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Time-dependent cosmological interpretation of

quantum mechanics

Emmanuel Moulay∗

Abstract

The aim of this article is to define a time-dependent cosmological inter-

pretation of quantum mechanics in the context of an infinite open FLRW

universe. A time-dependent quantum state is defined for observers in sim-

ilar observable universes by using the particle horizon. Then, we prove

that the wave function collapse of this quantum state is avoided.

1 Introduction

A new interpretation of quantum mechanics, called the cosmological interpre-
tation of quantum mechanics, has been developed in order to take into account
the new paradigm of eternal inflation [1, 2, 3]. Eternal inflation can lead to a
collection of infinite open Friedmann-Lemâıtre-Robertson-Walker (FLRW) bub-
ble universes belonging to a multiverse [4, 5, 6]. This inflationary scenario is
called open inflation [7, 8]. Such a multiverse implies that there exist an infinite
number of observers belonging to similar observable universes which are indis-
tinguishable inside an infinite open FLRW bubble universe [1, 9]. A quantum
state |Ψi〉 ∈ H is associated with each observer i belonging to these similar
observable universes and it is possible to define a quantum state gathering all
these observers

|Ψ∞〉 =

∞
⊗

i=1

|Ψi〉 (1)

which belongs to the Hilbert space

H⊗∞ := H⊗H⊗H ⊗ · · · (2)

For sake of simplicity, we only consider pure states in this article. The reader
may refer to [10, 11, 12, 13] for more details about the notion of infinite quantum
states. Such a modelling is compatible with the Born rule [1, 14, 15, 16, 3] and
can avoid the problem of wave function collapse [2]. However, the notion of time
is not well defined because similar observable universes are not causally related.
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The first goal of this article is to define a time-dependent quantum state
for observers in similar observable universes. This problem can be solved by
using the particle horizon and the Fischler-Susskind cosmological holographic
principle [17, 18]. The holographic principle has also been used in [19, 20] to
render the many-worlds interpretation of quantum mechanics compatible with
eternal inflation.

The second goal of this article is to prove that the wave function collapse of
the time-dependent quantum state for observers in similar observable universes
is avoided.

The organization of the article is the following. In Section 2, a time-
dependent quantum state is defined for observers belonging to similar observable
universes of an infinite open FLRW universe by using the particle horizon. The
problem of wave function collapse of this quantum state is addressed in Section
3.

2 Time-dependent quantum states

Let us consider two similar observers belonging to two similar observable uni-
verses of an infinite open FLRW universe which are indistinguishable. Let us
denote by |Ψ1〉 the quantum state of the observer 1 and by |Ψ2〉 the quantum
state of the observer 2. We may wonder if it is possible to define a common
notion of time for these two observers. We want to use the time elapsed since
the creation of the particle horizon as the same reference time. We may wonder
if the two observers belonging to two similar observable universes at a given
time have a similar past since the creation of the particle horizon.

The FLRW metric is given by

ds2 = c2dt2 − a(t)2
(

dr2

1− kr2
+ r2dΩ2

)

. (3)

and a natural definition of a cosmological horizon for a FLRW universe is the
particle horizon whose proper radius is defined at time t by

RP (t) = a(t)

∫ t

ti

c

a(s)
ds (4)

where ti denotes the post-inflationary epoch [21, Section 2.7]. The particle
horizon is the largest comoving spatial distance from which light could have
reached an observer if it was emitted at time ti [22]. It represents the boundary
between the observable and the unobservable regions of the universe for an
observer.

A particle cannot be ejected out of the observable universe of an observer
by crossing his particle horizon [23, page 37]. It implies that the existence
of the particle horizon ensures that an observer has access to the information
concerning the past of his observable universe since the creation of the particle
horizon, even if there is a repulsive cosmological constant. The Fischler-Susskind
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cosmological holographic principle, which ensures that the particle horizon is
compatible with special relativity [17, 24], states that the entropy of matter
inside the post-inflationary particle horizon must be smaller than the area of
the cosmological horizon [17, 25]. It is true for open and classical flat FLRW
universes [26]. As open inflation leads to infinite open FLRW bubble universes
[4, 5, 6], the Fischler-Susskind cosmological holographic principle can be applied
in this framework.

Thus, we have the following result:

Proposition 1 If two similar observers of an infinite open FLRW universe

have indistinguishable observable universes at time tf after the post-inflationary

epoch ti then they have similar observable universes since the post-inflationary

epoch, i.e. the quantum states |Ψ1(t)〉 and |Ψ2(t)〉 are indistinguishable for all

ti ≤ t ≤ tf .

We define the quantum state

|Ψ12(t)〉 = |Ψ1(t)〉 ⊗ |Ψ2(t)〉 , ti ≤ t ≤ tf (5)

and we know that |Ψ1(t)〉 and |Ψ2(t)〉 are indistinguishable for all ti ≤ t ≤ tf .
If we consider all the quantum states of all the observers having an observable
universe similar to the observable universes 1 and 2 in an infinite open FLRW
universe, then the generalization to the quantum state (1) is straightforward
and we obtain the time-dependent quantum state

|Ψ∞(t)〉 =
∞
⊗

i=1

|Ψi(t)〉 , ti ≤ t ≤ tf (6)

associated with the cosmological interpretation of quantum mechanics
Let us remark that it is possible to extend the existence of the particle hori-

zon of an open FLRW universe to the Planck epoch by using string cosmology
[24].

3 Wave function collapse

Wave function collapse associated with the quantum state (6) must be avoided
after the post-inflationary epoch ti. If there exists a meta-observer who is able
to know the global result of a measurement process occurring in each similar
observable universe of the multiverse at a given time then the measurement
problem cannot be avoided. We have shown in [2] that the collapse of the
time-independent quantum state (1) can be avoided. However, the same rea-
soning cannot be used for the time-dependent quantum state (6). Indeed, if a
measurement is done at time tm > ti, all quantum states |Ψi(t)〉 collapse at
the same time tm after the post-inflationary epoch which was not the case for
time-independent quantum states.

First, let us remark that if we have only a finite fixed number of similar
observable universes, the wave function collapse cannot be avoided. Suppose
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that we have only a finite fixed number N of similar observers i in similar
observable universes having quantum states |Ψi(t)〉. Just after the measurement
at time t+m = tm + ǫ, we may have for instance

∣

∣Ψi(t
+
m)
〉

=
∣

∣Ψj(t
+
m)
〉

(7)

for all i, j ∈ {1, · · · , N} where ǫ > 0 is a sufficiently small number. So, the

quantum state
⊗N

i=1 |Ψi(t)〉 collapses at time tm and all its possible evolutions
cannot be explored. Let us remark that the Born rule is also not satisfied in
a large but finite universe [27, 28] whereas it can be recovered in an infinite
universe by using the frequency operator [1].

Then, we prove that the wave function collapse of the time-dependent quan-
tum state |Ψ∞(t)〉 is not possible. Let us denote by t−m the time just before
the measurement in each similar observable universe and t+m the time just after
the measurement. We study the quantum state |Ψ∞(t−m)〉 in order to see if its
collapse is possible. As the number of quantum states in a finite region of the
universe is finite [9], there exists 1 < K < +∞ such that for all i ∈ N∗ = N\{0}

∣

∣Ψi(t
−
m)
〉

=

K
∑

k=1

αik

∣

∣Ψk(t
+
m)
〉

(8)

where αik ∈ C and
K
∑

k=1

|αik|
2
= 1. (9)

We have

∣

∣Ψ∞(t−m)
〉

=

∞
⊗

i=1

∣

∣Ψi(t
−
m)
〉

= lim
N→+∞

(

N
⊗

i=1

K
∑

k=1

αik

∣

∣Ψk(t
+
m)
〉

)

(10)

We develop the previous expression in square brackets and we obtain

∣

∣Ψ∞(t−m)
〉

= lim
N→+∞





∑

fN∈TN

N
⊗

i=1

αifN (i)

∣

∣ΨfN (i)(t
+
m)
〉



 (11)

where TN is the set of all the functions between {1, · · · , N} and {1, · · · ,K}.
We also have card(TN ) = KN . Then, we gather the coefficients α by using the
properties of the tensor product and it leads to

∣

∣Ψ∞(t−m)
〉

= lim
N→+∞





∑

fN∈TN

p
fN
N

N
⊗

i=1

∣

∣ΨfN (i)(t
+
m)
〉



 (12)

with

p
fN
N =

N
∏

j=1

αjfN (j). (13)
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The term
∣

∣

∣
p
fN
N

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

N
∏

j=1

αjfN (j)

∣

∣

∣

∣

∣

∣

2

=
N
∏

j=1

∣

∣αjfN (j)

∣

∣

2
(14)

is the probability of having the quantum state
⊗N

i=1

∣

∣ΨfN (i)(t
+
m)
〉

for the first
N observable universes. Let T be the set of all the functions between N∗ and
{1, · · · ,K} and

pf = lim
N→+∞

p
fN
N =

∞
∏

j=1

αjf(j) (15)

with f = limN→+∞ fN ∈ T then we have

∣

∣Ψ∞(t−m)
〉

=
∑

f∈T

pf
∞
⊗

i=1

∣

∣Ψf(i)(t
+
m)
〉

. (16)

In [2], we have proved that
|αik| = |αjk| (17)

for all i, j ∈ N∗ by using the Finkelstein-Hartle theorem [15, 16]. As

|αik|
2
< 1 (18)

for all i ∈ N∗, k ∈ {1, · · · ,K}, we have

lim
N→+∞

∣

∣

∣p
fN
N

∣

∣

∣

2

=

∞
∏

j=1

∣

∣αjf(j)

∣

∣

2
= 0 (19)

for all f ∈ T . Indeed, a necessary condition for the product
∏∞

j=1

∣

∣αjf(j)

∣

∣

2
to

be equal to a finite non zero positive real number is that

lim
j→+∞

∣

∣αjf(j)

∣

∣

2
= 1. (20)

The reader may refer to [29, Chapter 2] for more details on infinite products.
It is obvious that Condition (20) cannot be satisfied if we have (17) and (18).
Let us remark that even if K = +∞ which corresponds to an infinite num-
ber of quantum states in a finite volume, a necessary condition for (9) is that

limk→+∞ |αik|
2
= 0 which is also not compatible with (20).

Finally, the result given by (19) leads to the following proposition:

Proposition 2 The probability of measuring the following quantum state

∞
⊗

i=1

∣

∣Ψf(i)(t
+
m)
〉

(21)

is zero for all f ∈ T . Thus, the collapse of the quantum state |Ψ∞(t−m)〉 is not

possible.
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We have defined a time-dependent quantum state |Ψ∞(t)〉 for observers in
similar observable universes in Section 2 and we may wonder why this quantum
state does not collapse. This is due to the fact that the wave function collapse
is associated with the notion of observer. In an infinite universe, this notion
of observer falls down and then also the notion of wave function collapse. An
observer i can only see the wave function collapse of his quantum state |Ψi(t)〉
and he also knows that all the other observers in similar observable universes
can see the wave function collapse of their quantum state at the same time tm
elapsed since the post-inflationary epoch ti with a probability in accordance with
the Born rule [1]. However, the global picture is not the wave function collapse
of the quantum state |Ψ∞(t)〉 at time tm with the existence of a meta-observer.
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