∈K

∫
R×Rd

|y − ϕ(x)|2νn(dy,dx), (31)

so that mn(x) = TL [m̃n(x)]. Clearly, from (16), m?
n is bounded by L, therefore |m?

n(x) −
mn(x)| ≤ |m?

n(x)− m̃n(x)|. Additionally, on {νn(Hk) > 0}, from definitions (16) and (31) we

have m̃n|Hk = 1
nνn(Hk)

∑n
i=1 1Xi∈HkYi and m?

n|Hk = 1
nνn(Hk)

∑n
i=1 1Xi∈Hkm(Xi). Denoting by

E(n)[·] := E [· | X1, . . . , Xn], we obtain

E(n)[(m?
n(xk)−mn(xk))

21νn(Hk)>0] ≤ E(n)[(m?
n(xk)− m̃n(xk))

21νn(Hk)>0]

=

∑n
i=1 1Xi∈HkE(m)[(Yi −m(Xi))

2]

n2ν2
n(Hk)

1νn(Hk)>0

≤ σ2

nνn(Hk)
1νn(Hk)>0 (32)

using that sample is independent and that m(Xi) = E [Yi | Xi] for all i. Therefore, condition-

ing inside the expectation, we are left with

E
[
(m?

n(xk)−mn(xk))
2(ν(Hk)− 2νn(Hk))+1νn(Hk)>0

]
≤ σ2

n
E
[(

ν(Hk)

νn(Hk)
− 2

)
+

1νn(Hk)>0

]
≤ 4σ2

n
exp

(
−3nν(Hk)

104

)
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where the last inequality follows from Lemma B.1 in Appendix. To summarize, from the

above and (30) we have proved

E
[∫

Hk

(m(x)−mn(x))2ν(dx)1νn(Hk)>0

]
≤ 10[osc

(m)
k ]2ν(Hk)

+ 8E
[∫

Hk

(m(x)−mn(x))2νn(dx)1νn(Hk)>0

]
+

8σ2

n
exp

(
−3nν(Hk)

104

)
. (33)

On the other hand, on {νn(Hk) = 0}, mn|Hk = 0 and we simply have

E
[∫

Hk

(m(x)−mn(x))2ν(dx)1νn(Hk)=0

]
=

∫
Hk

m(x)2ν(dx)(1− ν(Hk))
n

≤ L2ν(Hk) exp(−nν(Hk)). (34)

Moreover, E
[∫
Hk

(m(x)−mn(x))2νn(dx)1νn(Hk)=0

]
= 0. By summing up (33)-(34) and com-

bining them with (25)-(26), we obtain the announced inequality (22).

We now establish (23). We invert the roles of ν and νn in the computations and proceed

with the same arguments as before. The inequality (30) becomes

E
[∫

Hk

(m(x)−mn(x))2νn(dx)1νn(Hk)>0

]
≤ 10[osc

(m)
k ]2ν(Hk) + 8E

[∫
Hk

(m(x)−mn(x))2ν(dx)1νn(Hk)>0

]
+ 2E

[
(m?

n(xk)−mn(xk))
2(νn(Hk)− 2ν(Hk))+1νn(Hk)>0

]
.

On the other hand, E
[∫
Hk

(m(x)−mn(x))2νn(dx)1νn(Hk)=0

]
= 0; plugging this and (32) in

the above yields

Rn(mn, Hk) ≤ 10[osc
(m)
k ]2ν(Hk) + 8R(mn, Hk) + 2E

[
σ2

nνn(Hk)
(νn(Hk)− 2ν(Hk))+1νn(Hk)>0

]
.

Observe here the difference with switching fromR(mn, Hk) toRn(mn, Hk) for which we needed

to handle an additional term associated to the event {νn(Hk) = 0}, see (34). To complete the

proof, we apply Lemma B.1 and plug this into (26).

5 Importance sampling least-squares Monte-Carlo scheme

5.1 Algorithm

In this section, we approximate the value functions yi(·) and zi(·) from Lemma 2.3 with

numerical counterparts y
(M)
i (·) and z

(M)
i (·), respectively, using a fully implementable LSMC
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algorithm; the pseudo-algorithm is stated in Algorithm 5.1. Regression is implemented on

piecewise constant functions, like in Section 4. We shall initialize the Euler scheme with IS

drift randomly according to a distribution ρ satisfying the so called USES property (Hρ). The

stability result on the L2-norm from Proposition 3.1 then enable us to obtain explicit error

estimates in Theorem 5.3 below. We call this scheme the Importance Sampling Malliavin

Weights LSMC scheme, ISMW-LSMC for short.

As inputs, our algorithm will take independent simulations of random variables (specified

explicitly later): these random variables are defined on the probability space (Ω̃, F̃ , P̃). On

the other hand, the usual stochastic processes and random variables describing the (discrete)

BSDE are defined on a probability space (Ω,F ,P). Strictly speaking, we work with the prod-

uct space (Ω× Ω̃,F ⊗F̃ ,P⊗ P̃) to describe and analyse the algorithm. However, this rigorous

treatment complicates the notation without bringing unexpected features. For simplicity, we

avoid (ω, ω̃)-notation whenever clear.

Let (R(0), . . . , R(N−1)) be i.i.d. copies of a random variable R satisfying the USES property

(Hρ) and W be a Brownian motion. We assume that they are defined on (Ω,F ,P) and

mutually independent; furthermore let h : (ω̃, i, x) ∈ Ω̃ × {0, . . . , N − 1} × Rd → hi(ω̃, x) ∈
(Rq)> be a bounded stochastic drift function. We will write X(i)(h) to denote the path(

X
(i)
i (h) = R(i), X

(i)
i+1(h), . . . , X

(i)
N (h)

)
,

where (X
(i)
j (h))i≤j≤N is (conditionally on F̃) a Markov chain given by

X
(i)
i (h) := R(i), X

(i)
i+1(h) := X

(i)
i (h) + bi(X

(i)
i (h))∆i + σi(X

(i)
i (h))∆Wi,

X
(i)
j+1(h) := X

(i)
j (h) +

[
bj(X

(i)
j (h)) + σj(X

(i)
j (h))h>j (X

(i)
j (h))

]
∆j + σj(X

(i)
j (h))∆Wj

i+ 1 ≤ j ≤ N − 1;

(35)

for simplicity, we do not explicit the ω̃-dependency.

Remark 5.1. We explain now why the USES property (Hρ) is essential. Let i1, i2 ∈
{0, . . . , N − 1} be unequal i1 6= i2. It is clear from the Euler scheme above that the random

variables X
(i1)
j (h) and X

(i2)
j (h) will have unequal distributions whenever j > min(i1, i2),

even with equal drift functions. This implies that the L2-norms ‖φ‖i,j := (E[|φ|2(X
(i)
j (h)])1/2

do not correspond at j: ‖φ‖i1,j 6= ‖φ‖i2,j , and therefore one cannot make use of Gronwall’s

inequality to treat the terms due to dynamical programming. However, we express the error

estimates of Theorem 5.3 in terms of the L2-norm ‖φ‖ρ of (8). Thanks to the L2-norm equiv-

alence given by the USES property of Proposition 3.1, we recover the ability to use Gronwall’s

inequality. In usual LSMC algorithms [16, 15], the Markov chains are initialized starting from

a fixed point at time zero uniformly for every i, so one does not face this problem.
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In the ISMW-LSMC scheme below, we will be interested in the following two drift func-

tions:

hj(x) :=
zj(x)

yj(x)
, h

(M)
j (ω̃,x) :=

z
(M)
j (ω̃,x)

y
(M)
j (x)

; (36)

in what follows, we omit to write the dependence on ω̃ in the function h(M) for conciseness.

The drift hj(·) satisfies hj(Xj) = hNj , where hNj is the drift of the Radon-Nikodym derivative

for the Importance Sampling DPEs (7) (see Lemma 2.3). h
(M)
j (·) is the Monte-Carlo equivalent

of hj(·).
Let x = (xi, . . . , xN ) ∈ (Rd)N−i+1 and w = (wi, . . . , wN−1) ∈ (Rq)N−i and

h : Ω̃× {0, . . . , N − 1} × Rd → (Rq)>. We introduce the function

Lh
i+1,j(x,w) := exp

(
−

j−1∑
k=i+1

{
hk(xk)wk +

1

2
|hk(xk)|2∆k

})
,

and set

SY,i(x,w) := g(xN )Lhi+1,N (x,w) +

N−1∑
k=i

fk
(
xk, yk+1(xk+1)

)
Lhi+1,k+1(x,w)∆k, (37)

SZ,i(x,w) := g(xN )θ
(i)
N (x,w) +

N−1∑
k=i+1

fk
(
xk, yk+1(xk+1)

)
θ

(i)
k (x,w)∆k, (38)

where hj(·) = zj(·)/yj(·). The following lemma is a preparatory representation of the Marko-

vian functions (yi(·), zi(·)) as conditional expectations involving the Euler scheme (35) – with

or without IS drift h – starting from R(i).

Lemma 5.2. Assume (HX), (Hf ), (Hξ), (HC), (HΘ). Let R(i) be a random variable sat-

isfying the USES property (Hρ). Recalling the definition (35) for X(i)(h) and X(i)(0) with a

Brownian motion W (independent of R(i)), and setting ∆W(i) = (∆W
(i)
i , . . . ,∆W

(i)
N−1), we

have

yi(R
(i)) = EP

[
SY,i(X

(i)(h),∆W(i)) | R(i)
]
, (39)

zi(R
(i)) = EP

[
SZ,i(X

(i)(0),∆W(i)) | R(i)
]
. (40)

Proof. The proof is similar to Lemma 2.3. We must take into account two additional facts.

First, that the Euler schemes X(i)(h) and X(i)(0) both take value R(i) at time ti and that

R(i) is independent of the Brownian motion; using the proof method of Lemma 2.3 given

in [15, Section 3.1], this is sufficient to prove (40). Second, the distribution of (Wj +∑j−1
k=i h

>(X
(i)
k (h))1k≥i+1∆k : i ≤ j ≤ N) under P is the same as distribution of (Wj : i ≤ j ≤

N) under QhN
i ; (39) then follows from (37) and these two additional facts.
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Remark. In (38), we could replace g(xN ) by g(xN ) − g(xi). This would not change the

equality in the conditional expectations because the Malliavin weights are conditionally cen-

tered. However this would additionally reduce the variance (see [1]). In the subsequent error

analysis (see the proof of Theorem 5.3), a careful inspection shows that this would remove

the factor 1/(T − ti) in the definition of E(Z,i) under the condition, in addition to (HΘ), that

Malliavin weights have finite fourth moments satisfying E[|Θ(i)
j |4]1/4 ≤ CM (tj − ti)−1/2.

In the ISMW-LSMC scheme, in (37)-(38) we will use h
(M)
j (·) instead of hj(·) (both defined

in (36)), and y
(M)
k+1(·) instead of yk+1(·). This leads to the definitions

S
(M)
Y,i (x,w) := g(xN )Lh

(M)

i+1,N (x,w) +
N−1∑
k=i

fk
(
xk, y

(M)
k+1(xk+1))

)
Lh

(M)

i+1,k+1(x,w)∆k,

S
(M)
Z,i (x,w) := g(xN )θ

(i)
N (x,w) +

N−1∑
k=i+1

fk
(
xk, y

(M)
k+1(xk+1)

)
θ

(i)
k (x,w)∆k.

In what follows, we will need the threshold functions

TCy(y) := 1 ∨ y ∧ Cy, TCz(z) :=
(
− Cz ∨ z1 ∧ Cz, . . . ,−Cz ∨ zq ∧ Cz

)
for y ∈ R and z ∈ (Rq)>, where the constants Cy and Cz are defined in (HC).

Algorithm 5.1. Set y
(M)
N (·) = g(·). Starting from i = N −1 and working backwards to i = 0,

let

• K(Y,i) ∈ N∗ and {H(Y,i)
1 , . . . ,H

(Y,i)

K(Y,i)} be disjoint subsets of Rd, and D(Y,i) :=
⋃
kH

(Y,i)
k .

• K(Z,i) ∈ N∗ and {H(Z,i)
1 , . . . ,H

(Z,i)

K(Z,i)} be disjoint subsets of Rd, and D(Z,i) :=
⋃
kH

(Z,i)
k .

• Mi ∈ N∗ a number of simulations at time ti, with Mi ≥ max(K(Y,i),K(Z,i)) (to avoid

having an under-determined system).

• Ci := {(R(i,1),∆W(i,1)), . . . , (R(i,Mi),∆W(i,Mi))} be a collection of i.i.d. copies of the

starting points R(i) and Brownian increments ∆W(i); we term Ci to be the cloud of

simulations at time ti, used to construct i.i.d. copies of the Markov chain X(i)(h(M)),

X(i)(0) and Malliavin weights Θ(i). The clouds of simulations {C0, . . . CN−1} are mutu-

ally independent, i.e. independently simulated.

Set the sample dependent functions y
(M)
i (·), z(M)

i (·) and h
(M)
i (·) recursively as follows.

Approximation of zi. For every k ∈ {1, . . . ,K(Z,i)}, define the set of indices

A
(Z,i)
k :=

{
m ∈ {1, . . . ,Mi} : R(i,m) ∈ H(Z,i)

k

}
.

Let ψ
(M)
Z,i (·) : Rd → (Rq)> be a piecewise constant function defined as follows:
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1. if A
(Z,i)
k = ∅, set ψ

(M)
Z,i (·)|

H
(Z,i)
k

:= 0;

2. otherwise, set

ψ
(M)
Z,i (·)|

H
(Z,i)
k

:=
1

#(A
(Z,i)
k )

∑
m∈A(Z,i)

k

S
(M)
Z,i (X(i,m)(0),∆W(i,m)).

To complete, define ψ
(M)
Z,i (·)|[D(Z,i)]c := 0 and z

(M)
i (·) := TCz

(
ψ

(M)
Z,i (·)

)
.

Approximation of yi. For every k ∈ {1, . . . ,K(Y,i)}, define the set of indices

A
(Y,i)
k :=

{
m ∈ {1, . . . ,Mi} : R(i,m) ∈ H(Y,i)

k

}
.

Let ψ
(M)
Y,i (·) : Rd → R be a piecewise constant function defined as follows:

1. if A
(Y,i)
k = ∅, set ψ

(M)
Y,i (·)|

H
(Y,i)
k

:= 1;

2. otherwise, set

ψ
(M)
Y,i (·)|

H
(Y,i)
k

:=
1

#(A
(Y,i)
k )

∑
m∈A(Y,i)

k

S
(M)
Y,i (X(i,m)(h(M)),∆W(i,m)). (41)

Last, set ψ
(M)
Y,i (·)|[D(Y,i)]c := 1 and y

(M)
i (·) := TCy

(
ψ

(M)
Y,i (·)

)
.

Approximation of hi. Having calculated z
(M)
i (·) and y

(M)
i (·), define h

(M)
i (·) = z

(M)
i (·)/y(M)

i (·).

Remark. The Euler schemes X(i)(h(M)) and X(i)(0) are re-simulated at every time-point ti,

which is necessary to account for the updated IS drift. At a first sight, this re-simulation

step seems computationally expensive. In fact, re-simulation serves the additional purpose

of reducing memory consumption, since the memory allocation of each simulation can be

immediately removed once its contribution to the regression has been made. This is explained

in the introduction of [16]. This is important in practice, because we know from [16, 15] that

the memory is the critical point for LSMC-based schemes in large dimension.

5.2 Main error result

Our main error estimates on the ISMW-LSMC algorithm are the following.

Theorem 5.3. Assume (HX), (Hf ), (Hξ), (HC), (HΘ), (Hρ). For each i, define the function

Ŝ
(M)
Y,i (x,w) := g(xN )Lh

(M)

i+1,N (x,w) +
N−1∑
k=i

fk
(
xk, yk+1(xk+1)

)
Lh

(M)

i+1,k+1(x,w)∆k
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and set

osc
(yi)
k := sup

x,x′∈H(Y,i)
k

|yi(x)− yi(x′)|, osc
(zi)
k := sup

x,x′∈H(Z,i)
k

|zi(x)− zi(x′)|,

p
(Y,i)
k := P

(
R(i) ∈ H(Y,i)

k

)
, p

(Z,i)
k := P

(
R(i) ∈ H(Z,i)

k

)
,

σ2
Y,i,M := E

[
ess sup

x∈Rd
Var

[
Ŝ

(M)
Y,i (X(i)(h(M)),∆W(i))|R(i) = x, Ci+1, . . . , CN−1

]]
,

E(Y,i) :=
K(Y,i)∑
k=1

[osc
(yi)
k ]2p

(Y,i)
k + σ2

Y,i,M

K(Y,i)

Mi
+ C2

y

K(Y,i)∑
k=1

p
(Y,i)
k exp

(
−Mip

(Y,i)
k

)
+ C2

yP(R(i) /∈ D(Y,i)),

E(Z,i) :=
K(Z,i)∑
k=1

[osc
(zi)
k ]2p

(Z,i)
k + C2

z

K(Z,i)q log(3Mi)

Mi
+

C2
(49)

T − ti
K(Z,i)

Mi
+C2

zP(R(i) /∈ D(Z,i)).

for constant C(49) to be defined in (49) below. There exists a constant C(42) (resp. C(43))

depending only on T , Lf , Cz, c(11), C(24) (resp. on T , Lf , Cz, CM , c(11), C(24)) such that,

for each i ∈ {0, . . . , N − 1}

E
[∥∥∥yi(·)− y(M)

i (·)
∥∥∥2

ρ

]1/2

≤ C(42)

(
(E(Y,i))1/2 +

N−1∑
k=i+1

(E(Y,k))1/2∆k

)
, (42)

E
[∥∥∥zi(·)− z(M)

i (·)
∥∥∥2

ρ

]1/2

≤ C(43)

(
(E(Z,i))1/2 +

N−1∑
k=i+1

(E(Y,k+1))1/2

√
tk − ti

∆k

)
. (43)

As in [15, Section 3.5], the above error estimates are sufficient to establish the convergence

of the ISMW-LSMC scheme by appropriately choosing the basis functions and the number

of simulations. We expect that the importance sampling algorithm will converge faster w.r.t.

the simulation effort compared to basic LSMC scheme. The improvement can be captured

through the term σ2
Y,i,M , which is expected to be small; the exponential sums in E(Y,i) are

negligible for sufficiently large Mi. This is confirmed by our following numerical experiments

in Section 6. Actually, the finiteness of σ2
Y,i,M (with uniform bound w.r.t. i) easily follows from

the boundedness of the IS-drift, the boundedness of y(·), and of the boundedness/Lipschitz

continuity of fk. Observe that the function Ŝ
(M)
Y,i (x,w) is constructed with the true function

yk+1(·) in the driver fk, and with the empirical drift h
(M)
k (·) ≈ hk(·) in the Radon-Nikodym

derivative function Lh
(M)

i+1,k+1(x,w). Following from the analysis in Section 2.1, we expect σ2
Y,i,M

to be small. Although it is delicate to precisely quantify the variance reduction, the statistical

error of the ISMW-LSMC is presumably much smaller compared to a scheme without IS.
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5.3 Error analysis: proof of Theorem 5.3

5.3.1 Proof of (42)

Define the function ψ̂
(M)
Y,i (·) (constant on each set H

(Y,i)
k , k ∈ {1, . . . ,K(Y,i)}) by

ψ̂
(M)
Y,i (·)|

H
(Y,i)
k

:=
1

#(A
(Y,i)
k )

∑
m∈A(Y,i)

k

Ŝ
(M)
Y,i (X(i,m)(h(M)),∆W(i,m)), (44)

if #(A
(Y,i)
k ) > 0 and 1 otherwise, and ψ̂

(M)
Y,i (·)|(D(Y,i))c = 1 on the complement of D(Y,i). First,

using the 1-Lipschitz property of TCy(.) and the triangle inequality, observe that

E
[∥∥∥yi(·)− y(M)

i (·)
∥∥∥2

ρ

]1/2

≤ E
[∥∥∥yi(·)− TCy(ψ̂(M)

Y,i (·))
∥∥∥2

ρ

]1/2

+ E
[∥∥∥ψ̂(M)

Y,i (·)− ψ(M)
Y,i (·)

∥∥∥2

ρ

]1/2

.(45)

In what follows, we first estimate the first term of the r.h.s. above using the results from

Section 4, then the second term by direct computations.

Let F (M)
i be the σ-algebra generated by the simulation clouds {Ci+1, . . . , CN−1} together

with {R(i,m) : m = 1, . . . ,Mi}, and let E(M)
i [·] be the associated conditional expectation

EP

[
· | F (M)

i

]
. Then, proceeding as in the proof of (39) in Lemma 5.2, we obtain for any

m ∈ {1, . . . ,Mi} that

yi(R
(i,m)) = E(M)

i

[
Ŝ

(M)
Y,i (X(i,m)(h(M)),∆W(i,m))

]
.

Thus, yi(·)− TCy(ψ̂
(M)
Y,i (·)) is the difference between the regression function and its empirical

approximation, equivalent to the functions m and mn in Section 4. Therefore, from Corollary

4.2 (working under the conditional expectation E[·|F (M)
i ] in the place of the expectation E[·],

and applying the tower law), we obtain the estimate

E
[∥∥∥yi(·)− TCy(ψ̂(M)

Y,i (·))
∥∥∥2

ρ

]
≤ C(24)E(Y,i). (46)

We now treat the second term E
[∥∥∥ψ̂(M)

Y,i (·)− ψ(M)
Y,i (·)

∥∥∥2

ρ

]1/2

on the r.h.s. of (45). For this we

make use of the definitions (41)-(44) and recall that R(i) has the density ρ:

E
[∥∥∥ψ̂(M)

Y,i (·)− ψ(M)
Y,i (·)

∥∥∥2

ρ

]
=

K(Y,i)∑
k=1

Ak,i p
(Y,i)
k (47)

where

Ak,i := E

[#(A
(Y,i)
k )

]−2 ( ∑
m∈A(Y,i)

k

Dm
)2

1
#(A

(Y,i)
k )>0

 ,
June 27, 2015 at 18:21 23



Dm := Ŝ
(M)
Y,i (X(i,m)(h(M)),∆W(m,i))− S(M)

Y,i (X(i,m)(h(M)),∆W(m,i)).

Now, using the Cauchy-Schwarz inequality, it follows that

Ak,i ≤ E

∑Mi
m=1 E

(M)
i

[
D2
m

]
1
H

(Y,i)
k

(R(i,m))

#(A
(Y,i)
k )

1
#(A

(Y,i)
k )>0


= MiE

E(M)
i

[
D2

1

]
1
H

(Y,i)
k

(R(i,1))

#(A
(Y,i)
k )

1
#(A

(Y,i)
k )>0


= MiE

[
E
[
D2

1 | R(i,1), Ci+1, . . . , CN−1

]
1
H

(Y,i)
k

(R(i,1))
]
E

 1

1 +
∑Mi

m=2 1
H

(Y,i)
k

(R(i,m))


≤

E
[
D2

11
H

(Y,i)
k

(R(i,1))
]

p
(Y,i)
k

where the equalities follow because the simulations are i.i.d. and the final inequality follows

from direct computation using the binomial distribution (see [17, Lemma 4.1]):

E
[

1

1 + Bin(n, p)

]
≤ 1

(n+ 1)p
.

Substituting this back into (47), we obtain

E
[∥∥∥ψ̂(M)

Y,i (·)− ψ(M)
Y,i (·)

∥∥∥2

ρ

]1/2

≤ E
[
D2

1

]1/2
.

Applying the triangle inequality to the L2-norm and making use of the Lipschitz continuity

of f , we obtain an estimate on E
[
D2

1

]1/2
as follows:

E
[
D2

1

]1/2
= E

[
|Ŝ(M)
Y,i (X(i)(h(M)),∆W(i))− S(M)

Y,i (X(i)(h(M)),∆W(i))|2
]1/2

≤
N−1∑
j=i

LfE
[
|Lh(M)

i+1,j+1(X(i)(h(M)),∆W(i))|2|yj+1(X
(i)
j+1(h(M)))− y(M)

j+1 (X
(i)
j+1(h(M)))|2

]1/2
∆j

≤ Lfe|h
(M)(·)|2∞T/2

N−1∑
j=i

E
[
|yj+1(X

(i)
j+1(−h(M)))− y(M)

j+1 (X
(i)
j+1(−h(M)))|2

]1/2
∆j

where the last equality follows from applying the reverse change of probability measure. The

USES property from Proposition 3.1 then yields

E
[∥∥∥ψ̂(M)

Y,i (·)− ψ(M)
Y,i (·)

∥∥∥2

ρ

]1/2

≤ c(11)Lfe
C2
zT/2

N−1∑
j=i

E
[∥∥∥yj+1(·)− y(M)

j+1 (·)
∥∥∥2

ρ

]1/2

∆j , (48)

June 27, 2015 at 18:21 24



where we have used that |h(M)(·)| ≤ Cz. Substituting (46) and (48) into (45), we conclude

that

E
[∥∥∥yi(·)− y(M)

i (·)
∥∥∥2

ρ

]1/2

≤ (C(24)E(Y,i))1/2 + c(11)Lfe
C2
zT/2

N−1∑
j=i

E
[∥∥∥yj+1(·)− y(M)

j+1 (·)
∥∥∥2

ρ

]1/2

∆j .

The proof of (42) is now completed by an application of Gronwall’s inequality.

5.3.2 Proof of (43)

For the computations on Z, we could proceed analogously to Section 5.3.1 in order to obtain

estimates in term of conditional variances. On the other hand, since no specific variance

reduction is made, there is no interest for such sophistication. Instead, we follow the error

analysis of [15] for the z-component. It suffices to first use Proposition 3.9 from this reference

to estimate the error between the exact L2−norm E
[∥∥∥zi(·)− z(M)

i (·)
∥∥∥2

ρ

]1/2

and the empirical

one – like in (21) above – and then to apply the Steps 2 and 3 of the proof of Theorem 3.10

with the conditional variance bounds of Lemma 3.7. This writes

E
[∥∥∥zi(·)− z(M)

i (·)
∥∥∥2

ρ

]1/2

≤ Cz

√
2028(K(Z,i) + 1)q log(3Mi)

Mi

+
√

2

(
inf

ϕ∈Span{1
H

(Z,i)
k

:1≤k≤K(Z,i)}
E
[
|ϕ(R(i))− zi(R(i))|2

]1/2
+ CZ,i

√
K(Z,i)

Mi

+ CMLf

N−1∑
k=i+1

E
[
|yk+1(X

(i)
k+1(0))− y(M)

k+1(X
(i)
k+1(0))|2

]1/2 ∆k√
tk − ti

)
,

with CZ,i =
C(49)√
T − ti

(49)

where the constant C(49) depends only on Cg, Cf , Lf , CM , T, q (see [15, Lemma 3.7] for the

explicit expression). Observe that

inf
ϕ∈Span{1

H
(Z,i)
k

:1≤k≤K(Z,i)}
E
[
|ϕ(R(i))− zi(R(i))|2

]1/2
≤

K(Z,i)∑
k=1

(osc
(zi)
k )2p

(Z,i)
k + C2

zP
(
R(i) /∈ D(Z,i)

)1/2

and that, for all k,

E
[
|yk+1(X

(i)
k+1(0))− y(M)

k+1(X
(i)
k+1(0))|2

]1/2
≤ c(11)E

[∥∥∥yk+1(·)− y(M)
k+1(·)

∥∥∥2

ρ

]1/2

(50)
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using the USES property (Proposition 3.1). We have proved the existence of a universal

constant C(51) such that

E
[∥∥∥zi(·)− z(M)

i (·)
∥∥∥2

ρ

]1/2

≤ C(51)(E(Z,i))1/2 (51)

+ c(11)CMLf

N−1∑
k=i+1

E
[∥∥∥yk+1(·)− y(M)

k+1(·)
∥∥∥2

ρ

]1/2 ∆k√
tk − ti

.

By plugging into (51) the estimates (42) on E
[∥∥∥yk+1(·)− y(M)

k+1(·)
∥∥∥2

ρ

]1/2

, we obtain the an-

nounced inequality (43).

6 Numerical experiments

Consider the Brownian motion model X = W (d = q). Define the function ω(t, x) = exp(t+∑q
k=1 xk). We perform numerical experiments on the BSDE with data g(x) = 1 +ω(T, x)(1+

ω(T, x))−1 and

f(t, x, y) = qω(t, x)

(
y − 1− 2 + q

2q

)
(1 + ω(t, x))−2,

We shall work with T = 1, and q ∈ {2, 4}. The BSDE has explicit solutions in this framework,

given by

yi(x) = 1 + ω(ti, x)(1 + ω(ti, x))−1, zk,i(x) = ω(ti, x)(1 + ω(ti, x))−2,

where zk,i(x) is the k-th component of the q-dimensional cylindrical function zi(x) ∈ (Rq)>.

For USES, we simulate using the random variable R with Laplace distribution, whose

density is given in (13) with µ = 1. For the least-squares Monte Carlo, we use a hypercubes

basis defined on the domain [−6.5, 6.5]q. The number of basis functions K and the number

of simulations M are equal on every time point and parameterized according to the number

of time-steps N :

K = cq ×N q/2, M = cq ×N (2+q)/2,

for c2 = (3.5)2 and c4 = (4)4. To assess the performance of the algorithm, we compute the

average mean squared error (MSE) over 10 independent runs of the algorithm for three error

June 27, 2015 at 18:21 26



indicators:

MSEY,max := 10−3 max
0≤i≤N−1

103∑
m=1

|yi(Rm)− y(M)
i (Rm)|2,

MSEY,av := 10−3N−1
103∑
m=1

N−1∑
i=1

|yi(Rm)− y(M)
i (Rm)|2,

MSEZ,av := 10−3N−1
103∑
m=1

N−1∑
i=1

|zi(Rm)− z(M)
i (Rm)|2,

where the simulations {Rm;m = 1, . . . , 103} are i.i.d. and independently drawn from the

simulations used for the LSMC scheme.

Results for the importance sampling scheme are presented in Table 1 for dimension 2,

respectively in Table 5 for dimension 4, and rates of convergence w.r.t. to the number of time

points and computational time are presented in Table 2 (resp. 6). The contrasting results for

the scheme without importance sampling are to be found in Tables 3 and 4 for q = 2, and

7 and 8 for q = 4. The tests have been performed on a processor 2.3 GHz Intel Core i7 in

dimension 2, and 2.9GHz in dimension 4, with code written in C.

We first observe that for the same values of M , N and K, the algorithm with IS provides

smaller errors on the Y -component than using the algorithm without IS. This is coherent with

the estimates of Theorem 5.3. Moreover, the error on Z is unaltered, which is expected since

no importance sampling is applied in this part of the algorithm. The convergence rate of the

error on Y w.r.t. the number of time steps is higher for the ISMW-LSMC scheme compared

to the scheme without IS. Although the computational time of the IS-based scheme is slightly

larger, we observe that the convergence rate of the error on Y w.r.t. the computational time

is still in favour of the scheme of IS. These results demonstrate the gain of efficiency using

the ISMW-LSMC scheme.

Table 1: Importance sampling, q = 2

Max Y Av Y Av Z Comp. time Time Pts

–3.107593 -3.339273 -1.625611 -5.874215 1.609438

-3.809944 -4.216414 -1.957937 -2.863354 2.302585

-4.036548 -4.458091 -2.033387 -1.372861 2.708050

-4.434476 -4.860591 -2.150866 -0.175684 2.995732

-4.771406 -5.185585 -2.368438 1.523607 3.401197
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Table 2: Rates for importance sampling, q = 2
Max Y Av Y Av Z

Time points -1.01 -1.11 -0.46

Comp. time -0.21 -0.24 -0.09

Table 3: No importance sampling, q = 2

Max Y Av Y Av Z Comp. time Time Pts

-3.102519 -3.343045 -1.546175 -6.155726 1.609438

-3.514528 -3.912367 -1.856532 -3.319166 2.302585

-3.634813 -4.104047 -2.000568 -1.806159 2.708050

-3.648408 -4.235227 -2.122356 -0.661470 2.995732

-3.785295 -4.418884 -2.342785 1.027265 3.401197

A Distributions satisfying (Hρ): proof of Proposition 3.3

Observe that thanks to the product form of the densities (13)-(14)-(15) (due to the indepen-

dence of the coordinates), the d-dimensional result follows from the case d = 1. Thus we shall

only prove the one-dimensional result.

Case (a). For r ∈ R, set I(r) :=
∫
R e

r|z| e−|z|
2/2

(2π)1/2 dz. Then a direct triangle inequality gives

ρ(y)I(−µ
√
λ) ≤

∫
R
ρ(y + z

√
λ)
e−|z|

2/2

(2π)1/2
dz ≤ ρ(y)I(µ

√
λ).

Clearly, I(.) is a positive and continuous function, thus bounded from below and from above

on the compact [−µ
√

Λ, µ
√

Λ].

Case (b). We prove only the case µ = 1; the general case µ > 0 is similar and is left to the

reader. Set

J (y, λ) :=

∫
R
ρ(y + z

√
λ)
e−|z|

2/2

(2π)1/2
dz. (52)

First, observe that J (.) and ρ(.) are both positive and continuous: hence, for any given y0 > 0,

J (y, λ)/ρ(y) is bounded from above and from below uniformly on [−y0, y0] × [0,Λ]. Fixing

y0 = 1, it remains to check (9) only for (y, λ) ∈ [−y0, y0]c × [0,Λ].

Upper bound. Write J := J1 +J2 where J1 and J2 correspond respectively to the integral

on Aλ := {z : |z|
√
λ ≤ |y|/2} and on [Aλ]c. On the one hand on Aλ, use (1+|y+z

√
λ|) ≥

(1 + |y|/2) ≥ 1
2(1 + |y|) to get J1(y, λ) ≤ 2k+1ρ(y). On the other hand, obviously we
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Table 4: Rates for no Importance Sampling, q = 2.
Max Y Av Y Av Z

Time points -0.51 -0.73 -0.49

Comp. time -0.07 -0.13 -0.10

Table 5: Importance sampling, q = 4

Max Y Av Y Av Z Comp. time Time Pts

-3.439640 -3.530475 -1.516734 -0.865253 1.609438

-3.788365 -4.144437 -1.861130 2.839795 2.302585

-4.097266 -4.506245 -2.046588 4.915364 2.708050

-4.354352 -4.778275 -2.192688 6.316752 2.995732

have

J2(y, λ) ≤ k

2

∫
[Aλ]c

e−|z|
2/2

(2π)1/2
dz ≤ kN

(
− |y|

2
√

Λ

)
≤ c(k,Λ)ρ(y)

where N (·) is the cumulative probability function of the standard normal distribution,

and c(k,Λ) > 0 depends only on k and Λ and ensures the last inequality is valid for any

|y| > y0 := 1.

Lower bound. By integrating only on Bλ := {z : |z|
√
λ ≤ |y|} and using (1 + |y + z

√
λ|) ≤

(1 + 2|y|) ≤ 2(1 + |y|) on that set, we obtain

J (y, λ) ≥ (
k

2
)(1 + |y|)−k−12−k−1

∫
Bλ

e−|z|
2/2

(2π)1/2
dz ≥ 2−kρ(y)

(
1

2
−N

(
− |y|√

Λ

))
≥ 2−kρ(y)

(
1

2
−N

(
− 1√

Λ

))
for any |y| ≥ |y0| := 1 and λ ∈ [0,Λ].

Case (c). As for the case (b), we give the proof only for µ = 1, the general case being

analogous. Using the same arguments as before, (9) easily holds for (y, λ) ∈ [−1, 1] × [0,Λ]

and it remains to prove it for |y| > 1 and λ ∈ [0,Λ]. We define J as in (52), but with the

density ρ defined in (15).

Upper bound. Write J := J1 +J2 where J1 and J2 correspond respectively to the integral

on Aλ := {z : |z|
√
λ ≤ |y|/2} and on its complement. On Aλ, use (1 + |y + z

√
λ|) ≥

1
2(1+ |y|) and (1+ |y+z

√
λ|)2/α ≥ (1+ |y|−|z|

√
λ)2/α ≥ (1+ |y|)2/α−(|z|

√
λ)2/α (owing

to 2/α < 1), to get

J1(y, λ) ≤
∫
Aλ

e

α
e−(1+|y|)2/α

e(|z|
√
λ)2/α

(1 + |y|)2/α−121−2/α e
−|z|2/2

(2π)1/2
dz
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Table 6: Rates for Importance Sampling, q = 4.
Max Y Av Y Av Z

Time points -0.81 -1.04 -0.56

Comp. time -0.16 -0.21 -0.11

Table 7: No importance sampling, q = 4

Max Y Av Y Av Z Comp. time Time Pts

-2.992670 -3.172890 -1.515503 -1.110783 1.609438

-3.259278 -3.614908 -1.855790 2.533719 2.302585

-3.253435 -3.708148 -2.036607 4.649199 2.708050

-3.298297 -3.895621 -2.206599 6.056020 2.995732

≤ ρ(y)21−2/α

∫
R
e(|z|

√
Λ)2/α e−|z|

2/2

(2π)1/2
dz.

Using the same arguments as for the case (b), we show that, for all |y| ≥ |y0| := 1,

J2(y, λ) ≤ c(α,Λ)ρ(y) for some constant c(α,Λ) > 0 depending only on α and Λ.

Lower bound. It is obtained by integrating only on B′λ := {z : |z|
√
λ ≤ 1} ⊃ B′Λ. On

B′λ, since |y| > 1 we have |z|
√
λ ≤ |y|, and therefore (1 + |y + z

√
λ|) ≤ 2(1 + |y|) and

(1 + |y + z
√
λ|)2/α ≤ (1 + |y|)2/α + (|z|

√
Λ)2/α. We then deduce

J (y, λ) ≥
∫
B′λ

e

α
e−(1+|y|)2/α

e−(|z|
√

Λ)2/α
(1 + |y|)2/α−122/α−1 e

−|z|2/2

(2π)1/2
dz

≥ ρ(y)22/α−1

∫
B′Λ

e−(|z|
√

Λ)2/α e−|z|
2/2

(2π)1/2
dz.

The proof is complete.

B Large deviation estimates for binomial distribution

Lemma B.1. Let X be a random variable with distribution Bin(n, p) with p ∈ [0, 1] and

n ≥ 1. Then,

E
[(np

X
− 2
)

+
1X>0

]
≤ 4 exp

(
−3np

104

)
, (53)

E
[(

1− 2np

X

)
+

1X>0

]
≤ 2 exp

(
−3np

8

)
. (54)

Proof. If p = 0 (respectively p = 1), then X = 0 (resp. X = n) a.s. and the above inequalities

are obvious. Assume from now on that p(1− p) > 0.
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Table 8: Rates for no Importance Sampling, q = 4.
Max Y Av Y Av Z

Time points -0.41 -0.67 -0.56

Comp. time -0.07 -0.13 -0.11

We start by proving (53). Firstly, observe that X and (npX−1 − 2) are both positive if

and only if 0 < X < np/2. Therefore, denoting by X ′ the random variable with distribution

Bin(n+ 1, p), we have

I := E
[(np

X
− 2
)

+
1X>0

]
=

bnp/2c∑
i=1

(
np

i
− 2)

(
n

i

)
pi(1− p)n−i

≤
bnp/2c∑
i=1

n(i+ 1)

(n+ 1)i
× (n+ 1)!

(i+ 1)!(n+ 1− i− 1)!
pi+1(1− p)(n+1)−(i+1)

≤ 2P
(
2 ≤ X ′ ≤ np/2 + 1

)
≤ 2P

(
X ′ − (n+ 1)p ≤ np/2 + 1− (n+ 1)p

)
= 2P

(
X ′ − E

[
X ′
]
≤ 1− p− np/2

)
.

Now, assuming that 1− p− np/2 is smaller than −(n+ 1)p/4, i.e. np/4 ≥ 1− 3p/4, one can

apply Bernstein’s inequality [17, Lemma A.2] above to determine

I ≤ 2P
(
X ′ − E [X ′]

n+ 1
≤ −p

4

)
≤ 4 exp

(
− (n+ 1)p2/16

2p(1− p) + 2p/12

)
≤ 4 exp

(
− 3np

8(13− 12p)

)
≤ 4 exp

(
−3np

104

)
.

In particular, the inequality is valid for n ≥ 4/p. On the other hand, for n ≤ 4/p, observe

that

I ≤ E
[(

4

X
− 2

)
+

1X>0

]
≤ 2 ≤ 2 exp

(
3

26

)
exp

(
−3np

104

)
≤ 4 exp

(
−3np

104

)
.

Thus, (53) is proved.

Now we justify (54). We simply observe that

E
[(

1− 2np

X

)
+

1X>0

]
≤ P

(
X − E [X]

n
> p

)
≤ 2 exp

(
− np2

2p(1− p) + 2p/3

)
using the Bernstein inequality, which gives (54) after simplification.
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